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Abstract: The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation.
As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports
aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression,
metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH
ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G
protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog
1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from
suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation
and activation of target genes. Aberrant activation of this pathway has been implicated in several
cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma,
and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components
of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and
SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants:
loss-of-function GLI1∆N and gain-of-function truncated GLI1 (tGLI1). This review covers the
biochemical steps necessary for propagation of the HH activating signal and the involvement of
aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function
tGLI1 isoform.
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1. Introduction

The hedgehog (HH) gene was first discovered by Christiane Nusslein-Volhard and Eric F.
Weischaus in 1980 through a screen for embryonic lethal mutants of Drosophila melanogaster that
disrupted the larval body plan [1]. Aptly named for the short, “spiked” phenotype of the cuticle of
the mutant Drosophila larvae, HH signaling is evolutionarily conserved from flies to humans and has
been deemed a key regulator of several fundamental processes in vertebrate embryonic development
including cell fate, patterning, proliferation, survival, and differentiation [2,3]. HH signals are diverse
and contextually dependent. For instance, HH signals may act as inducing factors controlling the form
of developing organs or as dose-dependent morphogens that cause distinct cell fates in a particular
target field [3]. The importance of HH signaling in the development of higher-order organisms is
clearly depicted by the unfortunate phenotypic consequences in human fetuses. Dysregulated HH
signaling commonly results in fetuses with brain, facial, and other midline deficiencies including
holoprosencephaly (lack of forebrain development), microencephaly, and cyclopia (an extreme form of
holoprosencephaly characterized by failure of the embryonic prosencephalon to cleave into the left and
right hemispheres) [4–6]. Likewise, hyperactive HH signaling is not without consequence in adults.
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Aberrant HH signaling has been recognized as one of the important signaling pathways and
viable therapeutic targets in human cancers. Continuous HH pathway activation plays a pathological
role in the growth of a group of endodermally-derived human cancers that account for ~25% of
human cancer [7,8]. Under normal conditions, the activation of the HH pathway is limited to stem
cell subpopulations that undergo rapid turnover to maintain homeostasis via modulating tissue
repair of the intestines, nervous system, and skin [9–12]. In adults, mutation or dysregulation of this
signaling axis plays a key role in proliferation and differentiation that promotes tumorigenesis and
tumor growth in several tissue types. Deregulated HH signaling is typified by basal cell carcinoma
(BCC) and medulloblastoma, two well-recognized cancers with protein mutations of HH pathway
components [13–15]. In addition, dysregulation of HH signaling activity has also been linked to the
pathologies of breast, lung, pancreas, and prostate cancers [4,16–18]. Due to the importance of HH
signaling in human cancer, attempts to therapeutically target this pathway have been extensive, which
have resulted in three US FDA-approved inhibitors available for use in cancers to date: arsenic trioxide,
vismodegib/GDC-0449, and sonidegib/LDE-225 [19].
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Figure 1. Overview of the hedgehog signaling pathway. Inactive signaling (left) occurs in the absence 
of HH ligand in which PTCH1 precludes SMO localization to the primary cilium, leading to GLI1 
sequestration in the cytoplasm by SUFU. GLI proteins are then marked for processing, e.g., through 
PKA- or CK1-dependent phosphorylation, and processed into transcriptional repressors (GLI3R). 
Upon CDO/BOC-mediated binding of HH ligand to PTCH1 (right), SMO is derepressed and localizes 
to the primary cilium. A protein complex containing KIF7 and SUFU bound to GLI transcription 
factors is dynamically trafficked to the activated SMO. Active SMO promotes release of GLI proteins 
from SUFU, resulting in nuclear accumulation of GLI1/2 and activation of target genes. 

2. Canonical HH Signaling 

The canonical mammalian pathway includes several key components including the hedgehog 
glycoproteins Sonic hedgehog (SHH), Desert hedgehog (DHH), and Indian hedgehog (IHH); the 12-
transmembrane protein Patched1 (PTCH1), the 7-transmembrane protein Smoothened (SMO), 
suppressor of fused (SUFU), and the GLI zinc-finger transcription factors, which act as the terminal 
effectors of the pathway. As previously stated, the family of GLI transcription factors consists of three 
separate proteins—GLI1 primarily functions as a transcriptional activator, GLI2 as either an activator 
or repressor, and GLI3 as a transcriptional repressor [22]. The expression of GLI1 is highly dependent 
upon active HH signaling and is used as a readout of pathway activation. Of the three HH 
glycoproteins, SHH, the focus of this review, is the most broadly expressed HH protein and the most 
potent of the three [2]. Prior to secretion, SHH undergoes several processing steps including removal 
of its signaling sequence, cleavage catalyzed by its own C-terminal protease domain [34], addition of 
cholesterol to the C-terminal domain to facilitate association with the plasma membrane [35], and 
finally the addition of a palmitate at the N-terminal domain which forms the fully active SHH 
signaling molecule [36,37]. SHH binding is then facilitated by the cell surface Ig/fibronectin 
superfamily proteins CDO and BOC which directly bind SHH through a specific fibronectin repeat, 
thereby increasing the affinity of SHH to its signaling receptor PTCH1 [38]. Tukachinsky et al. (2016) 

Figure 1. Overview of the hedgehog signaling pathway. Inactive signaling (left) occurs in the absence
of HH ligand in which PTCH1 precludes SMO localization to the primary cilium, leading to GLI1
sequestration in the cytoplasm by SUFU. GLI proteins are then marked for processing, e.g., through
PKA- or CK1-dependent phosphorylation, and processed into transcriptional repressors (GLI3R).
Upon CDO/BOC-mediated binding of HH ligand to PTCH1 (right), SMO is derepressed and localizes
to the primary cilium. A protein complex containing KIF7 and SUFU bound to GLI transcription factors
is dynamically trafficked to the activated SMO. Active SMO promotes release of GLI proteins from
SUFU, resulting in nuclear accumulation of GLI1/2 and activation of target genes.

Canonical signaling is initiated by HH ligand binding to the transmembrane Patched 1 (PTCH1)
receptor (Figure 1) [20]. SMO activity is constitutively repressed by PTCH1; however, this inhibition
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is abrogated upon ligand binding to PTCH1. Activated SMO relays the HH activating signals into
the cytoplasm, which ultimately releases GLI transcription factors from cytoplasmic sequestration
by suppressor of fused (SUFU), thereby permitting GLI to translocate into the nucleus and bind
transcriptional targets to regulate cellular gene expression [20,21]. There are three GLI isoforms
in mammals which act as the terminal effectors of the HH pathway: (1) GLI1 typically induces
gene expression and is thought to be a reliable biomarker of pathway activation, (2) GLI12 can
either induce or repress gene expression, and (3) GLI3 acts as a transcriptional repressor in most
contexts [22]. Interestingly, GLI1 somatic mutations have not been reported as a cause of aberrant
signaling. In !contrast, several other pathway components present with mutations, including HH,
PTCH1, SMO, and SUFU. However, recent evidence indicates that the GLI1 mRNA transcript can
undergo alternative splicing, leading to the synthesis of an N-terminal deletion variant (GLI1∆N) and
truncated GLI1 variant (tGLI1) discovered in our laboratory [23,24]. Research is currently underway to
determine the importance of these splice variants compared to the full-length GLI1. GLI∆N appears to
function similarly to the wild-type GLI1, albeit with weaker gene activation, and is expressed at equal
or lower levels in cancers compared to normal tissues [23]. In stark contrast, the tGLI1 variant has
been shown to be frequently expressed in several cancers including glioblastoma, breast, and liver
cancer, but not in normal tissues or cells [24–27]. Furthermore, tGLI1 is a gain-of-function transcription
factor that, in addition to regulating known GLI1 target genes, is able to modulate expression of genes
not regulated by GLI1 to induce several oncogenic phenotypes in breast cancer and glioblastoma such
as tumor growth, migration and invasion, angiogenesis, maintenance of the cancer stem cell (CSC)
population, metastasis, and astrocyte activation [24,25,28–33]. These data strongly suggest that tGLI1
could be a more potent transcriptional regulator than GLI1 or GLI1∆N. In light of these new findings,
this review summarizes the modes of HH signaling, the structures and properties of the three GLI1
isoforms, and the role of aberrant HH activation in cancer.

2. Canonical HH Signaling

The canonical mammalian pathway includes several key components including the hedgehog
glycoproteins Sonic hedgehog (SHH), Desert hedgehog (DHH), and Indian hedgehog (IHH);
the 12-transmembrane protein Patched1 (PTCH1), the 7-transmembrane protein Smoothened (SMO),
suppressor of fused (SUFU), and the GLI zinc-finger transcription factors, which act as the terminal
effectors of the pathway. As previously stated, the family of GLI transcription factors consists of three
separate proteins—GLI1 primarily functions as a transcriptional activator, GLI2 as either an activator or
repressor, and GLI3 as a transcriptional repressor [22]. The expression of GLI1 is highly dependent upon
active HH signaling and is used as a readout of pathway activation. Of the three HH glycoproteins,
SHH, the focus of this review, is the most broadly expressed HH protein and the most potent of the
three [2]. Prior to secretion, SHH undergoes several processing steps including removal of its signaling
sequence, cleavage catalyzed by its own C-terminal protease domain [34], addition of cholesterol to the
C-terminal domain to facilitate association with the plasma membrane [35], and finally the addition of
a palmitate at the N-terminal domain which forms the fully active SHH signaling molecule [36,37].
SHH binding is then facilitated by the cell surface Ig/fibronectin superfamily proteins CDO and BOC
which directly bind SHH through a specific fibronectin repeat, thereby increasing the affinity of SHH
to its signaling receptor PTCH1 [38]. Tukachinsky et al. (2016) recently identified a critical interaction
between the palmitoylated N-terminal portion of SHH and PTCH1, and further demonstrated that it
is necessary and sufficient for PTCH1 inhibition [39]. Specifically, a short palmitoylated N-terminal
SHH peptide was sufficient to bind PTCH1 and activate signaling. The remaining portion of the SHH
molecule was found to bind PTCH1 at a separate site, leading to its internalization.

In the absence of SHH ligand, PTCH1 constitutively represses SMO activity [20]. Current literature
suggests that this repression is mediated in at least two ways: (1) disruption of SMO localization and (2)
catalytic inhibition of SMO [20,40]. In mammalian cells, SMO-dependent GLI1 activation is contingent
upon the localization of SMO to the primary cilium, a solitary cell surface projection that functions as a
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major signaling center. PTCH1 localizes at the base of the primary cilium, precluding accumulation of
SMO and thereby impacting its activation [40–42]. Binding of SHH to PTCH1 delocalizes PTCH1 from
the primary cilium, leading to its degradation and the reciprocal movement of SMO into the cilium.
The precise mechanism by which PTCH1 catalytically inhibits SMO remains unknown; however,
prevailing models suggest PTCH1 inhibits SMO sub-stoichiometrically in lieu of a direct interaction,
by limiting the availability of modulatory ligand(s) to SMO [20,40,42,43]. Cryo-EM structure analysis
revealed tetrameric PTCH1 bound to the palmitoylated N-terminal signaling domain of SHH at a 4:2
stoichiometric ratio. The structure shows that four PTCH1 protomers are organized as a loose dimer of
dimers in which each dimer binds to one SHH molecule through two distinct inhibitory interfaces [44].
Additionally, PTCH1 shares sequence homology with the prokaryotic resistance-nodulation-division
(RND) family transporters, typified by the bacterial proton-driven multidrug resistance exporter AcrB
suggesting PTCH1 may act as a SMO ligand transporter [45]. Multiple studies suggest that this
endogenous cargo may be a steroidal molecule [46–50]. Importantly, PTCH1 contains a sterol-sensing
domain conserved across sterol biogenesis regulatory enzymes likely conferring the ability to bind
sterols [51]. For an extensive review on the evidence supporting sterol lipids as the elusive second
messenger that communicates the SHH signal between PTCH1 and SMO, we refer readers to a
comprehensive article by Kowatsch et al. (2019) [52].

Binding of SHH to the PTCH1 receptor derepresses SMO, ultimately freeing GLI1 transcription
factors from cytoplasmic retention. However, the understanding of how the activation signal is
transmitted from ciliary SMO to the cytoplasmic GLI1 effectors remains incomplete [53]. As mentioned
above, propagation of the SHH signal to GLI1 effectors is dependent upon SMO localization to the
primary cilia. SMO is phosphorylated and activated by association with CK1α and GPCR kinase 2
(GRK2), resulting in its translocation to the primary cilium through interaction by β-arrestin [43,54,55].
Evidence has also emerged implicating the cyclic AMP (cAMP)-protein kinase (PKA) pathway in
the lateral movement of SMO in mammalian cells [56]. Milenkovic et al. (2009). demonstrated that
increasing cAMP levels via Forskolin treatment induced SMO translocation to the primary cilium
through a lateral transport pathway [56]. Conversely, inhibition of PKA activity by small-molecule
inhibitors H89 and KT5720 abrogated SHH-induced transcription of PTCH1 and GLI1 target genes [56].
This novel finding starkly contrasts the canonical description whereby increasing PKA activity inhibits
signaling by promoting GLI1 degradation and decreasing PKA activates signaling (even in the absence
of SHH ligands) [57–64]. Clearly the involvement of PKA in regulating SHH signaling cannot be
distilled down to a binary relationship and additional studies are needed to fully elucidate the impact
of PKA on the components of this signaling axis.

Once SMO accumulates in the primary cilia, a protein complex containing kinesin protein (Kif7)
and SUFU bound to GLI1 transcription factors is dynamically trafficked to the activated SMO in
the primary cilia [65–67]. However, there is no evidence that SMO directly interacts with SUFU to
release GLI1. Transmission of the activating signal from SMO to SUFU appears to be dependent upon
SMO’s interaction with the Ellis van Creveld Syndrome ciliary complex proteins Evc and Evc2 [68,69].
These proteins, which co-associate and localize at the primary cilia in a mutually dependent manner,
act downstream of SMO to promote disassociation of SUFU from the GLI proteins. SUFU is essential
for suppressing GLI1 activity in unstimulated cells through directly binding GLI1 effectors via an
N-terminal interacting site to sequester GLI1 in the cytoplasm [70]. Endogenous SUFU–GLI1 complexes
are rapidly dissociated upon recruitment to the primary cilia by activated SMO thus licensing GLI1
proteins for gene transcriptional activation [53,65,71]. GLI1 activation is regulated at several levels via
phosphorylation by inhibitors such as SUFU, Ren, protein kinase A (PKA), glycogen synthase kinase
3β (GSK3β) and activators such as Dyrk1, Ras, and Akt [72,73].

3. Noncanonical Signaling

The notion of noncanonical SHH signaling refers to the cellular and tissue responses to HH
isoforms that are not mediated by GLI1 isoform transcriptional activity. There are three classifications
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of noncanonical HH signaling: Type I acts through PTCH1 via functions distinct from its inhibition of
SMO, Type II is mediated through GLI1-independent activities of SMO such as activation of small
GTPases, and Type III refers to all other mechanisms of GLI1 transcription factor activation occurring
independently of upstream PTCH1-SMO signaling [74,75].

3.1. Type I—PTCH1 Functions Distinct from SMO Inhibition

Canonical SHH signaling combats apoptosis through several mechanisms: upregulation of
pro-survival genes (e.g., Bcl-2) via GLI1-dependent transcription; activation of Akt, a pro-survival
kinase; and the Type I noncanonical pathway [75]. Recent evidence purports PTCH1 to be capable of
promoting apoptosis independently of canonical SHH signaling [76,77]. Ectopic expression of PTCH1
induced apoptosis in vitro independent of SMO, as indicated by the finding that SMO overexpression
was not able to prevent cell death [77]. PTCH1 is typically described as a tumor suppressor by virtue
of its inhibitory action toward SMO. However, the findings by Chinchilla et al. (2010) suggest that
the tumor-suppressive capabilities of PTCH1 go beyond its relationship with SMO. Interestingly,
PTCH1 has been proposed to function as a dependence receptor in that the function of PTCH1 at the
time it is expressed, solely depends on whether the SHH ligand is present [78]. PTCH1 shares several
similarities to other dependence receptors [75]. Additionally, the PTCH1 C-terminal domain (CTD),
when cleaved, was found to induce cell death and regulate PTCH1 degradation and localization [79].
However, the CTD does not appear necessary for maintaining the fidelity of PTCH1-mediated SMO
inhibition [80]. SHH also activates the ERK pathway independently of SMO, most likely through
modulating the interaction of the PTCH1 CTD with SH3-containing proteins such as Grb2 [81].

Furthermore, SMO-independent noncanonical signaling can also influence proliferation and cell
cycle regulation in some cell types, notably cerebellar granule precursor cells, which may give rise
to medulloblastoma through GLI1-mediated induction of n-myc and Cyclin D1 [82–86]. The cyclin
protein family acts as regulatory subunits for cyclin-dependent kinases, which are responsible for
regulating cell cycle progression by directly affecting a cell’s transcriptional landscape [87]. Specifically
involved in traversing the G2/M checkpoint, activated Cyclin B1-Cdk1, essential for mitotic progression,
can be regulated by noncanonical SHH signaling [88]. PTCH1 is able to interact with phosphorylated
Cyclin B1 through the large intracellular loop between the sixth and seventh transmembrane domains
preventing Cyclin B1 from translocating into the nucleus and subsequently reducing proliferation [89].
The identification of Cyclin B1 sequestration by PTCH1 demonstrates a tumor-suppressive function
independent of downstream SHH signaling components. As expected, the presence of SHH restores
canonical signaling and precludes the PTCH1 interaction with Cyclin B1, permitting its nuclear
translocation and completion of mitosis [89]. The multiplicity of PTCH1 tumor-suppressive functions
supports PTCH1 mutations as a strong predictor of breast cancer recurrence meriting further study [16].

3.2. Type II—SMO-Mediated Functions Independent of GLI1

SMO, a functional G protein-coupled receptor (GPCR), demonstrates selectivity toward
heterotrimeric Gi proteins [90]. GPCRs are known to activate small GTPases which play key roles in
cytoskeletal reorganization [91]. These small GTPases are monomeric G proteins that act as molecular
switches to quickly regulate cellular processes [92]. In the context of SMO-dependent noncanonical
SHH signaling, rapid stimulation of Rac1 and RhoA small GTPases by SMO has been identified as
a cause of fibroblast migration [93]. In this study, both SHH ligand and purmorphamine, a potent
SMO agonist, promote migration of NIH3T3 fibroblasts without affecting SMO-knockout mouse
embryonic fibroblasts (MEFs). The reciprocal was also found to be true, i.e., that activation of both Gi

and PI3K by SMO was required for cell migration and RhoA/Rac1 activation [93]. Despite ectopically
expressing GLI3R, the transcriptional repressor of GLI3, neither SHH- nor purmorphamine-mediated
MEF migration was disrupted demonstrating the migratory phenotype was mediated by noncanonical
signaling [93]. Additional evidence suggests that this form of SMO-independent noncanonical SHH
signaling is also independent of localization to the primary cilia, an important step in propagating
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the activated SHH signal. Ho Wei et al. (2018) found that SHH and purmorphamine-mediated
SMO activation stimulated Gi proteins and RhoA independently of the presence of primary cilia [94].
Kif3a-deficient fibroblasts, which cannot form primary cilia and therefore activate the canonical SHH
pathway, retained the ability to activate RHOA following stimulation of endogenous SMO with SHH
or purmorphamine [94].

3.3. Type III—Mechanisms Independent of Upstream PTCH1-SMO Signaling

Type III noncanonical hedgehog signaling encompasses all other mechanisms of GLI1 activation
that occur independently of the noncanonical PTCH1 and SMO signaling activities described
above. This form of GLI1 activation primarily arises through post-translational modification of
GLI1 proteins and crosstalk with other oncogenic pathways that promote transcriptional activation
of GLI1 genes. GLI1 proteins are extensively modified post-translationally, and these modifications
largely determine intracellular trafficking and transcriptional output of the SHH pathway. Known
post-translational modifications (PTMs) of GLI1 include phosphorylation, ubiquitination/proteasomal
truncation, sumoylation, acetylation, and O-GlcNAcylation [95,96]. Phosphorylation, particularly by
protein kinase A (PKA), is the most frequently studied GLI1 PTM. PKA-mediated phosphorylation of
GLI1 serine residues is the critical inhibitory signal that limits the conversion of GLI1 proteins into
transcriptional activators in the absence of Sonic hedgehog ligand [61]. Casein kinase 1 (CK1) plays a
key role in formation of both GLI1 repressor proteins and formation and stabilization of active GLI1
proteins from Cul3/Spop-mediated proteosomal degradation [97]. Dual-specificity tyrosine kinase
family (DYRK) proteins are also known to regulate GLI1 proteins through PTM. DYRK1 directly
phosphorylates GLI1 enhancing its transcriptional activity in part through retaining GLI1 in the
nucleus [98–100]. Other kinases known to phosphorylate GLI1 include ULK3 [101,102], S6K1 [103],
atypical PKA [104–106], AMP-activated protein kinase (AMPK) [107–109], Mitogen-activated protein
kinase kinase kinase 1 (MEKK1) [110], and Hck [111].

Ubiquitination, a process that targets substrate proteins for proteolytic degradation via the
ubiquitin-proteasome system, is an important GLI1 PTM that balances the repressor and active forms
of GLI1 to keep the pathway in the off state and acts as a negative feedback look in the on state [112].
Several E3 ligase complexes catalyze the addition of ubiquitin chains to GLI1 lysine residues; two
of these have been extensively characterized: Cul1/β-TrCP and E3 ubiquitin-protein ligase Itchy
homolog (Itch). Cul1/β-TrCP ubiquitinates GLI1 in its inactive state to induce complete protein
degradation [113,114]. This interaction is dependent on the conserved degron motifs (Figure 2) [114].
Conversely, Itch is involved in the degradation of activated GLI1 proteins. Itch-dependent degradation
of GLI1 is mediated by the E3 ligase adaptor protein Numb [115,116].

Sumoylation is another repressive modification of many transcription factors that is catalyzed
by enzymes similar to ubiquitin ligases. Pias1 small ubiquitin-related modifier (SUMO) ligase was
found to decrease GLI1 ubiquitination, thereby increasing GLI1 transcriptional activity in vitro [117].
Alternatively, the sentrin-specific peptidase (SENP1) is the specific deSUMOylation enzyme for GLI1
that stabilizes GLI1 through competition for conserved lysine residues [118]. Furthermore, acetylation
of GLI1 at lysine residue K518 by the acetyltransferase p300/CBP reduces the transcriptional activity
of GLI1 through sequestering inactive GLI1, inhibition of DNA binding, and increasing nuclear
export [105,119]. This repressive marker is further potentiated by β-arrestin1 (Arrb1) [120]. Conversely,
histone deacetylase (HDAC) activity has been shown to increase SHH pathway activity [119,121].
Another PTM, O-GlcNAcylation, which is the addition of a single O-linked β-N-acetylglucosamine to
specific serine/threonine residues, has recently been shown to increase GLI1 nuclear accumulation and
transcriptional activity [122].
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Figure 2. Structures of the GLI1 gene and known GLI1 isoforms. The full-length GLI1 gene consists of
12 exons, including the 5′-untranslated exon I. The GLI1 coding region spans nt +79 to +3399 with
the initiating methionine codon, ATG, at +79 in exon II (arrows). Exons are indicated as blue boxes,
and introns are shown by lines. The known functional domains of full-length GLI1 include the degron
degradation signals (Dn and Dc; aa 77–116; 464–469), SUFU-binding domains (SU; aa 116–125 and
C-terminus), zinc-finger domains (ZF; aa 235–387), the nuclear localization signal (NLS; aa 380–420),
and the transactivation domain (aa 1020–1091). Alternative splicing of GLI1 RNA can lead to the
deletion of exons I–III, totaling 128 amino acids at the N-terminus, forming the GLI1∆N variant.
The C’∆GLI1 and N’∆GLI1 variants are proposed to arise from post-translational C-terminal and
N-terminal truncations of the full-length GLI1 gene product, respectively. The deletion of exon III and
part of exon IV, totaling 41 amino acids, yields the tGLI1 isoform. Importantly, tGLI1 retains all known
functional domains of the full-length GLI1. Construct names are on the left and estimated molecular
weights are to the right. Protein diagrams are aligned using the zinc-finger domains.

4. GLI1 Isoforms: Structures and Properties

4.1. GLI1

The human GLI1 gene was identified as a putative oncogene in 1987 by Kinzler et al. after
observing the amplification of a region within chromosome 12 [123]. The gene was named by virtue of
the glioma tumor in which the amplification was detected. The 3318 base pair sequence codes for a 1106
residue protein that belongs to the GLI-Kruppel family of zinc-finger transcription factors [124,125].
Using a conserved five tandem C2-H2 zinc-finger binding domain (amino acids 234-388), GLI1 functions
as a monomer that recognizes the DNA consensus sequence 5′-GACCACCCA-3′ [126]. Only the two
cytosine-pairs flanking the central adenine are critical for GLI1 binding; the other positions can tolerate
a degree of flexibility if located within natural promoters [127]. Zinc-finger domains two through
five bind DNA in the major groove via interactions with the phosphate backbone [128]. To ensure
nuclear translocation, GLI1 proteins contain a nuclear export sequence and nuclear localization signal
(Figure 2) [129,130]. Furthermore, the GLI1 C-terminal domain (amino acids 1020–1091) confers the
ability to transactivate gene promoters through modulation of chromatin remodeling, interaction with
histone acetyltransferases, histone deacetylases, SWI-SNF5, and SWI/SNF-like Brg/Brm-associated
factor [119,131–133]. Other members of the GLI-Kruppel protein family include GLI2 and GLI3. GLI2
is another, albeit less potent, transcriptional activator, while GLI3 primarily represses transcriptional
activity in most settings [22,134–136]. The remainder of this review will focus on GLI1 and its isoforms.
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4.2. GLI∆N

Nearly 20 years later, the GLI1 splice variant, GLI1∆N, was discovered in 2008 by
Shimokawa et al. [23]. Skipping of exon II and III results in the loss of the N-terminal degron
degradation signal and SUFU-interacting site, the latter of which is responsible for cytoplasmic
sequestration of GLI1 (Figure 2) [23,70]. Despite lacking two key N-terminal protein regions involved
in tight regulation of GLI1-mediated transcription, luciferase-reporter activation by GLI1∆N was lower
than that of the wild-type GLI1 in NIH3T3 cells [23]. The same held true for the transcriptional response
of endogenous genes in the same cells. Furthermore, the N-terminal truncation clearly reduced GLI1∆N
nuclear translocation as noted by the broad diffusion of the protein throughout the cytoplasm and
nucleus and punctiform patterning indicative of reduced transcriptional activity, likely due to loss of
DYRK1 phosphorylation [23,98]. However, SUFU proved to be a stronger regulator of GLI1 localization
compared to GLI1∆N. One may then speculate that there exists a separate regulatory mechanism
controlling the activity of this truncated variant. Indeed, some years later, the same group described a
carboxy terminal variant of SUFU, denoted SUFU-∆C, that was more effective in restricting GLI1∆N
than wild-type GLI1 [21]. Additionally, the observation that GLI1∆N is downregulated in tumor
tissues compared to normal tissues suggests that alternative splicing of GLI1 mRNA may function as a
regulatory sink to control pathway activity [23,137]. Unfortunately, the weaker transcriptional activity
of GLI1∆N all but precluded this splice variant as a putative oncogene. Though we may not fully
understand the role of GLI1∆N in SHH signaling, it is clear that alternative splicing is a key biological
process that contributes to the diversity of signaling components within the SHH signaling axis.

4.3. C’∆GLI1 and N’∆GLI1

The GLI1 isoforms C’∆GLI1 and N’∆GLI1 were observed following transfection of U251 glioma cells
with an N-terminal myc-tagged GLI1 expression plasmid [138]. Using an anti-myc antibody, Western
blot analysis revealed the presence of a 110 kD isoform (C’∆GLI1) in addition to the full-length protein.
C’∆GLI1 presents with a C-terminal truncation, leading to the absence of the C-terminal SUFU-binding
region and transactivation domains suggesting this isoform may act as a C’∆ repressor (Figure 2) [63,138].
Moreover, transfection of U87 glioma cells with the same construct produced only trace amounts of
C’∆GLI1 suggesting detection of this isoform was not solely due to ubiquitous degradation [138].

The 130 kD N’∆GLI1 isoform, distinct from GLI1∆N, was not discovered until repeat sample analysis
using an antibody that targeted a domain immediately C-terminal to the zinc-fingers of the full-length GLI1
protein [138]. The N-terminal truncation removed the myc tag rendering the anti-myc antibody incapable
of recognizing this variant (Figure 2). However, the mechanism of N’∆ truncation remains unresolved.
Analysis of patient-derived glioblastoma neurospheres and tumor cell lines revealed higher abundance of
N’∆GLI1 compared to the wild-type protein suggesting the absence of two inhibitory regions located in
the full-length GLI1 N-terminus: an N’ degron and SUFU-binding site [138]. Similar to GLI1, N’∆GLI1
can be phosphorylated via a p53-dependent mechanism, leading to a decrease in activity [138].

4.4. tGLI1

Our laboratory discovered a second novel GLI1 isoform, named truncated GLI1 (tGLI1),
in 2009 [24]. Alternative splicing of the wild-type GLI1 transcript leads to an in-frame deletion of
nucleotides 179–301 and amino acids 34–74, corresponding to the complete deletion of exon III and part
of exon IV (Figure 2) [24]. Analysis of glioblastoma cell lines revealed that tGLI1 was not deleted at the
genomic level indicating biogenesis via post-transcriptional alternative splicing. Further characterization
revealed that despite the loss of 41 amino acids, tGLI1 retains all known GLI1 functional domains,
responds to SHH stimulation, and translocates to the nucleus where it transactivates GLI1 target genes
and other genes not regulated by GLI1 (Table 1) [24,25,28–33]. The mechanism behind tGLI1′s more
potent induction of GLI1 target genes and ability to transcriptionally activate novel target genes remains
unclear, but is the subject of active study. tGLI1 expression is tumor-specific: tGLI1 is frequently expressed
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in cancerous tissues including those of glioblastoma, breast cancer, and hepatocellular carcinoma, but not
in normal adult tissues or cell lines [24–27]. tGLI1 expression distinctly differs from GLI1 and GLI1∆N
because both of these isoforms are expressed in both normal and cancer cells [23,24,139]. In Section 6, we
will discuss in detail the known roles of tGLI1 in glioblastoma and breast cancer.

Table 1. Known target genes of GLI1 isoforms in human cancers.

Isoform Target Gene Cancer Reference

GLI1

ABCG2 Diffuse large B-cell lymphoma [140]

ANO1 Pancreatic ductal adenocarcinoma [141]

AQP1 Glioma [142]

Bcl-2 Colorectal adenocarcinoma, basal cell carcinoma, B-cell chronic lymphocytic leukemia [143–145]

BHLHE41 Pancreatic ductal adenocarcinoma [146]

Bmi1 Medulloblastoma [147]

c-Myc Pancreatic adenocarcinoma [148]

CXCR4 Breast cancer, pancreatic ductal adenocarcinoma [149,150]

Cyclin D1 Pancreatic ductal adenocarcinoma [151]

Cyclin D2 Rhabdomyosarcoma, medulloblastoma, astrocytoma, cervical cancer [152–154]

DMNT1 Pancreatic ductal adenocarcinoma [155]

ENC1 Medulloblastoma, rhabdomyosarcoma [156]

E2F1 Melanoma [157]

FOXM1 Basal cell carcinoma, bladder cancer, glioblastoma [158–160]

FOXS1 Medulloblastoma, rhabdomyosarcoma [156]

GLI1 B-cell chronic lymphocytic leukemia, chronic myelogeneous leukemia,
medulloblastoma, multiple myeloma, rhabdomyosarcoma [145,156,161,162]

GLI2 B-cell chronic lymphocytic leukemia, multiple myeloma [145,162]

H19 Bladder cancer [158]

HHIP Medulloblastoma, rhabdomyosarcoma [163]

IGF2 Bladder cancer [158]

IGFBP-6 Rhabdomyosarcoma, neuroblastoma, colon cancer [164]

IL-7 Pancreatic ductal carcinoma [151]

KLF4 Colon cancer [165]

Krox-20 Medulloblastoma, cervical cancer [153]

MUC5AC Pancreatic ductal adenocarcinoma [166]

Nanog Colon cancer, glioblastoma, medulloblastoma, pancreatic adenocarcinoma [148,165,167,168]

NEO1 Basal cell carcinoma, medulloblastoma [169,170]

NKX2.2 Medulloblastoma, astrocytoma [154]

OCT4 Colon cancer, pancreatic adenocarcinoma [148,165]

Osteopontin Melanoma [164]

PAX6 Medulloblastoma, astrocytoma [154]

PDGFRα Basal cell carcinoma [171]

Plakoglobin Rhabdomyosarcoma, medulloblastoma, astrocytoma [152,154]

PLAT Medulloblastoma, rhabdomyosarcoma [156]

PRPSAP1 Cervical cancer [153]

PSF2 Bladder cancer [158]

PTCH1 Chronic myelogeneous leukemia, medulloblastoma, multiple myeloma,
rhabdomyosarcoma [154,156,161,162]

PTCH2 Medulloblastoma, rhabdomyosarcoma [156]

SHH Chronic myelogeneous leukemia [161]

SMO Chronic myelogeneous leukemia [161]

Snail1 Melanoma [172]

SOSTDC1 Medulloblastoma, rhabdomyosarcoma [156]

Sox2 Colon cancer, non-small-cell lung cancer, pancreatic ductal adenocarcinoma [148,165,173]

SPP1 Bladder, melanoma [158]

Twist1 Melanoma [172]

WNT-2 Colon cancer [165]

Zeb1 Melanoma [172]
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Table 1. Cont.

Isoform Target Gene Cancer Reference

tGLI1

CD24 Breast, glioblastoma [24,139]

CD44 Breast, glioblastoma [31]

Cep70 1 Breast cancer [32]

HPSE Glioblastoma [29]

MMP-2 Breast cancer [139]

MMP-9 Breast cancer [139]

Nanog Breast cancer [33]

OCT4 Breast cancer [33]

PTCH1 Glioblastoma [24]

R-Ras2 1 Breast cancer [32]

Sox2 Breast cancer [33]

TEM7 Glioblastoma [30]

UPF3A 1 Breast cancer [32]

VEGF-A Breast, glioblastoma [139,174]

VEGF-C Glioblastoma [30]

VEGFR2 Breast, medulloblastoma [28]
1 tGLI1 must be complexed with STAT3.

5. Aberrant SHH Signaling in Cancers

SHH signaling is tightly linked to many fundamental processes, including embryonic development
and tissue homeostasis [2,3]. Emerging evidence suggests that dysregulation of this signaling axis
could contribute to tumorigenesis, metastasis, and drug resistance. At the molecular level, it has been
shown that SHH signaling drives the progression of cancers by regulating cancer cell proliferation,
malignancy, metastasis, and the expansion of CSCs [175,176]. Aberrant pathway activation has
been linked to the development of several cancer types with three distinct mechanisms proposed:
ligand-independent signaling resulting from protein mutations as in the cases of BCC, medulloblastoma,
and rhabdomyosarcoma by way of PTCH1 mutations (Type I); ligand-dependent autocrine or juxtacrine
signaling via overexpression of the SHH ligand observed in colorectal, ovarian, and pancreatic
cancers (Type II); and ligand-dependent paracrine signaling via SHH ligand overexpression induced by
tumor–stroma interactions commonly found in colon, pancreatic, and prostate cancers (Type III) [4,17,18].

5.1. Type I Signaling—Autonomous and SHH Ligand-Independent

Though unknown at the time, aberrant SHH signaling was first linked to cancer when Robert
J. Gorlin described Gorlin Syndrome (also referred to as naevoid basal cell carcinoma syndrome or
basal cell naevus syndrome) in 1960 [177]. Characterized by developmental abnormalities and distinct
postnatal cancer occurrence including medulloblastoma (1–2% of cases) and rhabdomyosarcoma
(0.5% of cases), Gorlin syndrome primarily results from inactivating PTCH1 mutations on chromosome
9, leading to SMO hyperactivity [178–183]. In fact, nearly 90% of sporadic BCC and up to 33% of sporadic
medulloblastomas show SHH pathway activation, caused most commonly by inactivating mutations
in PTCH1 or more rarely by activating mutations in SMO [184,185]. The connection between SHH
signaling and cancer was bolstered when Dahmane et al. (1997) described that human sporadic BCC
consistently expressed GLI1, but not SHH or GLI3 [13]. This suggested that dysregulated GLI1 activity
in basal cells induced BCC formation. In other cancers caused by ligand-independent SHH signaling,
tumorigenesis can arise from activating SMO mutations or inactivating SUFU mutations [14,15,186].
Conversely, mutations impacting SUFU function in BCC are rare [187]. Similarly, PTCH1 somatic
mutations and loss of heterozygosity have been described in transitional cell carcinoma (TCC) of the
bladder and esophageal squamous cell carcinoma [158,188–190].
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5.2. Type II Signaling—Autocrine/Juxtacrine SHH Ligand-Dependent

A second mechanism of uncontrolled activation of SHH signaling may arise through increased
secretion of SHH ligand by tumor cells into the immediate surrounding area. Since the SHH pathway
is activated in a cell-autonomous manner, SHH ligand is produced by and taken up by the same
or immediately surrounding tumor cells. This ligand-dependent autocrine/juxtacrine signaling
has been described in several cancers including colorectal, prostate, liver, breast, ovarian, brain,
and melanoma [8,18,191–193]. The pathogenesis of these tumors is distinct from BCC and medulloblastoma
in that they do not present with any somatic mutational burden of the SHH pathway. Most of these
tumors show increased expression of the SHH ligand and ectopic PTCH1 and GLI1 expression.

5.3. Type III Signaling—Paracrine SHH Ligand-Dependent

In contrast to Type I and Type II, paracrine ligand-dependent signaling co-opts the stromal cells
within the tumor microenvironment to facilitate formation of a favorable tumoral niche. Paracrine
SHH [3,194] signaling is critical during development and for the maintenance of various epithelial
structures such as the small intestine. Analysis of several human tumor xenografts showed that the
levels of SHH ligand mRNA expression in tumor cells correlated with increased GLI1 and PTCH1
mRNA levels in the stroma and not the tumor compartment, indicating that the SHH ligands activate
SHH signaling in the surrounding stroma instead of the tumor epithelium [195]. In the absence of
SHH pathway mutations, SHH ligands released by a subset of epithelial cancer, including colon,
ovarian, pancreatic, and prostate, activate SHH signaling in the surrounding stroma [8,192,195–200].
The stromal cells, in turn, secrete paracrine growth factors such as vascular endothelial growth factor
(VEGF), insulin-like growth factor (IGF), interleukin-6 (IL-6), Wnt, platelet-derived growth factor
(PDGF), and bone morphogenetic proteins (BMP) to promote tumor growth [201]. For example,
analysis of primary esophageal cancers revealed that even though the SHH transcript was localized
to the tumor tissue, expression of GLI1 and PTCH1 was found in both the tumor and stroma [200].
Likewise, SHH expression was detected in the tumor epithelium of prostate cancer samples while
GLI1 expression, was upregulated in the stromal compartment, again providing evidence of paracrine
ligand-dependent signaling to facilitate cancer development [199].

Interestingly, a “reverse paracrine” signaling model has been observed. In this instance, stromal
SHH is believed to provide a suitable microenvironment for promoting tumor growth. Although this
phenomenon has yet to be observed in solid tumors, it has been observed in several hematological
malignancies including multiple myeloma, lymphoma, and leukemia [162,202]. Acute myeloid
leukemia (AML) stems from a differentiation defect of hematopoietic stem and progenitor cells
(HSPCs) in the bone marrow, resulting in the accumulation of immature blast cells that displace the
normal hematopoietic system. Within the bone marrow microenvironment, AML blasts interact and
communicate with stromal and immune cells [203]. The SHH pathway is under active study for its
roles in leukemic stem cell regulation and acquired drug resistance of poor prognostic AML. SMO and
GLI1 expression levels were found to correlate with acquired radio- and drug-resistance in human
myeloid cell lines [204]. Patients who relapsed after ribavirin treatment presented with elevated levels
of GLI1 and the UDP glucuronosyltransferase (UGT1A) which prevents ribavirin from eliciting its
effect [205]. Interestingly, GLI1 was found to be sufficient to promote UGT1A expression whereas
pharmacological or genetic GLI1 inhibition abrogated the acquired resistance. Furthermore, several
clinical trials investigating the use of SMO inhibitors alone or in combination with compounds blocking
driver mechanisms in AML have been initiated. In fact, the SMO inhibitor Glasdegib, in combination
with low-dose cytarabine, was recently approved for AML treatment of elderly patients [206].

That said, findings by Becher et al. (2008) suggest that PDGF-induced gliomas may employ
paracrine SHH signaling [207]. Using a GLI1-luc reporter mouse model, they were able to
observe two populations of SHH-producing stromal cells located within the perivascular niche:
low-cycling astrocytes and endothelial cells demonstrating an SHH-producing microenvironment.
These SHH-immunoreactive astrocytes resided in the perivascular niche in close association with
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nestin-expressing tumor cells. Importantly, these SHH-immunoreactive cells were not derived from the
cell of origin suggesting these reactive astrocytes were recruited to the tumor to provide an SHH-rich
microenvironment [207].

5.4. Cancer Stem Cells

During tumor development, SHH signaling has three major roles: driving tumor development,
promoting tumor growth, and regulating residual cancer cells after therapy [208]. Metastasis and
relapse following successful treatment of primary tumors are major challenges for cancer therapies.
The mechanism behind late-stage recurrence remains unknown. However, one hypothesis suggests
the presence of a subset of stem-like cancer cells that possess stem cell characteristics. These cancer
stem cells (CSC) have the ability to give rise to the heterogeneous cell population found within the
primary tumor and are considered to be the metastasis-initiating tumor cells [209–211]. Multiple studies
implicate the SHH pathway as a driver of CSC maintenance in cancers of the brain [191], breast [212,213],
colon [214], lung [173,215], ovary [216], pancreas [217], prostate [218], as well as multiple myeloma [219]
and chronic myelogenous leukemia [220,221]. GLI1 proteins regulate the expression of the pluripotency
factors Nanog, octamer binding transcription factor 4 (OCT4), SOX2, WNT-2, CD44, and Kruppel-like
factor 4 (KLF4) [148,165,167,168]. Recently, we have shown the novel tGLI1 isoform to promote the
glioma stem cell population via upregulation of CD44 and the breast cancer stem cell population
through upregulation of CD44, Nanog, OCT4, and Sox2 (Section 6) [31,33]. These data demonstrate
that amplified SHH signaling is important for the self-renewal and maintenance of CSCs.

6. SHH Signaling and Human Cancer

Tightly controlled SHH signaling is necessary for the proper embryonic development and
maintenance of differentiated tissues. However, a plethora of studies have linked dysregulated SHH
signaling to numerous diseases from insufficient pathway activation, resulting in tissue degradation
to aberrant signaling, leading to tumorigenesis. Genetic alterations in this pathway are commonly
loss-of-function changes to suppressors of the pathway (e.g., PTCH1 and SUFU) or gain-of-function
changes to promotors of the pathway (e.g., SMO and GLI). Patients afflicted by Gorlin syndrome
present with loss of PTCH1 heterozygosity, increasing the likelihood of developing a distinct set of
solid tumors: BCC, medulloblastoma, and rhabdomyosarcoma [177]. PTCH1 mutations leading to
SMO hyperactivity can be leveraged for therapeutic efficacy and currently represent the most effective
therapeutic strategy. Indeed, the SMO inhibitors Vismodegib and Sonidegib are FDA-approved to
treat SMO hyperactivity in BCC and have shown promising efficacy in SHH-dependent preclinical
models of medulloblastoma and others [222–231]. However, the discovery of alternative splice variants
of the GLI1 transcript, GLI1∆N and tGLI1, suggest that these variants may constitute additional
therapeutic targets or mechanisms underlying resistance to SHH inhibitors. Therefore, understanding
the role of SHH dysregulation in SHH-mediated cancers and how the novel GLI1 splice variants may
promote various phenotypes is paramount to further mechanistic discovery and drug development.
The remainder of this review is dedicated to summarizing the pertinent functions of tGLI1-mediated
SHH signaling in glioblastoma and breast cancer (Figure 3), two cancers in which tGLI1 activity has
been validated, and how tGLI1 activity can be leveraged to devise novel treatments.
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Figure 3. tGLI1-mediated oncogenic phenotypes in glioblastoma and breast cancer. In addition
to regulating several known GLI1 target genes, tGLI1 gains the ability to modulate several potent
oncogenic phenotypes via transcriptional activation of genes not regulated by GLI1: (1) angiogenesis
via HPSE, TEM-7, VEGF-A, and VEGF-C; (2) tumor growth rate by increasing VEGFR2 and CD44
(GBM only) expression; (3) invasion and migration via CD24, MMP-2 (BrCa only), and MMP-9
(BrCa only); and (4) cancer stemness via upregulation of CD44, Nanog, OCT4, and SOX2. BrCa,
breast cancer; GBM, glioblastoma.

6.1. Glioblastoma

Glioblastoma (GBM) is the most common and most lethal brain tumor in adults, accounting
for 15% of all brain tumors [232]. Given that the GLI1 amplification was discovered in gliomas, it is
self-evident that aberrant SHH signaling plays a central role in glioma pathogenesis and tumor
progression. Despite the advances made in surgical techniques, radiotherapy and chemotherapy,
GBM prognosis remains poor with a median survival of 14 months following diagnosis and less than
5% of patients surviving five years postdiagnosis [233]. Recent studies identified subpopulations
of stem cell-like tumor cells, termed glioma stem cells (GSCs), that exhibit the ability to self-renew,
persistently proliferate, and differentiate into multiple cell lineages, thereby acting as key drivers of
tumor initiation, recurrence, and chemoresistance [234–237]. The SHH pathway has been shown to
play an essential role in potentiation of the GSC function [191]. Gene expression of glioma samples
revealed enrichment of a stemness signature that included the stemness markers NANOG, OCT4, SOX2,
and BMI1 that correlated with tumor grade. Further characterization revealed that SHH-mediated GLI1
signaling regulated the self-renewal of CD133+ glioma CSCs [191]. Gliomas with hyperactive SMO
initially respond to SMO inhibitors. However, resistance to SMO antagonists frequently emerge due to
germline or acquired SMO mutations [238–242]. This has led to investigation of orthogonal therapeutic
strategies that may prove efficacious against refractory gliomas or as adjuvant therapies [243,244].
GLI1 activity in GBM is also regulated through crosstalk with other pathways including Ras, Myc, and
Akt, which may contribute to resistance to SHH inhibitors in gliomas [242].

While attempting to gain further insight into the GLI1 structure, our laboratory discovered the
novel tGLI1 isoform while attempting to clone GLI1 cDNA. To produce the tGLI1 variant, the GLI1
mRNA transcript undergoes alternative splicing in which 41 amino acids are deleted, corresponding to
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the loss of exon III and part of exon IV [24]. This corresponds to a difference of only 4.5 kD between the
high molecular weight proteins. We have optimized conditions to reliably separate two GLI1 isoforms by
SDS-PAGE and validated custom-made antibodies to specifically detect tGLI1. However, the difficulty
in separating the two proteins could mean that functions previously ascribed to GLI1 are actually due to
tGLI1-specific activity [25,33]. Our laboratory, and others, have shown the tGLI1 variant to be expressed
in most GBM specimens and patient-derived xenografts, but undetectable in normal brain cells or
tissues [24,26,27,29]. Interestingly, studies by Stecca et al. (2009) did not observe tGLI1 in GBM cell lines
and patient-derived neurospheres despite using two antibodies that recognize regions conserved after
alternative splicing [138]. This may be due to the use of a 7.5% acrylamide gel instead of the optimized
5.5% gel that we described. We reported that tGLI1 regulates known GLI1 target genes to a similar
degree as the wild-type GLI1, but gained the ability to transcriptionally activate genes not regulated by
GLI1, including CD24, CD44, HPSE, TEM7, VEGF-A, VEGF-C, and VEGFR2, thus promoting cancer cell
growth, migration, invasion, and angiogenesis [24,25,28,30,31]. tGLI1-mediated upregulation of CD24
expression was found to increase GBM invasion [24]. CD24 is known to recruit adhesion molecules
to lipid rafts, thereby contributing to tumor cell migration, dissemination, and metastasis [245,246].
Using a GBM xenograft mouse model, we showed that tGLI1-expressing tumor cells were significantly
more infiltrative than GLI1-expressing cells thus promoting the aggressiveness of GBM [24]. tGLI1 also
gains the ability to promote the aggressiveness of GBM as a novel mediator of angiogenesis through
regulation of VEGFR2 and VEGF-A in an autocrine loop. VEGF-A binds to the VEGFR1/2 receptor,
leading to downstream stimulation of endothelial cell proliferation and neovascularization [247].
Evidence from our laboratory and those of other groups suggests that tGLI1 may be regarded as a
novel therapeutic target for GBM. This notion is supported by tGLI1 tumor-specific expression and
that tGLI1 plays an important role in tumor growth, angiogenesis and CSC renewal in GBM.

6.2. Breast Cancer

Breast cancer is the second leading cause of cancer-related mortality in women and metastasis to
distant organs result in 90% of breast cancer deaths [248]. Metastatic breast cancers occur in 20–30% of
cases with a 5 year survival rate of 22% [249]. Dysregulation of the SHH pathway is implicated in the
development and proliferation of breast cancer [250,251]. Although improper SHH signaling can arise
from a variety of mechanisms (see Section 5 above), aberrant SHH signaling in breast cancer tends to
occur through Type II ligand-dependent signaling in which tumors cells profusely secrete active SHH
ligand into the immediate surrounding area, leading to self-activation or activation of juxtaposed tumor
cells [193,252]. This is supported by findings that SHH, PTCH1, and GLI1 mutations are exceedingly
rare in breast cancer which argues against the potential involvement of mutational activation of the
SHH pathway in breast cancer [253–255]. Nevertheless, expression of SHH pathway components
correlates with more aggressive breast cancer subtypes and predicts poor overall survival [256,257].
Additionally, basal expression of GLI1 and GLI2 is higher in triple negative breast cancer (TNBC) than
in hormone-receptor (HR) positive breast cancer suggesting this pathway may be especially relevant
to this subtype [258]. GLI1 knockdown in HR-negative breast cancer cells led to reduced viability
in vitro [259].

Over the past decade, our lab has observed tGLI1 to be an important player in breast cancer
progression and metastasis. Similar to GBM, tGLI1 is expressed in a tumor specific pattern, i.e., observed
only in malignant breast tissue and cells, and transactivates novel target genes not regulated by GLI1
to promote aggressive phenotypes [24,25,28,30,31]. Separate from GLI1, we observed tGLI1-mediated
upregulation of matrix metalloproteinase-2 (MMP-2) and MMP-9 which facilitate breast cancer
invasion through degradation of the extracellular matrix [139]. Additionally, we made the novel
observation that tGLI1 physically and functionally interacts with signal transducer and activator of
transcription 3 (STAT3) in human epidermal growth factor receptor 2 (HER2)-positive and TNBC
to promote aggressiveness [32]. STAT3 is an oncogenic transcription factor that is downstream of
Janus-activated kinase 2 (JAK2), a non-receptor tyrosine kinase commonly amplified and hyperactive
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in TNBC and HER2-enriched breast cancers [260–262]. We identified and validated three genes
that are directly activated by STAT3-GLI1 and/or STAT3-tGLI1 cooperation, namely, R-Ras2, Cep70,
and UPF3A (Table 1) [32]. Moreover, the observed co-activation of JAK2-STAT3 and SHH signaling
pathways suggests that combination of JAK2 and SMO inhibitors may synergize against TNBC and
HER2-enriched breast cancers. Recently, we have gleaned evidence that tGLI1 is intimately involved
in breast cancer metastasis brain tropism [33]. Using an intracardiac mouse model, we found that
tGLI1 expression increased the formation of breast cancer brain metastases without impacting bone
metastases. Conversely, tGLI1 knockdown abrogated this effect. GLI1 expression did not increase
brain metastasis formation. Immunohistochemical analysis revealed that tGLI1 expression is increased
in lymph node metastases and breast cancer brain metastasis (BCBM) samples compared to unmatched
primary breast carcinomas suggesting tGLI1-positive breast cancer may have increased metastatic
potential [33]. To understand tGLI1-mediated metastasis, we assessed the effect of tGLI1 expression on
the CSC population which are considered the metastasis-initiating cells [210]. SHH pathway activation
may be especially relevant to the viability of the CD44+/CD24–expressing breast CSCs, which are
believed to be particularly chemoresistant due to their relative quiescence and expression of drug
efflux pumps [263]. We also demonstrated that tGLI1-positive CSCs strongly activate and interact
with astrocytes in vitro and tGLI1-positive BCBM tumors activate astrocytes in vivo [33]. Reactive
astrocytes have been shown to support the arrest, extravasation, and growth of breast cancer cells in
the brain [264]. Clearly, there is substantial evidence calling for reassessment of the GLI1 gene and the
importance of alternative splicing in the SHH signaling pathway.

6.3. Therapeutic Targets Regulated by tGLI1

The prevalence of SHH-driven tumors demonstrates the potential therapeutic utility of hedgehog
pathway inhibitors. However, the clinical efficacy of SMO-targeting therapies has been mixed, while only
a single GLI1-targeting agent (arsenic trioxide) has been approved by the FDA [19,265]. There is an
obvious need to further understand the biology of tumors with aberrant SMO and GLI1 signaling, and
identify novel actionable targets. Given its tumor-specific expression and potent oncogenic effects,
tGLI1 is an ideal therapeutic target [24,25,28,30,31].

Currently, no tGLI1 inhibitors have been developed to date. However, several tGLI1 target
genes can be targeted using previously developed agents including HPSE, VEGF-A, and VEGFR2.
Antiangiogenic therapies are an attractive focus for cancer drug development because heightened tumor
vascularization is canonical phenotype of aggressive cancers [266]. HPSE has been extensively studied
as a potential anti-cancer drug target [267,268]. Heparanase is an endoglucuronidase responsible for
heparan sulfate cleavage and regulates the structure and function of heparan sulfate proteoglycans,
leading to disassembly of the extracellular matrix [267]. Several studies have validated the significance
of HPSE as a valid anti-cancer drug target by demonstrating inhibition of human myeloma, lymphoma,
glioma, sarcoma, mesothelioma and pancreatic tumor growth in mice treated with the heparin-like
heparanase-inhibiting compounds Roneparstat and Pixatimod [269]. Roneparstat was well-tolerated
by patients with relapsed/refractory multiple myeoloma up to 400 mg daily (NCT01764880) [270].
Of the 17 patients enrolled, one presented with partial disease response, 9 with stable disease, with the
remaining 7 experiencing disease progression over the course of the trial. HPSE inhibition is not
expected to cause direct tumor cell kill, and, as expected, this study did not provide evidence of a
potential direct anti-myeloma effect of ronepartstat in humans. However, the favorable safety profile of
roneparstat implies its combination with other anti-cancer compounds is the next step in this field [271].

VEGF-A and VEGFRs are well-characterized targets for antiangiogenic therapeutics and these
drugs have shown a varying range of effectiveness across tumor types [272]. Monoclonal antibodies such
as Bevacizumab (Avastin), a humanized monoclonal antibody that blocks VEGF-A, or small molecules
such as vandetanib, which inhibits tyrosine kinases downstream of VEGF, are examples of anti-VEGF
treatment. A Phase 1 trial of Bevacizumab showed it was well tolerated with a favorable pharmacokinetic
profile [273]. It is currently FDA-approved for metastatic colorectal cancer, non-small-cell lung cancer,
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glioblastoma, renal cell carcinoma, epithelial ovarian cancer, fallopian tube cancer, primary peritoneal
cancer, and cervical cancer [274]. Unfortunately, bevacizumab failed to increase survival among patients
with breast, pancreatic, and prostate cancers and melanoma [275]. Afilbercept (Zaltrap) is another
immunotherapy that binds VEGF-A precluding its interaction with VEGFR1/2 [276]. Afilbercept
combined with chemotherapy is currently a second-line therapy for metastatic colorectal cancer
patients. The final monoclonal antibody targeting the VEGF-VEGFR interaction is ramucirumab
(Cyramza), a VEGFR2 monoclonal antibody approved for the treatment of metastatic colorectal
cancer, non-small-cell lung cancer, and gastroesophageal junction adenocarcinoma [277]. In the
second-line setting, ramucirumab significantly increased overall survival of patients with unresectable
gastroesophageal tumors who had progressed on first-line chemotherapy regimens (5.2 vs. 3.8 months;
p = 0.047). When combined with paclitaxel, ramucirumab significantly increased overall and
progression-free survival in patients with metastatic gastric cancer [278]. In our efforts to delineate the
function of tGLI1, we have discovered that tGLI1 is able to increase not only VEGF-A expression, but
also VEGFR2, leading to a powerful autocrine loop [28].

In addition to inhibiting tGLI1 target genes, inhibition of tGLI1 synthesis and transcriptional
co-regulators could lead to tumor cell kill in tGLI1-high tumors. However, further studies are needed
to delineate the splicing mechanisms responsible for the in-frame deletion of the wild-type GLI1 gene
transcript that results in tGLI1 synthesis. Furthermore, whether tGLI1 requires transcription co-factors
to activate target gene expression remains unknown. TGLI1 may also be subject to regulation by
noncanonical pathways. Addressing these knowledge gaps will aid development of novel strategies to
target tGLI1-driven tumors.

7. Conclusions and Future Directions

The SHH pathway is evolutionarily conserved and essential for the regulation of normal
development and differentiation in vertebrates. However, aberrant SHH pathway activation by
either mutation or ligand overexpression is closely correlated with several cancers. Although the
link between the SHH signaling pathway and tumorigenesis varies by cancer type, it is clear that
the aberrant activation of SHH signaling leads to the growth, proliferation, and invasion of tumor
cells. Furthermore, data indicate that the GLI transcription factors are regulated by several oncogenic
signaling pathways in addition to canonical PTCH-SMO signaling. Thus, targeting the SHH pathway
may provide therapeutic options. In fact, the truncated GLI1 (tGLI1) splice variant presents a unique
opportunity to validate a novel actionable target for gliomas and breast cancer brain metastases due to
its tumor-specific expression and potent oncogenic effects. The alternative splicing of the GLI1 transcript
creates a more potent oncogenic protein. Going forward, it will be important to determine the precise
mechanisms by which tGLI1 expression is regulated including the splicing machinery that influences
tGLI1 expression levels. Additionally, whether tGLI1 is regulated by any noncanonical pathways
should be investigated. Such interactions could allow tGLI1 to serve as an oncogenic signaling hub
similar to STAT3 that permits convergence of several signaling pathways to create a novel mechanism
of tumor progression. Finally, elucidating the mechanisms by which tGLI1 activates its target genes is
critical to identifying other novel targets of tGLI1 that could contribute to the aggressive phenotypes
of tGLI1-positive tumors. Given the established role of aberrant SHH signaling in tumorigenesis of
several human cancers, understanding the fundamental mechanisms of SHH pathway regulation and
the impact of alternative GLI1 splice variants will aid the development of novel therapeutics and
achieve improved therapeutic outcomes for these patients.
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