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Abstract: Monoclonal antibodies are becoming increasingly important therapeutic agents for the
treatment of cancers, infectious diseases, and autoimmune disorders. However, laboratory-based
methods of developing therapeutic monoclonal antibodies (e.g., immunized mice, hybridomas,
and phage display) are time-consuming and are often unable to target a specific antigen epitope or
reach (sub)nanomolar levels of affinity. To this end, we developed Optimal Method for Antibody
Variable region Engineering (OptMAVEn) for de novo design of humanized monoclonal antibody
variable regions targeting a specific antigen epitope. In this work, we introduce OptMAVEn-2.0,
which improves upon OptMAVEn by (1) reducing computational resource requirements without
compromising design quality; (2) clustering the designs to better identify high-affinity antibodies;
and (3) eliminating intra-antibody steric clashes using an updated set of clashing parts from
the Modular Antibody Parts (MAPs) database. Benchmarking on a set of 10 antigens revealed
that OptMAVEn-2.0 uses an average of 74% less CPU time and 84% less disk storage relative to
OptMAVEn. Testing on 54 additional antigens revealed that computational resource requirements
of OptMAVEn-2.0 scale only sub-linearly with respect to antigen size. OptMAVEn-2.0 was used to
design and rank variable antibody fragments targeting five epitopes of Zika envelope protein and
three of hen egg white lysozyme. Among the top five ranked designs for each epitope, recovery of
native residue identities is typically 45–65%. MD simulations of two designs targeting Zika suggest
that at least one would bind with high affinity. OptMAVEn-2.0 can be downloaded from our GitHub
repository and webpage as (links in Summary and Discussion section).

Keywords: de novo antibody design; zika envelope protein; computational protein design; specific
antigen epitope

1. Introduction

Antibodies are versatile molecules produced in B-cells and have become the basis of many
therapeutics [1–3] and diagnostics [4–6] for cancers [6–8], infectious diseases [9], and autoimmune
disorders [10]. They are affinity proteins that are crucial for humoral immunity and are able to bind to
foreign proteins with high specificity [11]. Administration of serum from survivors to treat patients
during infectious disease outbreaks such as the 1918 influenza pandemic [12] marks the early years of
antibody-mediated therapeutics. The first monoclonal antibodies were developed by immunizing mice
with a target antigen [6]. However, high immunogenicities of murine antibodies limit their efficacies in
humans [6]. Subsequent efforts have resulted in chimeric constructs [6] of murine variable domains
grafted onto human constant domains. Although chimeras exhibit less immunogenicity relative to
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fully murine antibodies [6], they are not entirely human [6] and may still cause adverse reactions.
Methods such as phage display [13] and yeast display [14] have been able to create high-affinity,
completely humanized antibodies. However, all experimental methods antibody development are
time-consuming [15], and none offers a general approach to target a specific antigen epitope, increase
affinity without increasing immunogenicity, and categorize designs based on the primary sequence of
the variable domain and the binding pose of the antigen [16].

Computational methods of antibody design have addressed these limitations. Software exists for
designing stable antibody-antigen complexes [17–19], predicting the immunogenicities of antibody
sequences [20,21], and predicting stabilizing mutations to the antibody complimentary determining
regions (CDRs) [17,22–24]. Before our work, we knew of no software that could design antibodies
de novo—that is, without an initial structure of an antibody bound to the antigen [17–19]. To this
end, we first developed OptCDR [17], which designed de novo CDRs of high affinities but not low
immunogenicities. This limitation was addressed in the following effort, OptMAVEn [16], which designs
full antibody variable domains. Two subsequent efforts at antibody design were AbDesign [18] by
Lapidoth et al. and Rosetta Antibody Design (RAbD) [19] by Adolf-Bryfogle et al. However, both of these
tools build upon existing antibodies and thus require an initial structure of the antigen-antibody complex.

In addition to designing antibodies without an input structure, OptMAVEn-2.0 performs
computational affinity maturation while avoiding sequences likely to trigger an immune response.
During affinity maturation, OptMAVEn mimics natural mutation preferences by mutating residues in
the CDRs with three times the frequency compared to residues in the framework regions. OptMAVEn
screens a large set of antigen poses, designs antibodies for each pose, and outputs the designs with the
most favorable antigen-antibody interaction energies. However, OptMAVEn’s large computational
time and storage requirements limit sampling of antigen poses, which reduces the likelihood of finding
designs with favorable interaction energies.

Here, we introduce OptMAVEn-2.0, which is capable of sampling a larger set of antigen
poses within roughly one day, while OptMAVEn required over one week. Each antibody variable
region comprises a heavy (H) and a light (L, or kappa-K) chain. An end to end joined variable (V),
a complimentarity determining region (CDR3), and a joining (J) region constitutes each heavy and light
chain. We have retained the mixed-integer linear programming (MILP) core module, which identifies
six optimal parts from the Modular Antibody Parts (MAPs) database [25] (HV, HCDR3, HJ, L/KV,
L/KCDR3, and L/KJ) that constitute the variable domain. While OptMAVEn requires excessive disk
storage by storing each antigen pose as a separate Protein Data Bank (PDB) file, OptMAVEn-2.0
alleviates this problem by storing only one reference pose and using transformation matrices to
generate other poses as needed.

OptMAVEn-2.0 introduces a systematic procedure to classify antibody designs. Each MAPs
part is assigned a three-dimensional coordinate that depends on the sequence similarity to other
MAPs parts of the same type (HV, HCDR3, and so on). We compute a matrix of pairwise sequence
similarity scores for each type of MAPs parts and then convert similarities into metric distances
using Stojmirovic’s method [26]. We use Distance Geometry Optimization Software (DGSOL 1.3,
Argonne National Laboratory, Lemont, IL, USA) [27] to embed these distances in 3D-Euclidean
space, yielding a 3D-coordinate for each MAPs part [28]. After relaxing all designs, OptMAVEn-2.0
creates for each design a 23-dimensional vector consisting of the 3D-coordinates of its six MAPs parts
(18 dimensions), the epitope centroid (three dimensions), and the sine and cosine of the antigen z
angle (two dimensions). A Principal Component Analysis (PCA) step transforms these 23-dimensional
vectors into three-dimensional vectors, which are then used in k-means clustering of the designs.
OptMAVEn-2.0 then ranks the designs from most to least promising by cycling through the clusters
and selecting the top design from each cluster until all designs have been selected.

After ranking these germline designs (so named because they are assembled from MAPs
parts that correspond to germline genes), the user has the option of assessing the stability of the
germline designs bound to the epitope of interest using short (25 ns) molecular dynamics (MD)
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trajectories (using QwikMD [29]) and/or subjecting the designs for in silico affinity maturation while
ensuring that the immunogenicity scores are reduced. The MD step assesses the stability of the most
promising designs over 50 ns, ensuring that the best antibody designs bind stably to the antigen.
Affinity maturation is implemented within Iterative Protein Redesign and Optimization (IPRO)
software [30] and optimizes affinities of germline designs while ensuring that their immunogenicity
does not increase. The immunogenicity of each design is assessed using the “human string content”
(HSC) [20], which estimates the potential of a sequence to elicit a T cell response when presented
on Major Histocompatibility Complex (MHC)-II. HSC is used to calculate a “humanization score”
(HScore) [16]: an antibody with a low HScore is relatively humanized and thus has low potential to
trigger an immune response in the human body.

We used OptMAVEn-2.0 to design antibodies targeting five epitopes of Zika envelope (E) protein
and three of hen egg white lysozyme. We assessed the stability of two designs from one of the Zika
cases using short MD simulations. Recovery of epitope-binding residues and sequence similarities are
reported for the top five designs for all the other cases.

2. Methods

2.1. Overview

OptMAVEn-2.0 (Figure 1) is de novo antibody design software that extends OptMAVEn [16].
OptMAVEn-2.0 is fully automated (unlike OptMAVEn), requires less CPU time and disk storage,
and features a novel clustering algorithm to increase the diversity of antibody designs raised against
a specific antigen epitope. Both versions assemble antibodies from the MAPs database of antibody
parts [25], which contains variable (V), CDR3, and joining (J) regions for the heavy (H), lambda (L),
and kappa (K) chains. First, the user specifies the antigen and its epitope. As in OptMAVEn, the antigen
is rotated such that its epitope faces a framework antibody, and then an ensemble of antigen positions is
generated by translating and rotating the antigen within a user-defined antigen binding site. Positions
in which the antigen clashes with the framework antibody are discarded. At each remaining antigen
position, the interaction energy between the antigen and each part in the MAPs database is calculated,
and a set of six non-clashing MAPs parts is selected so as to minimize the sum of the interaction
energies between the parts and the antigen. These associations of an antigen position with a set of
MAPs parts (i.e., designs) are clustered using a k-means approach. OptMAVEn-2.0 sequentially scans
through all clusters, generating a Protein Data Bank (PDB) and FASTA file of the design with the
most negative interaction energy in each cluster, repeating until files have been created for all designs.
These designs can then undergo further validation (e.g., QwikMD [29]) or sequence optimization
(e.g., affinity maturation and reduction of HScore [16]) to yield a set of designs for experimental
validation or optimization (e.g., with phage display [13]).

2.2. Design and Implementation

OptMAVEn-2.0 runs continuously from the initial step (starting an experiment) to the output
of germline designs. This feature reduces the effort on the part of the user and also makes
OptMAVEn-2.0 easier to use than OptMAVEn, which required manual initiation of each step in
the workflow. OptMAVEn-2.0 is currently supported on UNIX platforms with Python 2.7 [31],
NumPy [32], SciPy [33], and BioPython 1.7 [34]. Within its main directory, OptMAVEn-2.0/,
are subdirectories src/(source modules written in Python and Tool Command Language (TCL)
scripts), experiments/(all experiment directories), and data/(files of antigen structures, topologies,
and parameters). If the directory experiments/ does not exist, it is created automatically when the first
experiment is started. The data/directory contains three subdirectories: (1) pdbs/stores structures of
antigens, which may be in either PDB or mmCIF format; (2) input_files/stores topology and parameter
files needed for energy calculations in CHARMM (Chemistry at Harvard Molecular Mechanics) [35];
and (3) antibodies/stores framework antibody structures and the MAPs database. Before an experiment
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can be started, the structure of the antigen and all required topology and parameter files must be
located in pdbs/and input_files/, respectively. OptMAVEn-2.0 is pre-installed with default CHARMM
topology (top_all27_prot_na.rtf) and parameter (par_all27_prot_na.prm) files. The user may add
additional files to support a wider range of antigens (or small drug molecules) that characterize
these molecules’ types of bonds, angles, dihedrals and improper dihedral angles. An ./OptMAVEn-2.0
executable is also present in the OptMAVEn-2.0/main directory and is used to initiate an experiment.  
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energy in each cluster are then subjected to structural relaxation and a short molecular dynamics (MD) 
routine to verify their high affinities. Stable designs emerging from this step could be affinity matured 
with the dual objective of enhancing their antigen-antibody affinities and lowering their 
immunogenic potentials. 
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Figure 1. The workflow of OptMAVEn-2.0. First, the initial epitope positioning step rotates the antigen
such that its epitope points downward with epitope centroid at the origin. The grid search step generates
an ensemble of antigen positions, followed by the mixed-integer linear programming (MILP) step,
where the six lowest interaction energy Modular Antibody Parts (MAPs) are chosen to construct the
variable antibody fragment. A Euclidean coordinate for each part in the MAPs database was generated
using the embedder module. The k-means protocol uses these and the epitope centroid coordinates and
rotation angle to cluster the antibodies. The antibodies with the most negative MILP energy in each
cluster are then subjected to structural relaxation and a short molecular dynamics (MD) routine to verify
their high affinities. Stable designs emerging from this step could be affinity matured with the dual
objective of enhancing their antigen-antibody affinities and lowering their immunogenic potentials.

2.3. Starting an Experiment

To start an experiment, the user enters ./OptMAVEn-2.0 into a UNIX terminal from the main
directory of OptMAVEn-2.0. First, the user names the experiment. OptMAVEn-2.0 creates a directory
named OptMAVEn-2.0/experiments/name to hold all of the experiment’s results and temporary
files. The user may customize the configuration of the experiment (e.g., by specifying topology
and parameter files) or use the default configuration, defined in OptMAVEn-2.0/src/standards.py.
The user then specifies the file containing the antigen’s structure, the chains that constitute the antigen,
heteroatoms to exclude, and the residues of each chain that constitute the epitope region for which the
antibody is to be designed. For each antigen chain, at least one epitope residue must be selected.

OptMAVEn-2.0 preprocesses the user-specified antigen structure file by automatically removing
heteroatoms and chains that are not part of the antigen but are present in the crystal structure
obtained from the Protein Data Bank (PDB). This feature makes initiating an experiment simpler.
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Unlike OptMAVEn-2.0, in the older OptMAVEn, the user must remove these chains and heteroatoms
manually and create a file listing the epitope residues; OptMAVEn does not check that these
residues actually exist, but OptMAVEn-2.0 does. In OptMAVEn-2.0, users select antigen chains,
heteroatoms, and epitope residues using a simple, single-line syntax. Ranges are indicated with
hyphens, while individual items are delimited with commas: for example, A–C, E specifies chains
A, B, C, and E of a certain molecule. Furthermore, OptMAVEn-2.0 makes it simpler for the user by
listing the available chains of the antigen molecule to choose from. Overall, unlike in OptMAVEn,
the user needs to know only the antigen PDB accession ID and the residues that constitute the epitope
of interest. OptMAVEn-2.0 automatically downloads the molecule from the Protein Data Bank using
a package in BioPython [34] and then performs the remaining steps.

2.4. Antigen Positioning

OptMAVEn-2.0 begins by adding missing atoms (e.g., hydrogens) to the antigen as necessary
and performing an energy relaxation in CHARMM [35]. The user may configure this relaxation when
starting the experiment by indicating the number of CHARMM relaxation iterations. Following the
relaxation, the antigen is rotated to minimize the z-coordinate of the epitope’s centroid (i.e., the mean
of the coordinates of the epitope’s Cα atoms, neglecting atomic masses). This step orients the epitope
towards the ensemble of MAPs parts that will be assembled into the variable domain, thus ensuring that
the antibody will bind to the intended epitope. The implementation of a similar antigen rotation step in
OptMAVEn has two significant limitations, which are corrected in OptMAVEn-2.0. First, OptMAVEn
uses an exhaustive search of rotations around the x and y axes in discrete increments of 3◦ (i.e., 120 angles
per axis yielding 1202 = 14,400 rotations) to minimize the z-coordinate of the epitope’s centroid.
This search requires extensive sampling and typically lasts several minutes. Second, the search has
a finite resolution (3◦ in each axis): the desired rotation may lie between two search points and thus may
not be sampled. To illustrate, let the desired rotation θopt = (θx,opt, θy,opt) consist of a rotation around
the x axis by θx,opt followed by a rotation around the y axis by θy,opt. The discrete search will identify
a point θopt’ = (θx,opt’, θy,opt’) such that θx,opt’, θy,opt’ ∈ {0◦, 3◦, 6◦, . . . , 357◦}. The maximum difference

between θopt and θopt’ (for instance, if θopt = (1.5◦, 1.5◦)) is thus ‖θopt
′ − θopt‖ =

√
1.5◦2 + 1.5◦2 =

1.5◦
√

2 ≈ 2.1◦. Thus, the final rotated antigen conformation in OptMAVEn may be up to 2.1◦ off with
respect to the desired rotation.

OptMAVEn-2.0 corrects both problems by using a single matrix to perform the rotation. First,
the centroids of the antigen (cA) and epitope (cE), and the vector between them d = cE − cA are
computed. Because the rotation does not change interatomic distances, ‖d‖2 = dx

2 + dy
2 + dz

2 remains
unchanged during the rotation. Likewise, because cA is the center of rotation, cA must also remain
unchanged. Thus, the rotation minimizes the z coordinate of the epitope’s centroid (cEz) subject
to holding ‖d‖2 and cA constant. Because dx

2 + dy
2 ≥ 0, it must be true that 0 ≤ dz

2 ≤ ‖d‖2.
Because dz

2 = (cEz − cAz)
2 and cAz is a constant, cEz may be decreased until the point at which

(cEz − cAz)
2 = ‖d‖2, dx

2 = dy
2 = 0. Thus, the solution that minimizes cEz is cEx = cAx, cEy = cAy,

cEz = cAz − ‖d‖. This rotation is implemented using the trans procedure within Visual Molecular
Dynamics (VMD) [36] software. If ‖d‖ = 0 (e.g., if all antigen residues are part of the epitope), no
rotation is performed. This procedure outperforms OptMAVEn in that it requires no exhaustive search
and yields an error of less than 0.01◦ in rotating the antigen such that the sum of the z-coordinates of
its epitope is minimized.

Following the rotation, OptMAVEn-2.0 generates an ensemble of antigen positions using a grid
search (Figure 2). This step has been made significantly more efficient relative to OptMAVEn.
An antigen-binding site is defined as the virtual box (obtained by inspecting 750 antigen-antibody
binding regions) in which the x, y, and z coordinates of the epitope’s centroid are within the ranges
[−10 Å, 5 Å], [−5 Å, 10 Å], and [3.75 Å, 16.25 Å], respectively. This box is partitioned into a grid
(default x, y, and z intervals are 2.5, 2.5, and 1.25 Å, respectively). Furthermore, the antigen is rotated
around the z axis to increase conformational sampling (the default is 6 rotations in increments of 60◦).
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Hence, each antigen position can be represented as a so-called position vector consisting of the epitope
centroid (x, y, and z coordinates) and the rotation angle around the z axis (θz). The default settings lead
to 6 × 7 × 7 × 11 = 3234 positions. OptMAVEn-2.0 introduces a precise definition of θz for peptide
antigens, which was missing in OptMAVEn. Let d1 = c1− cA be the vector extending from the centroid
of the antigen to the coordinate c1 of the Cα atom of the first residue in the antigen. Then θz is defined
as the angle between the positive x-unit vector (

→
ι ) and the projection of d1 onto the x-y plane. Using the

relationship between angle and dot product, ‖→ι ‖‖projx,y(d1)‖ cos θz =
→
ι ·projx,y(d1), which leads to

θz = sign
(

projx,y(d1)y

)
· cos−1

( →
ι ·projx,y(d1)

‖→ι ‖‖projx,y(d1)‖

)
= sign

(
projx,y(d1)y

)
· cos−1

(
projx,y(d1)x
‖projx,y(d1)‖

)
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Figure 2. The grid search procedure. The antigen is first positioned such that (1) the centroid of its
epitope is at the origin with the centroid of the antigen directly above it and (2) the z-rotation angle of the
antigen (the angle between P0 and the positive x axis) is zero. An ensemble of positions of the antigen is
generated by translating the centroid of the epitope or rotating the antigen around the z axis or both.

As in OptMAVEn, OptMAVEn-2.0 screens out antigen positions that will inevitably lead to steric
clashes with the representative structure of the antibody framework regions. Thus, antigen positions that
clash with the framework will clash with any designed antibody and will yield energetically unfavorable
designs. Herein, a position is defined as clashing if any atom of the antigen is within 1.25 Å of any atom in
the framework. For each antigen position, the number of clashes is counted. While OptMAVEn tolerates
up to two clashes, OptMAVEn-2.0 tolerates no clashes, as the former often resulted in interlocked
aromatic side chains between residues of the epitope and the designed antibody structure.

OptMAVEn-2.0 significantly reduces disk storage requirements for antigen positioning by saving
all non-clashing positions in a single text file (of a few kilobytes) and representing each as its position
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vector. Meanwhile, OptMAVEn saves each antigen conformation as its own PDB file. Since PDB files of
large antigens can be of the order of several megabytes, alleviating the requirement to save thousands
of PDB files could save gigabytes of storage. This choice contributes in large part to reducing the
average maximum disk usage by 84%.

2.5. MAPs Interaction Energy Calculations

At each non-clashing antigen position, the interaction energy between the antigen and each
MAPs part is calculated. OptMAVEn uses C++ modules that require a separate PDB file for each
antigen position. However, OptMAVEn-2.0 implements the energy calculations by calling the
NAMDEnergy [37] module of VMD, which is able to translate and rotate the antigen after loading its
initial structure. Thus, we are able to generate all antigen positions using only a reference (starting)
structure of the antigen and a second file of position vectors (prepared during the ‘Antigen positioning’
step), which together typically require only a few hundred kilobytes of disk space.

Both OptMAVEn and OptMAVEn-2.0 use electrostatic and van der Waals energy terms for
choosing the optimal antibody parts during the MILP step. Full antibody variable domain designs
emerging from the optimal MAPs parts selection step are re-optimized using an energy function that
accounts for solvation effects. The binding scores thus calculated are now used to rank all the designs.

2.6. Optimal Selection of MAPs Parts

For each antigen position, OptMAVEn-2.0 selects one set of V, D, and J parts from the H
locus and one set from either the K or L locus. It thereafter minimizes the sum of the interaction
energies of the six parts using a mixed-integer linear program (MILP). In this program we define,
set I = {i | HV, HCDR3, HJ, LV, LCDR3, LJ, KV, KCDR3, and K} that contains the nine categories of
MAPs parts. Each category i has a set of part indexes Pi = {p | 1, 2, . . . , Ni}, where Ni is the number of
parts listed in category i. Each MAPs part is represented as a tuple (i, p) of a category and a serial index
of that category. Further, the set IPclash = {((i1, p1), (i2, p2)), . . . ((im, pm), (in, pn))} is the set of all pairs of
parts that sterically clash. The parameter Ei,p is the interaction energy between the antigen and MAPs
part (i, p). The parameters Hd and Ld are set to 1 if the heavy and light variable domains, respectively,
are being designed, and 0 otherwise. This allows the option of designing both domains (a full antibody)
or a single domain (a nanobody). Finally, the binary variable Xi,p is equal to 1 if part (i, p) is chosen
by the MILP to be a part of the final antibody design and is 0 otherwise. The optimization protocol
uses an objective function subject to a set of five constraints as described below. The formulation is the
same as that of OptMAVEn [16].

Minimize
9
∑

i=1

Ni
∑

p=1
Xi,pEi,p

subject to
Xi1,p1 + Xi2,p2 ≤ 1 ∀{(i1, p1), (i2, p2)} ∈ IPclash (1)

Ni
∑

p=1
Xi,p = Hd, ∀i ∈ {HV, HCDR3, HJ} (2)

NKV
∑

p=1
XKV,p +

NLV
∑

p=1
XLV,p = Ld (3)

NKV
∑

p=1
XKV,p =

NKCDR3
∑

p=1
XKCDR3,p =

NKJ

∑
p=1

XKJ,p (4)

NLV
∑

p=1
XLV,p =

NLCDR3
∑

p=1
XLCDR3,p =

NLJ

∑
p=1

XLJ,p (5)

The objective function minimizes the interaction energy between the antigen and the set of MAPs
parts that are selected. Constraint 1 prevents sterically clashing MAPs parts being chosen. Constraint 2
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ensures that while a heavy chain is being designed, exactly one HV, HCDR3, and HJ part is selected,
and that no heavy chain parts are selected if the heavy chain is not being designed (Hd = 0). Constraint
3 is analogous to constraint 2 and ensures that if a KV part is selected, no LV parts are selected and
vice versa. Constraint 4 ensures that if a KV part is chosen by constraint 3, one each of KCDR3 and KJ
parts are also chosen, else no K chain parts should be chosen. Constraint 5 enforces the same for the
L chain MAPs parts during the design. Together, constraints 3, 4, and 5 ensure that if a light chain is
being designed, exactly one V, CDR3, and J part is selected for the light chain and prevent choosing
a mix of kappa and lambda parts.

OptMAVEn-2.0 improves upon the design step of OptMAVEn in two ways. First, the IPclash set
of OptMAVEn (48,800 pairs) was found to be incomplete, sometimes leading to designs with steric
clashes between residues within the antibodies. Thus, despite having favorable interaction energies,
these antibodies were structurally unstable. The current IPclash set has been updated to contain 66,604
additional pairs of MAPs parts and now identifies all pairs of parts for which any atom in one part is
within 1 Å of any atom in the other (excluding pairs that cannot be selected simultaneously, such as
HJ-1 and HJ-2 or LV-1 and KJ-1). A second improvement is that OptMAVEn-2.0 designs only one
antibody for each antigen position, while OptMAVEn designed five. As the additional four antibodies
designed by OptMAVEn were always sub-optimal to the first design, eliminating them would not
eliminate the optimal design for each position. Moreover, the subsequent clustering step would likely
cluster together designs at the same position but ultimately choose only or two designs from each
cluster design, and so the last three or four designs at each position would very seldom, if at all, appear
on the final list of the best designs. Thus, OptMAVEn-2.0 expends roughly one fifth of the effort during
the design step without compromising the quality of the designs.

2.7. Antibody Assembly

OptMAVEn-2.0 creates a PDB file for each design by assembling the MAPs parts and positioning
the antigen. These designs then undergo a structural relaxation (in CHARMM [35]) that first relieves
any potential steric clashes and then uses van der Waals, electrostatics, and Generalized-Born solvation
energy terms to calculate the antigen-antibody interaction energy. These interaction energies are used
for the clustering step and subsequent ranking of all the designs.

2.8. Clustering the Antibody Designs

2.8.1. Pre-Processing Step

OptMAVEn-2.0 clusters the antibody designs based on both their antigen positions (which are
Euclidean coordinates) and the sets of MAPs parts they comprise (which are not Euclidean coordinates).
To simultaneously cluster by position and MAPs parts, a Euclidean coordinate was generated for each
MAPs part. Methods exist to compute distances between two biological sequences (e.g., the amino acid
sequences of MAPs parts) [25] and to convert pairwise distance matrices into Euclidean coordinates
only if (but not necessarily if) these distances satisfy the four criteria of a metric distance d [26]:

d(x, y) ≥ 0 ∀ x, y ∈ M (6)

d(x, y) = 0⇔ x = y ∀ x, y ∈ M (7)

d(x, y) = d(y, x) ∀ x, y ∈ M (8)

d(x, y) + d(y, z) ≥ d(x, z) ∀ x, y, z ∈ M (9)

where x, y, and z are sequences, M is a category of MAPs parts, and d is the function that computes
a distance between two sequences. The first condition requires that all distances be positive, the second
that two sequences have distance of zero if and only if they are identical, the third that the distance
function is symmetric, and the fourth that the triangle inequality holds.
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The method of Stojmirovic [26] is particularly well-suited to this task because it yields metric
distances from biological sequences in the following manner. Let s(x, y) be a similarity score between
sequences x and y, such that s(x, y) is greater if x and y are more similar. The associated quasi-metric
distance q of the similarity score s is q(x, y) = s(x, x) − s(x, y). Finally, the distance d(x, y) = max{q(x, y),
q(y, x)} is a metric, provided that s satisfies the following conditions [26]:

s(x, x) ≥ s(x, y) ∀ x, y ∈ M (10)

s(x, x) = s(x, y) ∧ s(y, x) = s(y, y)⇒ x = y ∀ x, y ∈ M (11)

s(x, y) + s(y, z) ≤ s(x, z) + s(y, y) ∀ x, y, z ∈ M (12)

where x, y, and z are sequences and M is a category of MAPs parts. Most protein alignment scoring
systems satisfy these conditions. Because the MAPs parts follow the international ImMunoGeneTics
database (IMGT) numbering system [38], amino acids that have aligned with each other have the same
residue number. Therefore, the similarity score between two sequences is the sum over all residue
numbers of the alignment scores of the pair of aligned amino acids, or of a gap penalty if one sequence
lacks a residue number.

s(x, y) = ∑
i∈A∪B

s′(xi, yi)

where A and B are the sets of residue numbers in sequences x and y, respectively; xi denotes the
amino acid of number i in sequence x (or xi is a gap if i /∈ A); and s′(xi, yi) is the similarity score
between amino acids xi and yi in the BLOSUM62 matrix [39] if i ∈ A ∩ B or a gap penalty g otherwise.
The optimal value of g was not known a priori, and so five levels (4, 6, 8, 10, and 12) were tested.
For each level, we computed the similarity scores between all pairs of MAPs parts within every
category and verified that they satisfied the conditions for s. Five violations of condition 2 revealed
that there were five pairs of identical parts in the MAPs database: (HV-135, HV-136), (KV-2, KV-3),
(KV-25, KV-26), (KV-41, KV-42), and (LV-5, LV-6). After removing the higher-numbered of the two
parts from the database, all three conditions were satisfied.

Although the resulting pairwise distance matrix for each MAPs category satisfied the conditions
for a metric, all such matrices possessed negative eigenvalues, indicating that they could not be
embedded in Euclidean space [40]. Therefore, we devised a method to approximate a Euclidean
embedding of these distances (Figure 3). Several programs—including MD-jeep [41], Xplor-NIH [42],
TINKER [43], and DGSOL [27]—create approximate embeddings in 3D space. Although representing
high-dimensional space in three dimensions causes the loss of some information, reducing the
dimensionality helps to mitigate the so-called “curse of dimensionality” in the subsequent clustering
step [44]. An attractive feature of DGSOL is that it accepts a lower and upper bound for each pairwise
distance, enabling multiple sets of bounds to be tested. DGSOL computes a penalty function that
depends on the extent to which the distances between embedded coordinates lie outside of the bounds;
distances within the bounds are not penalized. The lower and upper bounds LBij and UBij, respectively,
were computed as LBij = (1− w)× d

(
xi, xj

)
and UBij = (1 + w)× d

(
xi, xj

)
respectively, where xi and

xj are two MAPs parts from the same category, d is the distance function, and w is a bound width
parameter that was varied from 0.0 to 0.5 in increments of 0.05. For each level of w and of gap penalty
g, DGSOL was used to generate an embedded coordinate ci for each MAPs part i. For each category of
MAPs parts, the pairwise distances cij = ‖ci − cj‖ between every pair of parts (i ≥ j) in the category
were compared to the alignment distances from the dij = d

(
xi, xj

)
function. Specifically, the Spearman

rank correlation ρ between C =
{

cij
∣∣i ≥ j

}
and D =

{
dij
∣∣i ≥ j

}
was calculated, as was the root mean

square error RMSE =

√
∑i≥j(cij−dij)

2

N , where N = card(C) = card(D) is the number of pairs of parts.
The optimal w was chosen such that ρ was maximized. In the case of a tie, the w that minimized root
mean squared error (RMSE) was chosen from among those w values that maximized ρ.
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1 

 

Figure 3. The steps involved in the embedder module. Actual values for HJ parts are provided as
an example. First, the sequences are used to compute pairwise sequence similarity scores Sxy using
the BLOSUM62 matrix and a gap penalty g. From Sxy, quasi-metric distances Qxy and their associated
metric distances Dxy are computed (e.g., DHJ-1,HJ-2 = 4). Dxy can be visualized as a matrix or as a set
of points and pairwise distances that cannot be embedded in Euclidean space. DGSOL generates
Euclidean 3D coordinates for the points and computes the distances Dembed between every pair of parts
(e.g., Dembed: HJ-1,HJ-2 = 4.06). It minimizes the sum of squared differences between corresponding aligned
(Dxy) and embedded (Dembed) distances (e.g., [DHJ-1,HJ-2–Dembed: HJ-1,HJ-2]2 = 0.0036). The Spearman
rank correlation between Dalign and Dembed is used to assess the quality of the embedding. If it is
an abbreviation, please define.
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The gap penalty g is used to compute sequence alignment distances dij, which are embedded and
used to compute pairwise distances cij. Thus, ρ and RMSE (which depend on dij and cij) depend on g.
A ρ close to unity indicates that the relative order of distances was preserved during the embedding,
and a RMSE close to zero indicates that the distances themselves were minimally perturbed. The optimal
gap penalty (g) would maximize ρ and minimize RMSE for each MAPs category. To identify this optimal
g, we tested five values of g: 4, 6, 8, 10, and 12. Each g was used to generate a similarity matrix S
and an alignment matrix Dalign for each category of parts. The distances in Dalign were embedded
with DGSOL, and pairwise distances Dembed between the embedded coordinates were computed.
Then, ρ (Figure 4a and Supplementary Table S1) and RMSE (Figure 4b and Supplementary Table S2)
were computed using Dalign and Dembed. For each MAPs part category (HV, LV, and so on), we ranked
the different g values in terms of the corresponding ρ (highest ρ yields rank 1 for the corresponding
g and vice-versa) and of RMSE (lowest RMSE yields rank 1 for the corresponding g and vice-versa)
(Table 1). Therefore, the rank of each g indicates how well the distances in Dalign could be embedded
while preserving both relative and absolute distances. HJ, LJ, and KJ were excluded from this analysis
because these parts contain no residue number gaps in the IMGT numbering; for these parts, Dalign and
Dembed do not depend on g. We found that g = 8 had the best average rank (2.1) (Figure 4c) and thus used
g = 8 hereafter. However, the user has the option of selecting a different g from among the levels tested.

 

2 

 

 

 

Figure 4. The optimal gap penalty (g) is 8. For each category of MAPs parts and each gap penalty
g (4 to 12), pairwise aligned (Dalign) and embedded (Dembed) distances were generated. (a,b) The z-score
of RMSE between these distances the values of ρ were computed. Progressively increasing g led to
a higher (desired) ρ and a higher (undesired) RMSE z-score with the exception of g = 10, which showed
lower ρ and higher RMSE z-score than did g = 8; (c) The average rank of each g level for ρ and RMSE
reveals g = 8 to be the best with an average rank 2.1.
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Table 1. For each category of MAPs parts, the levels of the gap penalty g were ranked from 1 to 5 on
the basis of ρ (highest ρ is rank 1) and RMSE (lowest RMSE is rank 1). J parts were excluded because
for the J parts, ρ and RMSE are independent of g, as their sequences are devoid of residue gaps.

Category Criterion
Gap Penalty (g)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

HV ρ 12 8 6 10 4
HCDR3 ρ 12 8 6 4 10

KV ρ 12 8 6 4 10
KCDR3 ρ 12 8 10 6 4

LV ρ 12 8 6 4 10
LCDR3 ρ 12 8 6 4 10

HV RMSE 4 6 8 10 12
HCDR3 RMSE 6 8 12 4 10

KV RMSE 4 8 6 12 10
KCDR3 RMSE 8 6 12 4 10

LV RMSE 4 8 6 12 10
LCDR3 RMSE 4 6 8 12 10

For g = 8, ρ was highest (ρ > 0.982) for the HJ, LJ, KJ and KV categories, showing that Euclidean
coordinates recapitulated the relative ranks of the distances in Dalign. The CDR3 regions had the lowest
values (0.851 < ρ < 0.932), indicating that the optimal Euclidean approximations swapped the ranks of
a greater number of distances. Lower ρ values can presumably be attributed to the greater number of
structures N in each CDR3 set (39 ≤ N ≤ 428) than in each J set (5 ≤ N ≤ 7). In the distance geometry
problem, a set of pairwise distances between N points can be embedded into a Euclidean space of at
most N–1 dimensions. Thus, the maximum potential dimensions of the spaces in which the CDR3
parts could be embedded are greater those of the spaces in which the J parts could be embedded.
Projecting higher-dimensional coordinates onto 3 dimensions crushes more dimensions and thus
causes more pairs of points that are far apart in high-dimensional space to become close together in
three-dimensional space. Dimension crushing would create parts with large aligned distances but
small embedded distances. Such parts appear most in the sets with the largest number of members
(i.e., CDR3), less often in the medium-sized sets (i.e., V), and never in the smallest sets (i.e., J) (Figure 5).

 

2 

 

 

 Figure 5. A 3D coordinate was computed for each MAPs part. For each pair of MAPs parts within
each category, the two parts’ embedded distance in Euclidean space was plotted against their sequence
alignment distance.
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2.8.2. k-means Clustering

Each antigen position and its associated optimal set of MAPs parts is converted into a 23-dimensional
vector by concatenating the x, y, and z coordinates of the epitope’s centroid; the sine and cosine of θz;
and the 3D coordinates representing the six MAPs parts. Clustering algorithms often fail to cluster
high-dimensional data well due to the so-called “curse of dimensionality” [44]. Thus, the 23-dimensional
vectors are normalized such that each dimension has unit variance (if the original variance is not zero),
and PCA is performed to reduce the dimensionality of each vector to 3. Because the optimal number of
clusters k is unknown prior to clustering, the clustering procedure initializes k to 1 and increments k
after each round of clustering. During each round, the k clusters are initialized by randomly selecting
(without replacement) one vector as the centroid for each cluster. Each vector is assigned to the cluster
with the nearest centroid (measured by Euclidean distance). If any cluster is empty, a vector selected
randomly from another cluster is moved to the empty cluster. Each cluster centroid is then moved to
the geometric mean of the vectors in the cluster; the root mean square (RMS) movement is computed.
The assignment and movement steps are repeated until the RMS movement falls below a threshold
(default 0.01) or an iteration limit is reached (default 1000). For each cluster, the mean squared distance
(MSD) between the centroid and the cluster members in computed; the maximum of these MSD values
is assigned to the k value. For each k, the ratio of the MSD to the MSD for k = 1 is computed. The k value
is incremented until this ratio falls below a threshold (default 0.2).

2.9. Ranking the Antibody Designs

OptMAVEn-2.0 ranks the designs using their clusters and their antigen-antibody interaction
energies, ensuring that the highest-ranked designs are both structurally diverse and predicted to have
high affinities.

Progressing from the cluster with the lowest to the cluster with the highest minimum energy,
it collects the design with the minimum solvated interaction energy from each cluster and cycles back
until all designs have been chosen. In this way, the most optimal design from every cluster is selected
first, followed by the second-, third- and so forth most optimal designs.

The relaxed structure of each design is output as a PDB and a FASTA file in the directory
OptMAVEn-2.0/experiments/name/antigen-antibody-complexes/Result_#. OptMAVEn-2.0 generates
two additional files in the experiment’s directory. Summary.txt gives information about the experiment
(e.g., antigen file, epitope). Results.csv lists all designs in descending order by rank and gives, for each,
the antigen position, MAPs parts, antibody sequences, cluster number, and MILP, unrelaxed, and relaxed
interaction energies.

3. Results

We first benchmarked OptMAVEn-2.0 against OptMAVEn with a set of 10 antigens and subsequently
used 54 additional antigens to assess the performance of the current algorithm. We then used
OptMAVEn-2.0 to design antibody variable fragments against two sets of Zika envelope proteins
reported by Wang et al. [45] (PDB: 5GZN) and Zhao et al. [46] (5KVD, 5KVE, 5KVF, and 5KVG).
We ranked our de novo designs along with the native antibody reported for 5GZN; 12 of 77 designs
showed enhanced binding relative to the native. MD simulations performed on two out of these
12 designs showed that one design is stably bound to the antigen. Finally, we identified the key
stabilizing antigen-antibody interactions in these two designs and the native antibody. Results from
the second set of runs led to good native sequence recovery, with 55% of the top five de novo designed
chains showing at least 50% identity and 40% of them showing 75% similarity.

Thereafter, we used OptMAVEn-2.0 to design antibodies against three lysozyme structures
(1BVK [47], 4TSB [48], and 4PGJ [49]) for each of which there exists an experimentally reported
humanized antibody that binds to it. We analyze the native sequence recovery from the top five best
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binding designs and also investigate the number of native epitope binding contacts that were also seen
in the top five designs.

3.1. Computational Benchmarking of OptMAVEn and OptMAVEn-2.0 on 10 Antigens

OptMAVEn and OptMAVEn-2.0 were each used to design antibodies for a benchmarking set
of 10 antigens (PDB codes: 1NSN, 2IGF, 2R0W, 2VXQ, 2ZUQ, 3BKY, 3FFD, 3G5V, 3L5W, and 3MLS).
These antigens were selected randomly from the 120 antigens used to benchmark OptMAVEn [16].
The antigen chains and epitopes are given in Supplementary Table S3. Benchmarking was performed
on a Linux InfiniBand cluster. We measured the amount of time taken for the steps of Antigen
Positioning (Tpos), MAPs Interaction Energy Calculations (Tener), and Optimal Selection of MAPs Parts
(TMILP); as well as the maximum disk usage of the experiment directory (Dmax) for OptMAVEn (Table 2)
and OptMAVEn-2.0 (Table 3). Time taken for the k-means clustering step could not be compared because
this step is unique to OptMAVEn-2.0. Thus, total CPU time (TCPU) for purposes of comparison was
defined as TCPU = Tpos + Tener + TMILP. We also recorded the number of positions that did not clash
with the framework antibody (Npos) and the interaction energy (including Generalized Born solvation)
of the most optimal antigen-antibody complex after structural relaxation with CHARMM (Emin).

Table 2. The performance of OptMAVEn on 10 antigens for benchmarking.

Antigen Tpos Tener TMILP TCPU Dmax Emin Npos

1NSN 32.7 214.2 26.8 273.7 1004 −658.7 2428
2IGF 2.1 20.0 26.4 48.4 820 −76.4 3023

2R0W 2.0 17.8 20.2 40.0 779 −277.0 * 2955
2VXQ 26.1 174.4 19.6 220.1 970 −174.5 2711
2ZUQ 41.6 290.9 18.8 351.4 1094 −346.0 2645
3BKY 5.0 54.8 33.7 93.5 824 −216.1 3035
3FFD 5.3 35.0 19.5 59.8 657 +576.6 2347
3G5V 22.0 33.1 20.8 75.9 808 −309.9 2976
3L5W 29.6 173.9 24.4 227.9 1008 −281.4 2798
3MLS 5.8 53.0 21.9 80.7 809 −249.6 2903

Tpos, Tener, TMILP, and TCPU are in hours; Dmax is in megabytes; Emin is the CHARMM binding energy score.
* 2R0W was excluded from analysis of Emin.

Table 3. The performance of OptMAVEn-2.0 on 10 antigens for benchmarking.

Antigen Tpos Tener TMILP TCPU Dmax Emin Npos

1NSN 0.036 22.3 1.8 24.2 142.4 −438.1 442
2IGF 0.009 26.1 5.6 31.7 169.7 −118.5 1374

2R0W 0.010 22.4 4.9 27.4 152.9 −127.9 * 1204
2VXQ 0.033 33.7 3.6 37.4 135.4 −235.3 893
2ZUQ 0.046 40.4 3.2 43.6 167.3 −131.3 774
3BKY 0.011 33.9 6.7 40.6 197.4 −208.4 1647
3FFD 0.014 10.9 2.0 13.0 83.8 +92.6 492
3G5V 0.012 21.0 4.2 25.2 137.6 −458.5 1035
3L5W 0.033 36.4 3.8 40.2 144.7 −394.0 910
3MLS 0.009 18.0 3.3 21.3 114.7 −171.2 807

Tpos, Tener, TMILP, and TCPU are in hours; Dmax is in megabytes; Emin is the CHARMM binding energy score.
* 2R0W was excluded from analysis of Emin.

One potential confounding factor was that we used a different antigen binding site for OptMAVEn
and OptMAVEn-2.0 during the antigen positioning step. In previous work [16], we used 750
antigen-antibody complexes from the Protein Data Bank to identify an antigen binding site of x:
[−10 Å, 5 Å], y: [−5 Å, 10 Å], and z: [3.75 Å, 16.25 Å]. This binding site was used for OptMAVEn.
During benchmarking of OptMAVEn-2.0, we interchanged the x and y dimensions of the binding site,
that is x: [−5 Å, 10 Å], y: [−10 Å, 5 Å]. This change is not likely to have significantly affected TCPU,
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Dmax, or Npos because it did not change the total number of grid points sampled (3234). However,
this change would have affected Emin if the best design from OptMAVEn-2.0 was not within the
original binding site of OptMAVEn—that is, if OptMAVEn could not have created the design. This was
the case for only one antigen (2R0W) among the 10 tested; thus, we excluded 2R0W from the analysis
of Emin. There is no evidence that the difference in antigen binding sites confounded the results of
OptMAVEn and OptMAVEn-2.0.

OptMAVEn-2.0 Reduces Time and Disk Requirements by 74% and 84%, Respectively

OptMAVEn-2.0 ran significantly faster than OptMAVEn in terms of TCPU (mean 74% faster,
p < 0.001), Tpos (mean 99.8% faster, p < 0.001), Tener (mean 64% faster, p = 0.006), and TMILP (mean 84%
faster, p < 0.001). Additionally, average Dmax was 84% lower for OptMAVEn-2.0 than for OptMAVEn
(p < 0.001). These substantial improvements in performance did not compromise design quality:
there was no significant difference in Emin between the two programs (p = 0.62) (Table 4). Because all
quantities but Emin were ratios between OptMAVEn and OptMAVEn-2.0, we computed their p values
using two-tailed ratio t-tests of log10(Q/O), where Q and O are the values for OptMAVEn-2.0 and
OptMAVEn, respectively. The p-value for Emin was computed using a standard paired t-test of Q–O.
We verified our assumptions of normality using Shapiro-Wilk tests: all p-values were >0.05.

Table 4. Comparison of the performances of OptMAVEn and OptMAVEn-2.0 on 10 antigens.

Antigen Tpos Tener TMILP TCPU Dmax Emin Npos

1NSN −2.96 −0.982 −1.162 −1.053 −0.848 +220.6 −0.740
2IGF −2.35 +0.116 −0.674 −0.184 −0.684 −42.1 −0.342

2R0W −2.29 +0.102 −0.613 −0.165 −0.707 +149.1 * −0.390
2VXQ −2.90 −0.714 −0.732 −0.770 −0.855 −60.8 −0.482
2ZUQ −2.95 −0.857 −0.774 −0.906 −0.815 +214.6 −0.534
3BKY −2.65 −0.208 −0.700 −0.362 −0.620 +7.7 −0.265
3FFD −2.58 −0.505 −0.984 −0.663 −0.895 −484.0 −0.679
3G5V −3.27 −0.198 −0.698 −0.479 −0.769 −148.6 −0.459
3L5W −2.95 −0.680 −0.806 −0.753 −0.843 −112.6 −0.488
3MLS −2.80 −0.469 −0.823 −0.578 −0.848 +78.4 −0.556

Shapiro P 6.0 ×10−1 5.8 ×10−1 1.0 ×10−1 8.2 ×10−1 1.8 ×10−1 3.6 ×10−1 9.4 ×10−1

mean −2.77 −0.440 −0.797 −0.591 −0.788 −36.3 −0.494
s. d. 0.303 0.383 0.164 0.296 0.090 213.2 0.145

p-value 3.5 ×10−10 5.5 ×10−3 9.2 ×10−8 1.4 ×10−4 5.0 ×10−10 6.2 ×10−1 1.9 ×10−6

mean (ratio) 0.002 0.363 0.160 0.256 0.163 n/a 0.321
% reduction 99.8 63.7 84.0 74.4 83.7 n/a 67.9

Tpos, Tener, TMILP, TCPU, Dmax, and Npos report the log10 of the ratios of the corresponding OptMAVEn-2.0 and
OptMAVEn values. Emin reports the difference of the corresponding OptMAVEn-2.0 and OptMAVEn values.
The Shapiro-Wilk test shows that every set of values is close to normal (p > 0.05). OptMAVEn-2.0 performed
significantly better (p-value < 0.05) in Tpos, Tener, TMILP, TCPU, and Dmax and yielded designs of equivalent Emin
(p-value = 0.79). The mean (ratio) gives, for the quantities reported as log10 ratios, the value of the mean ratio
(i.e., 10mean). The % reduction is 100%–mean (ratio). * 2R0W was excluded from analysis of Emin.

3.2. Test of OptMAVEn-2.0 on 54 Additional Antigens Reveals Sub-Linear Scaling

In order to more fully analyze the relations between the performance metrics, we used OptMAVEn-2.0
to design antibodies (see Supplementary Table S4) for an additional 54 antigens (Table 5) that we
selected randomly from the 120 antigens used to benchmark OptMAVEn. We found that Npos correlated
with both TCPU (r = 0.663) and Dmax (r = 0.954) more strongly than any other feature of the antigen
correlated with these performance metrics. The number of residues (Nres) or atoms (Natom) correlated
only weakly with TCPU (r = 0.083, r = 0.075, respectively). Nres and Natom correlated moderately well
with Dmax (r = −0.472, r = −0.482, respectively) but, as larger antigens should require larger files,
the negative sign was unexpected. Given the strong negative correlation between Npos and Natom

(r = −0.650), it seems that larger antigens (measured by Natom) unsurprisingly tend to clash with the
framework antibody in a larger number of positions and thus have lower Npos values. Because Npos is
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also the number of antibodies designed, decreasing Npos reduces the number of files associated with
antibody designs, decreasing Dmax. These results show that the computational resource requirements
of OptMAVEn-2.0 scale in a sub-linear manner with the size of the antigen, ceteris paribus. Due to this
feature, OptMAVEn-2.0 (unlike OptMAVEn) is capable of designing antibodies for very large antigens,
e.g., Zika E protein (Natom = 6801).

Table 5. OptMAVEn-2.0 was tested on 54 antigens in addition to those used for benchmarking
against OptMAVEn.

Antigen Nres Natom Npos TCPU Dmax Emin

1ACY 10 156 1558 40.9 188.3 −370.6
1CE1 8 93 1694 44.3 200.9 −513.3
1CFT 5 84 1554 38.9 187.9 −253.5
1DZB 129 1958 749 42.2 136.3 −775.8
1EGJ 101 1643 650 34.1 106.9 −618.6
1F90 9 156 1328 35.0 165.8 −377.5
1FPT 11 162 1478 38.4 180.0 −455.6
1HH6 11 159 718 20.8 104.6 −385.5
1I8I 9 142 1480 38.4 179.7 −350.8

1JHL 129 1962 985 53.7 132.3 −766.6
1JRH 95 1491 397 21.9 99.6 −541.4
1KC5 8 119 1299 36.8 162.1 −376.1
1KIQ 129 1968 730 41.4 119.1 −750.1
1MLC 129 1968 618 35.9 111.2 −752.0
1N64 16 241 990 28.1 132.9 −386.6

1NAK 10 166 1192 41.5 154.1 −393.3
1OBE 13 195 417 13.5 77.9 −397.0
1ORS 132 2146 1001 55.7 162.4 −625.5
1PZ5 8 124 1348 34.1 167.4 −419.5

1QNZ 18 301 575 18.5 91.4 −367.3
1SM3 9 126 1354 34.8 167.9 −454.2
1TQB 102 1659 489 26.8 104.1 −534.6
1V7M 145 2258 588 37.5 115.4 −561.0
1XGY 6 85 1811 45.4 212.8 −293.1
1ZA3 91 1346 71 7.5 91.8 −758.7
2A6I 9 136 1093 29.1 141.8 −365.2

2BDN 68 1106 810 35.2 115.1 −740.6
2DQJ 129 1968 590 34.0 111.6 −852.4
2FJH 98 1565 312 18.4 99.7 −528.8
2H1P 11 182 561 17.0 90.4 −355.0
2HH0 9 151 1062 28.6 140.0 −282.7
2HRP 10 177 1013 27.9 135.4 −366.5
2IFF 129 1966 595 33.9 126.7 −594.4
2JEL 85 1293 596 28.1 101.9 −539.5
2OR9 11 181 734 21.1 106.7 −387.8
2QHR 11 185 761 20.3 111.3 −340.2
2R29 97 1553 641 33.2 105.3 −698.4
3AB0 136 1955 380 23.9 107.8 −765.0
3BDY 95 1521 779 36.3 133.9 −439.7
3CVH 8 142 1168 30.7 149.6 −333.7
3D85 133 2074 441 27.9 109.8 −717.0
3E8U 11 136 1481 38.1 180.8 −431.4
3ETB 144 2332 296 21.8 111.3 −898.6
3F58 11 136 1317 34.6 168.5 −322.6
3G6D 106 1667 418 24.2 103.2 −876.8
3GHB 10 146 1341 33.5 166.7 −383.4
3GHE 15 255 773 26.9 112.2 −430.1
3HR5 9 142 1340 38.4 166.5 −478.7
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Table 5. Cont.

Antigen Nres Natom Npos TCPU Dmax Emin

3KS0 92 1443 1148 54.3 148.0 −578.5
3MLX 14 235 621 20.5 94.7 −367.7
3NFP 124 1909 292 19.7 104.5 −771.6
3P30 84 1437 32 4.7 65.2 −714.9
3QG6 6 105 1425 36.1 175.2 −362.4
3RKD 146 2185 776 46.1 124.5 −793.7

TCPU is in hours, Dmax is in megabytes, and Emin is the CHARMM binding energy score.

3.3. Test Cases on Zika E Protein

We used OptMAVEn-2.0 to design antibodies targeting epitopes of Zika E protein that we
identified in the PDB entries 5GZN [45], 5KVD [46], 5KVE [46], 5KVF [46], and 5KVG [46]. While the
antibodies in 5GZN are from a human, those in 5KVD, 5KVE, 5KVF, and 5KVG were raised in mice.
The reported native antibody in each PDB binds Zika E protein with an affinity in the low nanomolar
to low micromolar range. Unfortunately, we could not rank our de novo designs with respect to the
native antibodies in 5KVD, 5KVE, 5KVF, and 5KVG because the native complexes are of poor quality,
such that large steric clashes could not be alleviated even after several rounds of structural relaxations.

3.3.1. Setup for the Test Cases on Zika E Protein

We defined an epitope residue such that at least one heavy atom of the residue was within 4 Å of
at least one heavy atom of the antibody. The epitope residues are given in Supplementary Table S3.
Note that if no structures of Zika in complex with an antibody had been available, we could have
predicted these epitopes using existing software such as those described in Soria-Gurerra et al. [50].
We used the default settings for OptMAVEn-2.0 and defined the antigen binding box with the following
bounds x: [−5 Å, 10 Å], y: [−10 Å, 5 Å], and z: [3.75 Å, 16.25 Å].

3.3.2. Recovery of Native Residues in the Test Cases on Zika E Protein

We assessed the recovery of native residues by aligning each of the top five designs with the
native sequence and computing % identity (identical residues) and % similarity (residues with
similar properties) using EMBL EMBOSS Needle [51]. Native sequence recovery was reasonable
(see Supplementary Table S1). Out of the 40 chains (20 heavy and 20 light chains from the top five
designs of four cases), 22 (55%) chains were at least 50% identical, and 16 (40%) were at least 75% similar.
Recovery of native L sequences was higher on average than that of H sequences: of the 22 chains that
were at least 50% identical, 15 (68%) were L chains; and of the 16 chains that were at least 75% similar,
14 (88%) were L chains. This result likely arises because CDR-H3 is more diverse than CDR-L3.

3.3.3. Humanization Scores in the Test Cases on Zika E Protein

We assessed the HScores of the top five designs and compared them to those of the native structure
(see Table 6). The HScores of the de novo designs were consistently lower than those of the native
antibody in all but two cases (5GZN light chain, 5KVF light chain, highlighted in bold). This result is
unsurprising because all native antibodies but 5GZN are murine. Even relative to a human antibody
(5GZN), the heavy chain HScores for the top five designs are consistently lower, which compensates for
the relatively larger HScores of the light chains. The HScores suggest that OptMAVEn-2.0 can design
antibodies with immunogenicities similar to those of human antibodies, although these predictions do
not have experimental confirmation.
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Table 6. Comparison of HScores of the top five de novo designs with the HScores of the
native antibodies.

Accession Antibody Name
(from Paper)

Native Heavy
Chain HScore

Designed Heavy
Chain HScores

Native Light
Chain HScore

Designed Light
Chain HScores

5GZN Z3L1 52 17–36 4 16–41
5KVD ZV-2 152 6–59 56 0–31
5KVE ZV-48 128 21–68 59 1–27
5KVF ZV-64 107 21–44 22 22–30
5KVG ZV-67 133 10–39 111 10–25

3.3.4. Molecular Dynamics Simulations

We performed fast MD simulations using the QwikMD [29] protocol in VMD on three antibody-
antigen complexes for 5GZN: the native complex, the top design (5gzn_R27, with the lowest interaction
energy), and the design with the lowest MILP energy, which excludes solvation (5gzn_R0). The QwikMD
trajectories were set up for 25 ns each of equilibration and production, with a time step of 2 fs; trajectory
snapshots were kept every 1000 steps (2 ps). The simulations were run at 310 K with water as the
implicit solvent.

We assessed the long-term stability of each of the three antigen-antibody complexes by calculating,
once every 2.5 ns, the RMSD of the antigen with respect to the antigen at the beginning of the production
run (i.e., time 0 ns). In order to analyze the stability of the antigen-antibody complex for the de novo
designed antibody, we first identified the binding interface residues and tracked their fluctuations
during the course of the 25 ns production run. Residues distal to the interface were neglected because
unordered loop regions would contribute to larger root mean square deviations (RMSDs) even though
the interface might be fairly stable. The antibody residues that are a part of the binding interface were
aligned to their starting conformation (at 0 ns) at the end of every 2.5 ns of the 25 ns run. Then the
heavy-atom RMSD of the antigen residues within the interface was computed (Figure 6). RMSDs of
the native complex and 5 gzn_R0 were similar and remained below 6 Å in every frame examined,
indicating that these complexes were stable throughout the entire simulations, according to a previous
definition of stable binding by Poosarla et al. [52]. RMSD of 5gzn_R27 exceeded 6 Å but did not exceed
12 Å, indicating that the antigen remained partially bound [52]. Figure 7 shows the key electrostatic
interactions (polar and salt bridge) seen in the 5gzn_native, 5gzn_R0, and 5gzn_R27 designs.
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Figure 6. The native and 5gzn_R0 antigens remained stably bound (RMSD < 6 Å), while the 5gzn_R27
antigen remained partially bound (6 Å < RMSD < 12 Å) throughout the MD simulations. Heavy-atom
RMSDs of antigen residues within a box at the antigen-antibody interface were computed after aligning
the antibody residues within the box. The RMSDs for each complex are relative to the first frame
(time 0 ns) of the production run.
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3.4. Test Cases on Hen Egg White Lysozyme

We identified three epitopes of hen egg white lysozyme from the PDB entries 1BVK [47], 4PGJ [49],
and 4TSB [48]. The native antibodies in all three structures are human or humanized, though 4PGJ
contains only the heavy chain in complex with lysozyme.

3.4.1. Setup for the Test Cases on Lysozyme

We used the same definition of epitope residues as was used for Zika (see Table 2) and the default
OptMAVEn-2.0 settings.

3.4.2. Recovery of Native Residues and Contacts in the Test Cases on Lysozyme

For each test case, the sequences of the top five designs are given in Supplementary Figure S2.
We assessed the recovery of native residues for these designs. Of the 20 chains designed for 1BVK and
4TSB, 18 (90%) are more than 65% similar and 9 (45%) are more than 75% similar. For 4PGJ, we found
lower similarities in the range of 37–46%, likely because the native antibody was engineered using
phage display with a library of humanized sequences, rather than isolated directly from a human.
Excluding 4PGJ, 15 (75%) of the designed chains were at least 50% identical; the lowest identity
observed was 40.7%, the highest 85.6%. These results show that OptMAVEn-2.0 can recover a high
fraction of the residues in native human antibodies. We also report the percentage recovery of native
antigen-antibody contacts in these top five designs (see Supplementary Figure S2) and their HScores
in comparison to those of the native structures (see Table 7).
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Table 7. Comparison of HScores of the top five de novo designs with the HScores of the
native antibodies.

Accession Native Heavy
Chain HScore

Designed Heavy
Chain HScores

Native Light
Chain HScore

Designed Light
Chain HScores

1BVK 85 10–37 57 7–27
4TSB 26 12–32 21 16–38
4PGJ 87 20–49 N/A 5–39

4. Summary and Discussion

OptMAVEn, an extension of the OptCDR framework, was the first software capable of designing
entire variable domains de novo. However, OptMAVEn requires gigabytes of disk storage and
weeks of CPU time, making it computationally intensive to target large antigens. We have developed
OptMAVEn-2.0, which designs antibodies of equivalent affinities using significantly reduced disk
storage (84% less) and CPU time (74% less). These improvements reduce the time needed to design
germline antibodies from over a week to roughly one day and enable OptMAVEn-2.0 to handle large
antigens, such as Zika E protein (407 residues) [45].

Due to its increased speed, OptMAVEn-2.0 could now be integrated into laboratory-based
workflows for designing antibodies. The most common technologies for antibody development in
the laboratory are animal immunization and phage display [13]. Immunization can yield low-affinity
antibodies de novo in 1–2 weeks [53], while phage display can in some cases design high-affinity
but non-specific antibodies in under one week and also requires an initial library of antigen binding
fragments [54]. An integrated workflow would take advantage of the high affinities reached by phage
display, as well as OptMAVEn-2.0′s speed (typically <24 h to design hundreds of variable domains) and
abilities to minimize immunogenicity and target a specific epitope. Thus, we believe OptMAVEn-2.0
could enable the rapid design of candidate antibodies for experimental validation using only the
antigen structure, unlike all other computational methods to our knowledge [16–19,55].

OptMAVEn-2.0 introduces a new clustering step that retains designs with high (unfavorable)
interaction energies if they are the best designs among those with similar antigen poses and antibody
sequences. Following the generation of germline designs, the designs can be validated with MD
simulations (e.g., in QwikMD [29]). Designs that are likely to bind with high affinity according to
the MD simulations can be further optimized using affinity maturation in IPRO [30], which increases
affinity while lowering immunogenicity.

Despite these promising results, there are several limitations of OptMAVEn-2.0 on which we
are currently working. As in OptMAVEn, the MILP step of OptMAVEn-2.0 still uses a simplified
energy function that poorly estimates the chemical potential near the binding site; estimates worsen
as the number of charged interactions increases. We have partially addressed this limitation by
considering solvation when relaxing, clustering, and ranking the designs after the MILP based rotamer
optimization step. Future work involves improving estimates of chemical potentials by incorporating
solvation and entropy terms. Checa et al. [56] and Lazaridis and Karplus [57] have found that solvation
energy contributions to protein-protein interactions are important. Solvation energy calculations
could be further augmented by accounting for intramolecular self-solvation terms, as described
by Choi et al. [58]. Additionally, incorporating the conformational entropy of the antigen would
capture effects of unordered loops and binding site rotamers which are not held in place by a stable
interaction with another residue, thereby providing meaningful insights about antigen-antibody
binding biophysics [59].

Another limitation of OptMAVEn is that it does not explicitly consider the stability of the antibody
itself. Antibodies are complex molecules and are prone to failure in multiple ways [60]. Aggregation
of antibodies is a particular problem: when antibodies aggregate, they lose their ability to bind to the
target ligand and increase the risk of becoming immunogenic [22], even for fully human antibodies [60].
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Several methods have been developed to predict (e.g., Spatial Aggregation Propensity [22]) or remove
(e.g., Rosetta Supercharge [23,24]) aggregation-prone regions of antibodies. Potentially, these tools or
similar methods could be incorporated into the affinity maturation step of future versions of OptMAVEn.
These methods would ensure that the aggregation risk did not increase during affinity maturation,
just as the current implementation imposes a similar constraint on the HScore. Antibodies may also
degrade chemically, such as through separation of the chains, oxidation, hydrolysis, or deamidation [60].
Future versions of OptMAVEn could include measures to reduce the risk of such degradation, thereby
increasing shelf life or the tolerance of antibodies to a variety of conditions.

Currently, OptMAVEn-2.0 runs on the Institute of Cyber Science-Advanced CyberInfrastructure
(ICS-ACI) cluster at Pennsylvania State University. In order to make it available to everyone without
a CHARMM license, we plan to implement a web server on which users may submit jobs to be run.
Like the command-line OptMAVEn-2.0 interface, this web server will prompt users for a structure file
upload (or a PDB ID), the chain(s) in the antigen, and the epitope residues, as well as provide options to
customize the settings of OptMAVEn-2.0. OptMAVEn-2.0 is freely available for download from both.

5. Conclusions

In this work, we have outlined an efficient protocol for rapid de novo design of antibody variable
domains for specific antigen epitopes. OptMAVEn-2.0 is capable of designing and clustering antibodies
under five hours for most antigen epitopes just using a single node and a single processor per node
in ICS-ACI. A Humanizer module can be employed post OptMAVEn-2.0 to reduce immunogenicity
with the objective of in silico affinity maturation. The Humanizer module can also be independently
used for humanizing murine antibodies without having to go through the OptMAVEn-2.0 cascade.
Both OptMAVEn-2.0 and Humanizer are freely available for download from both https://github.com/
maranasgroup and http://www.maranasgroup.com/software.htm. We are currently working towards
making both of these as web-based tools. However, currently a user can request for OptMAVEn-2.0
and Humanizer runs (http://www.maranasgroup.com/software.htm).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4468/7/3/23/s1,
Figure S1: Sequence alignments of the native heavy and light chain antibody sequences with the top five de novo
designed sequences for (a) 5KVD, (b) 5KVE, (c) 5KVF, and (d) 5KVG respectively, have been represented, Figure S2:
Sequence alignments of the native heavy and light chain antibody sequences with the top five de novo designed
sequences for (a) 1BVK, (b) 4TSB, and (c) 4PGJ have been represented, Table S1: The Spearman rank correlation
coefficient (ρ) for each MAPs part category at each gap penalty g, Table S2: The root mean squared error (RMSE) for
each MAPs part category at each gap penalty g, Table S3: The antigen chain, heavy chain, light chain, and epitope
residues from each of the 64 antigens used for testing OptMAVEn-2.0, Table S4: The antigen chains and epitope
residues of the designs used in the test cases.
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