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Abstract
The use of genetic data to reconstruct the transmission tree of infectious disease epidemics

and outbreaks has been the subject of an increasing number of studies, but previous

approaches have usually either made assumptions that are not fully compatible with phyloge-

netic inference, or, where they have based inference on a phylogeny, have employed a pro-

cedure that requires this tree to be fixed. At the same time, the coalescent-based models of

the pathogen population that are employed in the methods usually used for time-resolved

phylogeny reconstruction are a considerable simplification of epidemic process, as they

assume that pathogen lineages mix freely. Here, we contribute a newmethod that is simulta-

neously a phylogeny reconstruction method for isolates taken from an epidemic, and a proce-

dure for transmission tree reconstruction. We observe that, if one or more samples is taken

from each host in an epidemic or outbreak and these are used to build a phylogeny, a trans-

mission tree is equivalent to a partition of the set of nodes of this phylogeny, such that each

partition element is a set of nodes that is connected in the full tree and contains all the tips

corresponding to samples taken from one and only one host. We then implement a Monte

Carlo Markov Chain (MCMC) procedure for simultaneous sampling from the spaces of both

trees, utilising a newly-designed set of phylogenetic tree proposals that also respect node

partitions. We calculate the posterior probability of these partitioned trees based on a model

that acknowledges the population structure of an epidemic by employing an individual-based

disease transmission model and a coalescent process taking place within each host. We

demonstrate our method, first using simulated data, and then with sequences taken from the

H7N7 avian influenza outbreak that occurred in the Netherlands in 2003. We show that it is

superior to established coalescent methods for reconstructing the topology and node heights

of the phylogeny and performs well for transmission tree reconstruction when the phylogeny

is well-resolved by the genetic data, but caution that this will often not be the case in practice

and that existing genetic and epidemiological data should be used to configure such analy-

ses whenever possible. This method is available for use by the research community as part

of BEAST, one of the most widely-used packages for reconstruction of dated phylogenies.
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Author Summary

With sequence data becoming available in increasing high volumes and at decreasing
costs, there has been substantial recent interest in the possibility of using pathogen genome
sequences as a means to retrace the spread of disease amongst the infected hosts in an epi-
demic. While several such methods exist, many of them are not fully compatible with phy-
logenetic inference, which is the most commonly-used methodology for exploring the
ancestry of the isolates represented by a set of sequences. Procedures using phylogenetics
as a basis have either taken a single, fixed phylogenetic tree as input, or have been quite
narrow in scope and not available in any current package for general use. For their part,
standard phylogenetic methods usually assume a model of the pathogen population that is
overly simplistic for the situation in an epidemic. Here, we bridge the gap by introducing a
new, highly flexible method, implemented in the publicly-available BEAST package, which
simultaneously reconstructs the transmission history of an epidemic and the phylogeny
for samples taken from it. We apply the procedure to simulated data and to sequences
from the 2003 H7N7 avian influenza outbreak in the Netherlands.

Introduction
The increasing availability of faster and cheaper sequencing technologies is making it possible
to acquire genetic data on the pathogens involved in outbreaks and epidemics at a very fine res-
olution. It is likely that in future outbreaks where most or all clinical cases can be identified,
pathogen nucleotide sequences will be available from each one as a matter of course. Identifica-
tion of a high proportion of cases is plausible in several scenarios, such as agricultural out-
breaks, where the infected unit will usually be taken to be the farm and considerable
government resources will be employed to identify every one, HIV, where almost all infected
individuals will eventually seek treatment, and epidemics involving a population that can be
closely monitored, such as those occurring in hospitals or prisons. The prospect of acquiring
complete or nearly complete sequence datasets from an outbreak naturally suggests the possi-
bility that genetic data could be used to reconstruct the transmission tree, determining which
infected host or premises infected which others. Such a procedure would be of value in epide-
miological investigations, with genetic data providing a means to complement traditional
methods of contact-tracing.

There has been considerable recent work in the development of computational methods to
perform analyses of this sort. Early papers inferred links based on pairwise comparisons
between isolate sequences [1–4], sometimes combined with epidemiological data, but without
explicitly modelling the mutation process. More recent work has instead employed a phylody-
namic framework, in which inference is performed using a combination of epidemiological
and evolutionary models [5–12]. A Bayesian Markov Chain Monte Carlo (MCMC) approach
has almost always been used, as the probability spaces involved are of very high dimension and
mathematically complicated.

The most frequent approach has been to start with a model of transmission and attach a
mutation model to it, making simplifications that link the evolutionary process with host-to-
host transmission events. These simplifications often violate some of the basic principles of
phylogenetic inference. Jombart el al. [4, 9] treat mutation as a consequence of transmission,
with none occurring within-host, whereas the work of Morelli et al [7], extended by Mollentze
et al [11], while allowing for within-host mutation, still only allows a single pathogen lineage to
exist within each host at any given time. Such simplifications may be reasonable to make when
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analysing an epidemic. However, as phylogenetic analysis is the most commonly-used tool for
investigating of the history of pathogen lineages, there is scope for the development of methods
which are fully compatible with it.

Also implicit within these assumptions of no within-host genetic diversity is another
assumption, which is that branching times in the phylogeny and transmission events coincide;
this is shared with a number of phylodynamic methods for analysis of less well-sampled data-
sets [13–17]. Effectively, the transmission tree and phylogeny are taken to be the same entity.
Previous studies have shown that this assumption can be problematic [8, 10]. Two pathogen
lineages coexisting in a host can share a common ancestor immediately after infection (or even
before), but the first transmission from that host to another is unlikely to occur until several
days afterwards. An error of several days is of some significance in investigating an infectious
disease emergency.

Some methods do acknowledge that the phylogenetic and transmission trees are separate,
although related, entities. An exploration of this was performed by Ypma et al. [8], who linked
up individual within-host phylogenies according to a transmission tree structure to build a sin-
gle tree describing the history of the pathogen lineages for an entire epidemic. Other papers
have noted that, instead of dealing with multiple phylogenies, a transmission history can be
reconstructed by augmenting the internal nodes of a single tree for samples taken from the epi-
demic with information about the host in which the corresponding lineage was located. This
would be a preferable approach in general because it is much more compatible with existing
computational methods for phylogeny reconstruction which estimate only a single tree. Cot-
tam et al. [5] were the first to identify this, and it was revisited and refined by Didelot
et al. [10].

These two studies, however, were constrained by the lack of a method to co-estimate the
complete phylogeny simultaneously with its node labels; they have instead employed a “two-
step” procedure, using a fixed tree pre-generated by a standard phylogenetic method. This
approach has two problems. Firstly, it will ignore any uncertainty in estimates of the phylog-
eny. If a Bayesian phylogeny reconstruction method is used, this can be mitigated by using the
same method on each one of a sample of trees drawn from the posterior distribution, but at the
cost of greater computational time. Secondly, the method used to construct such a fixed tree
will often have made assumptions about the structure of population of pathogens or infected
hosts that is inconsistent with that of an epidemic. Standard analyses for estimation of time-
resolved phylogenies will assume that, all lineages are part of a single, freely mixing population,
with the probability of a tree calculated based on the assumption that it was generated by a coa-
lescent process in this population. The result is that phylogenies may display features that are
not epidemiologically plausible. For example, even for the fastest-evolving RNA viruses it
remains true that many sequences collected over the short timescale of an epidemic will be
identical [18]. If this is the case for two isolates, they are likely to form a “cherry” in the recon-
structed phylogeny whose time of most recent common ancestor (TMRCA) can take values
very close to the sampling time of the earlier isolate, because in a panmictic population, there is
no reason to rule this out. In an epidemic situation where each sample is taken from a different
host, we know that this is impossible, as there must have been at least one infection event since
that TMRCA, and in the time from infection to sampling, a host will have gone through an
incubation period and probably also a non-negligible period from manifestation of symptoms
to sampling. If a single tree with these short terminal branch lengths is then used to estimate
epidemiological parameters, estimates of times from infection to sampling are unlikely to be
reliable.

Phylogenetic inference, too, would benefit from a more realistic population model for data
from epidemics than the free mixing that is assumed in the standard coalescent-based methods.

Epidemic Reconstruction in a Phylogenetics Framework
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Much more sophisticated models, designed specifically with epidemics in mind, exist in the
field of mathematical epidemiology. Of particular interest are those [19–21] that treat each
infected host or premises as an individual entity rather than the member of a compartment, as
this aligns closely with phylogenetics, where each isolate must come from one particular host,
and allows inference that uses detailed epidemiological data, which can be acquired at the same
time that a pathogen sample is taken for sequencing.

Our contribution here is threefold. Firstly, we provide a more rigorous mathematical defini-
tion of the correspondence identified by Didelot et al. [10] between an annotation of the inter-
nal nodes of a phylogeny with host data and a transmission tree. Secondly, we provide a full,
flexible, Bayesian MCMC framework for “one-step”, simultaneous estimation of transmission
trees and phylogenies, which uses a model of the pathogen population that is consistent with
host-to-host transmission during an epidemic, and can make use of relevant epidemiological
data. Thirdly, as our method is fully integrated into the existing phylogenetics application
BEAST [22], it provides a freely-available implementation of a method of this type for use by
the research community, as well as platform for future development that has access to all the
models and methods that are already implemented in that package.

Methods

Transmission trees as partitions of the set of nodes of a phylogeny
We suppose that during an infectious disease outbreak or epidemic that infected N different
units (be they infected organisms or infected premises—we use the word “host” in this section
to avoid ambiguity), each of the N underwent one or more examinations which detected
whether it was infected or not. Hosts that were found to be infected at an examination provided
a pathogen isolate from which was obtained a nucleotide sequence (a positive examination);
hosts that were not provided nothing (a negative examination). An examination could produce
at most one sequence but multiple examinations could be performed simultaneously. We
assume that each host experienced at least one positive examination, so we are aware of all
infections. The nucleotide sequences resulting from these examinations, together with informa-
tion on negative examinations, forms our dataset D. It may be that there are known hosts in
the epidemic for which no sequence is actually available; in these cases it is obvious that if an
examination was made at a time at which we know infection was present, it would have been
positive and have provided a sequence, so we declare that such an examination occurred but
produced a noninformative sequence (i.e. consisting entirely of the code “N” representing “any
nucleotide”). As a result we haveM pathogen sequences with N�M. We denote the set of
examination times by Texam. We also assume no superinfection or reinfection, and that trans-
mission is a complete bottleneck; only one genetic variant is passed from an infectious host to a
newly infected one.

A phylogeny G, with branch lengths in units of time, describes the ancestral relationship
between the sequences from all positive examinations. The “height” of nodes in this full tree is
defined in backwards time relative to the time at which the last positive examination was made.
If A is the complete set of N hosts, a transmission tree in our terminology is a rooted tree with
N nodes labelled with the elements of A. The root node of such a tree is labelled with the first
host in the outbreak and edges indicate infections. They do not include information on timings
and consist solely of a description of which host infected which others. As such, the tree can be
regarded as a map taking each host to its infector, or to nothing if it is the index host.

Didelot et al. [10], traced the spread of a pathogen amongst hosts by annotating each inter-
nal node of a phylogeny with the host that the corresponding lineage was present in. We use
the same principle. Formally, there is a correspondence between possible transmission trees
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and ways in which the internal nodes of G can be partitioned into subsets subject to two rules:
that, for each such subset, the subgraph of G consisting of all the nodes in the subset and all
edges connecting them (this is called the subgraph induced by the subset) is connected, and
that each subset contains all the tips corresponding to the isolates taken from one and only one
host. The annotation then associates each node with the host from which the tips in its subset
were taken from. Fig 1 shows this correspondence for the simple case where there are three
hosts in the epidemic with one isolate taken from each. In S1 Text we give a more extensive
mathematical treatment of this correspondence, demonstrating that it is one to one if the phy-
logeny is fixed, that not every transmission tree arises as a partition of the nodes of such a fixed
phylogeny if there are more than two hosts, but that every one does arise as a partition of the
nodes of some phylogeny.

In such a partitioned phylogeny, infection events occur on branches joining nodes which
have been annotated with different hosts. The host that the parent node is annotated with
infects the host that the child node is annotated with. If the latter host is ai, we call this branch
the infection branch of ai. The infection branch of the host that was the index case in the epi-
demic is the root branch of the phylogeny, which we, in contrast to most phylogenetic meth-
ods, give a finite length. The timings of the two nodes joined by this branch constrain the
infection time of ai, but the partition does not exactly specify it. Assuming that infection times
and times of coalescence of lineages cannot exactly coincide, to fully describe the epidemic we

Fig 1. The five possible transmission tree structures of a phylogenetic tree with three tips, depicted
as partitions of the nodes of a phylogeny (above) and as directed graphs amongst the hosts A, B and
C (below).

doi:10.1371/journal.pcbi.1004613.g001
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introduce, for each host ai, a parameter qi between 0 and 1 such that if the infection branch of
ai starts at t1 and ends at t2, then ai was infected at tinfi ¼ t1 þ qiðt2 � t1Þ.

MCMC procedure
As many transmission histories cannot be reconstructed by partitioning the nodes of a single
phylogeny, a reconstruction procedure that is able to fully explore the space of transmission
trees cannot simply take a fixed tree as input. Instead, it must explore the full space of phyloge-
netic trees as well. The most common methods for estimation of time-resolved phylogenies
involve the use of Bayesian MCMC to sample from the probability distribution of phylogenetic
trees given the available sequence data. If the data is as outlined above, such procedures can be
extended to simultaneously sample from the probability distribution of reconstructed epidem-
ics if each sampled tree is augmented with a partition of its internal nodes as well as parameters
determining the exact times of infection of each host. We have implemented this procedure in
the package BEAST [22]. Because of the special requirements of this type of augmentation, the
standard MCMCmoves on a phylogenetic tree topology are unsuitable as they will generally
not make modifications that respect the rules of the node partitions. Instead, a specialised set
moves have been devised to alter the phylogeny and partition in such a way that the transmis-
sion tree structure is maintained, which we now describe.

Infection branch operator. This operator changes the partition of the phylogeny G while
keeping G itself fixed. We first need to introduce some terminology. If P is a partition of the
nodes of G as described above, and u is a node of G, let dPðuÞ be the host from which the tips in
the same element of P (remembering that elements of P are subsets of the set of nodes of G) as
u were sampled. This is in fact the host in which the pathogen lineage at u was present. Say that
an internal node u of G is ancestral under P if it is an ancestor of at least one tip of G that is a
member of the same element of P as itself (a tip that is associated with the same host as itself).
For a host ai, let c(ai) be the most recent common ancestor node of all the tips in G that corre-
spond to samples taken from ai. (If there is only one such tip, c(ai) is just that tip.) Observe that
dP � cðaiÞmust be ai itself, because if it is not then the subgraph induced by all nodes mapping
to ai under dP will not be connected. Say that a host ai is root-blocked by a host aj if c(aj) is an
ancestor of c(ai). The reason for this nomenclature is that if this is true, the root r of G can
never have dPðrÞ ¼ ai because if the nodes of a connected subgraph of G include both r and c
(ai) then they must also include c(aj), and this is untrue because dP � cðajÞ ¼ aj. See subfigure

A in Fig 2 for an illustration of these concepts.
The move operates by first randomly picking a host ai that is not the index host, and finding

its infection branch. If this ends in u and begins in uP, then dPðuÞ and dPðuPÞ are different
hosts. Suppose p1 is the partition element containing u and p2 contains uP. We want to produce
a new partition P 0 in which both u and uP are in either p1 or p2, adjusting the membership of
all elements so that the subgraphs remain connected. This pushes the infection branch of ai up
or down the tree (in our terminology “up” is towards the root). This is not always possible in
both directions, but if it is, then we select upwards or downwards each with probability 0.5. If
neither is possible then the move fails.

The downward move, which moves the infection branch of ai towards the tips and puts u
into p2, is impossible if u = c(ai) as removing the MRCA of all the tips in a subtree will always
disconnect that subtree. This also prevents the move from changing which partition element
any tip belongs to, because u is a tip then u = c(ai). If u 6¼ c(ai), then let uC1 and uC2 be the two
children of u. If dPðuC1Þ ¼ dPðuC2Þ then the reassignment of u to p2 will have disconnected
the subgraph induced by p1. But we know that all the tips that were contained in p1 must be
descended from only one of uC1 and uC2 (or else u = c(ai)); in other words only one of these

Epidemic Reconstruction in a Phylogenetics Framework
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Fig 2. Illustrations of partitioned phylogenies and MCMC proposals modifying them. Nodes in all cases are coloured by the partition element
containing them. (A) An example partitioned phylogeny. Tips are labelled by the hosts that the isolates corresponding to them were taken from. Where more
than one isolate is taken from a host ai, c(ai) is labelled; in all other cases c(ai) is the single tip corresponding to an isolate taken from that host. Black
diamonds designate nodes that are not ancestral under the partition. The hosts a7 and a8 are root-blocked by a6 due to the position of c(a6) (black cross). (B)
The downward infection branch move. The move attempts to move the node u from the green partition element to the red (which already contains its parent
uP). In i), the move is impossible because u is the MRCA node of the tips in the green element. In ii), it can be done with no further modifications required to
obey the rules. In iii), the node uC2, which is not ancestral under the initial partition, must also be moved to the red element so the result obeys the rules. (C)
The upward infection branch move. The move attempts to move the node vP from the red partition element to the green (which already contains its child v). In
i), the move is impossible because vP is ancestral under the partition and the host represented by the green element is root-blocked by the host represented
by the red. In ii), it can be done with no further modifications required to obey the rules. In iii), the node vS, which is not ancestral under the initial partition,
must also be moved to the green element, and in iv) the node vGmust be because vS is ancestral. (D) The type A phylogeny moves. The exchangemove
exchanges the nodes u and v; the subtree slide andWilson-Balding moves change the position of the node u and its parent uP. (E) The type B phylogeny
moves. The exchange move exchanges the nodes u and v; the subtree slide move the nodew and its parentwP, and theWilson-Balding the node v and its
parent vP. After the latter two moves the transplanted parent node is randomly assigned to one of two new partition elements with equal probability.

doi:10.1371/journal.pcbi.1004613.g002
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nodes is ancestral under P. Without loss of generality say it is uC1. We move uC2 and all
descendants of it that are also in p1 to p2 as well. This move is depicted in Fig 2B.

The upward move works in the opposite way; uP is moved to p1. If dPðuPÞ ¼ aj, then this is

impossible if ai is root-blocked by aj and uP is ancestral under P . Suppose uG is uP’s parent
(which may not exist if uP is the root) and uS its other child. If either uG does not exist, or uP
and uS are in different elements of P, then nothing further is required. Otherwise, changing
the partition element containing uP disconnects the subgraph induced by p2. Only one of its
components can contain any tips, because if both did, uP would be ancestral under P since it
would be the ancestor of the tips in one component, and ai would be root-blocked by aj. If uP is
ancestral under P then the component containing uS contains them; if it is not then the one
containing uG does. We complete the move by moving all nodes in the component with no
tips to p2 are well. This move is depicted in Fig 2C.

We then note that:

• The downward move on u is reversed by the upward move on the child uC1 of u that is ances-
tral under P. The Hastings ratio is 1 multiplied by 2 if uC1 ¼ c � dP 0 ðuC1Þ and by 0.5 if u is
ancestral under P and dPðuÞ is root-blocked by dPðuPÞ.

• If uP is not ancestral under P, then the upward move on u is reversed by the downward
move on uP. The Hastings ratio is 1 multiplied by 0.5 if u ¼ c � dPðuÞ and by 2 if uG is ances-
tral under P and dP 0 ðuPÞ is root-blocked by dP 0 ðuGÞ.

• If uP is ancestral under P, and the upward move on u is possible, then it is reversed by the
upward move on its sibling uS. The Hastings ratio is 1 multiplied by 0.5 if u ¼ c � dPðuÞ and
then by 2 if uS ¼ c � dP 0 ðuSÞ.

Phylogeny operators. BEAST in its default configuration uses three types of phylogeny
operator: exchange [23], subtree slide [24], and Wilson-Balding [25]. All three have been modi-
fied to produce two special cases which respect node partitions. The “type A” operators do not
change the transmission tree, whereas the “type B”moves simultaneously rearrange both trees.
For brevity we sketch these here; a full treatment can be found in S1 Text, in which we also
show that the Markov chain is irreducible. Figs 2D and 2E depict examples of the modifications
made to a partitioned tree by the type A and type B moves respectively.

The “wide” version of the standard exchange operator randomly selects two nodes in the
phylogeny that are not siblings or the root, and whose heights and parent heights are such that
swapping their parents would not lead to a situation where a node is lower in the tree than its
child, and does that swap. Our type A modification randomly selects two nodes that are also
not siblings or the root and whose parents are members of the same partition element, and
does the same. This preserves the infector of every host (see section S1.3.2.1 in S1 Text for
details). The type B version selects instead a random two nodes whose parents are in different
partition elements to themselves, and again swaps these parents. If u and v are the two nodes
moved and P is the original partition, then dPðuÞ and dPðvÞ exchange infectors in the trans-
mission tree (if they were different to start with). The Hastings ratio must be calculated by spe-
cifically enumerating the number of possible exchange partners for each node if they were the
first of the pair to be selected.

The standard subtree slide operator picks a random node u, draws a value d from a proba-
bility distribution that has support on the whole real line and is symmetric about 0, and moves
u’s parent uP a distance Δ up or down the tree (according to Δ’s sign) along a path connecting
the root to the tips; where the move is towards the tips a random branch is chosen at every split
encountered. The move fails if uP is taken so far down the tree that its height is equal to or
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smaller than that of u. It also may be that uPmoves so far up the tree that it becomes the root,
which is a legal move. The type A modification does the same, but insists that the final position
of uP is such that it is adjacent to a node in the same partition element as itself. This ensures
the transmission tree structure is unchanged. The Hastings ratio must be calculated, again, by
enumerating the set of possible origins and destinations. The type B version picks u such that
uP is in a different partition element to itself, then performs the standard move. Afterwards, uP
is randomly allocated to the partition element containing either its new parent or its new sec-
ond child with probability 0.5 each. This moves transplants the subtree of the transmission tree
rooted at dPðuÞ to a new location. The Hastings ratio is the same as for the standard move, save
for a trivial modification to take into account the random allocation of uP to a new partition
element.

The standard Wilson-Balding move picks a random node, and then prunes and reattaches
its parent to a random position so long as there is no height conflict. The modifications are
largely the same as those for subtree slide; type A can be applied to any node and reattaches its
parent in a position adjacent to a node in the same partition element, whereas type B chooses a
node with a parent in a different partition element to itself, performs the standard move, then
reallocates the parent to a new element. The modifications to the Hastings ratio calculations
are also analogous to subtree slide.

Moves are also needed to adjust branch lengths in the phylogeny; these are inherited from
BEAST with no modification required.

Infection times. None of these these moves change the value of any of the qi parameters
that exactly determine infection times; new values of those are proposed and evaluated sepa-
rately by draws from a uniform distribution. Nevertheless, changes to either tree may involve
modifications of the times of infection of some hosts. For example, the infection branch opera-
tor changes the branch on which dPðuÞ’s infection occurs, so it must change tinfi even if it does
not change qi. Even a move that has no effect on the partition or phylogenetic tree topology,
such as a change to branch lengths, may alter the height of the nodes which ai’s infection
branch connects, which will also modify tinfi while qi remains the same.

Model description
We assume that the epidemiological and evolutionary processes involved in an epidemic can
be described by three models: a stochastic model of infection and between-host transmission
dynamics, a deterministic model of the population dynamics of a within-host population of
“agents”, and a stochastic model of sequence evolution. Table 1 summarises the notation we
will use to describe them in the following paragraphs.

In contrast to the previous work of Didelot et al. [10], whose underlying model of transmis-
sion was a compartmental SIR model, we use an individual-based model similar to those
employed in previous work on agricultural outbreaks [5–8]. This much more readily allows for
the accommodation of host heterogeneity, and makes no assumption of random mixing. We
start with a population of susceptible hosts. We may know a priori some characteristics that
allow us to define relationships between these hosts; if so, call these characteristics L. L could,
for example, be the spatial locations of farms in an agricultural outbreak. The epidemic starts
when a single susceptible is infected by an external source. If ai is a host, tinfi is its time of infec-
tion. It is infectious from tinfi until a time tendi . The value of tendi is randomly determined at tinfi ,
by a draw from a probability distribution with parameters ρ. Let Tinf be the complete set of
infection times and Tend the complete set of noninfectiousness times. For now, we assume that
a host becomes infectious immediately upon infection; we relax this assumption in a later sec-
tion. If ai is infectious and aj susceptible, ai inflicts a constant force of infection on aj given by a
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rate bmodified by multiplication by a positive real number F(ai, aj), where F is a positive func-
tion with parameters ϕ defining a relationship between ai and aj based on the information in L.
In other words, the time between the infection of ai and a possible infection of aj by ai is drawn
from an exponential distribution with mean 1/(bF(ai, aj)). If the time drawn is such that ai was
no longer infectious at that point, or if some other infectious host had infected aj at an earlier
time, nothing happens. Otherwise, aj becomes infected after this time. After tendi , ai is consid-
ered removed and plays no further part in the epidemic.

There are many possible choices for F. If we assume no spatial structure or other heteroge-
neity affecting transmission then we can just take F(ai, aj) = 1 for all hosts ai and aj. Otherwise,
it can be based on, for example, geographical distance between sampling sites, a network met-
ric, or shared membership in some risk group. It can also be used to state prior information
about the transmission tree structure; if it is known a priori that ai did not infect aj, then F(ai,
aj) can be set to zero. There is also no requirement that F be symmetric.

We assume that each host is examined at least once while it is infected, and that examina-
tion does not disturb the course of the infection. Beyond that no concrete assumptions need to
be made about the examination process; any number of examinations can be made of any
hosts at any time. If examinations are instead restricted so that they only occur at at the point
of noninfectiousness of each host, however, there are mathematical advantages, as will be seen.

As in previous work [8, 10] we take the model of the dynamics of the “agents” to be a coales-
cent process, with parameters ψ, amongst lineages in a freely-mixing population within each
host. If the hosts are single organisms, the agents will naturally be individual pathogens. If, on
the other hand, they are infected locations, they could instead be considered to be infected
organisms. In either case, only a very small proportion of the total agent population are repre-
sented by lineages in the tree, and the assumption of a low sampling fraction required for use
of the coalescent process is satisfied.

The sequence evolution model is of the standard type used in the reconstruction of time-
resolved phylogenies [23]. It consists of both a continuous-time Markov chain model of
sequence evolution (such as the commonly-used HKY [26] or GTR [27] models) and a

Table 1. Description of symbols used in the probability decomposition.

Symbol Type Meaning

Texam Background
information

Examination times of each host

L Background
information

Information defining the relationship between hosts used to define F
(e.g. spatial locations)

D Data Results of examinations (sequence data and notes of negative
observations)

b Model parameter Unmodified transmission rate

ϕ Model parameters Parameters of F

ψ Model parameters Parameters of the population dynamics of the agents within each host

ρ Model parameters Parameters of distribution of infectious periods

ω Model parameters Parameters of nucleotide substitution and molecular clock models

G Latent variable Phylogenetic tree

N Latent variable Transmission tree

Tinf Latent variables Times of infection of each host

Ttrans Latent variables Times of infectiousness of each host (if different to Tinf)

Tend Latent variables Times of becoming noninfectious of each host

F Function Function modifying b based on known relationships between hosts

doi:10.1371/journal.pcbi.1004613.t001
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molecular clock model. Denote the parameters of both by ω. We assume that mutation is a
neutral process, and that it occurs independently of the host-to-host transmission structure.

Bayesian decomposition
In this section we show how the likelihood of a partitioned phylogeny can be calculated using
the three models described above. We condition on Texam and L. The noninfectiousness times
Tend are formally considered to be latent variables and could be estimated, but for this paper
we assume them to be known and fixed to their actual values, much as Didelot et al. [10] treat
removal times. If any or all hosts are known to have remained infectious indefinitely, the corre-
sponding values of Tend can be set to the time of analysis. It should be noted that the Texam are
not strictly sampling times. They instead represent times at which it is known that hosts were
examined, and an infected host would provide a sequence. D is the results of these examina-
tions, including the results of negative ones. This formulation allows for some convenient
mathematics but has consequences for estimation of the prior distribution (see Discussion).
Alternatively, if the data is such that all samples from each host were taken at the same time
and the assumption that all hosts ceased to be infected immediately after this time is reason-
able, we need not treat Texam in this way and D can consist solely of sequence data as it does in
standard phylogenetic analyses; see “an alternative approach” below.

Ideally, it should be possible to enumerate all individuals or premises which were susceptible
to infection but never experienced it, and L should include background information on them.
Their never-infected status is assumed a priori and since they will never appear in the phylog-
eny, there is no need to consider examination times for them. For convenience we give these
hosts infection and noninfectiousness times whose values are fixed to the time of analysis, as
we need to evaluate the probability that they were not infected at any time before the present.
Consideration of the never-infected set is necessary for unbiased estimation of b and ϕ, which
should only be interpreted literally if such data is present in the analysis. If it is not, we are actu-
ally estimating parameters b0 and ϕ0, which is what b and ϕ would be if all susceptibles did
experience infection.

The posterior probability we are interested in calculating is

pðG;N ;Tinf ;Tend; b; �;c; r;ojD;Texam; LÞ. By Bayes’ Theorem this is equal to

pðDjG;N ;Tinf ;Tend; b; �;c; r;o;Texam; LÞpðG;N ;Tinf ;Tend; b; �;c; r;ojTexam; LÞ
pðDjTexam; LÞ :

As usual, we need not calculate the denominator if we are uninterested in model comparison as
it does not vary. If Dmay contain the results of negative examinations, we must explicitly state
that if D includesM sequences but G has any number of tips other thanM, then the probability
of D given G is zero. A G with a different number of tips does not necessarily have zero prior
probability, but it does result in zero likelihood for the data, so we need not concern ourself
with exploring the posterior probability space of such phylogenies. Given a G with the right
number of tips, D depends by the assumptions of the mutation model only on G and ω, and the
likelihood reduces to pðDjG;oÞ, which can be calculated using the Felsenstein pruning algo-
rithm and the chosen molecular clock model in the normal way [23, 28, 29]. It remains to cal-

culate the prior probability pðG;N ;Tinf ;Tend; b; �;c; r;ojTexam; LÞ. We decompose this as

pðG;N ;Tinf ;Tend; b; �;c; r;ojTexam; LÞ ¼ pðGjN ;Tinf ;Tend; b; �;c; r;o;Texam; LÞ
�pðN ;Tinf ;Tendjb; �;c; r;o;Texam; LÞ
�pðb; �;c; r;ojTexam; LÞ:
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Wemake the following assumptions:

• All parameters are independent of ω; the mutation process has no bearing on the infection
dynamics inside or between hosts.

• The phylogeny G is conditionally independent of b, ϕ, ρ, and L given ψ,N , Tinf, Tend, and
Texam. The former parameters determine the transmission model and are not relevant if we
already know the full transmission tree and its timings.

• The transmission treeN and its event timings Tinf and Tend are conditionally independent of
Texam and ψ given ϕ, ρ, and L. The parameters of the within-host model are not relevant to
the between-host model and examination is assumed not to disturb the transmission process.

• b, ϕ, ψ, ρ, and ω are independent of Texam, L and each other. The parameters determining
transmission, within-host growth, infectious periods, and mutation are independent of each
other, the examination process, and the exact relationships amongst this set of hosts.

The decomposition is therefore reduced to

pðG;N ;Tinf ;Tend; b; �;c; r;ojTexam; LÞ ¼ pðGjN ;Tinf ;Tend;c;TexamÞ
�pðN ;Tinf ;Tendjb; �; r; LÞ
�pðbÞpð�ÞpðcÞpðrÞpðoÞ:

We first need to calculate pðGjN ;Tinf ;Tend;c;TexamÞ. The first observation we make is that
the combination of Tinf, Tend and Texam determines which examinations were positive, and that
positive examinations correspond to the tips of G. If the number of positive examinations of a
given host and the number of tips corresponding to sequences taken from that host differ, then
this term must be equal to zero. In theory, we can calculate it for a phylogeny with any number
of tips up to the total number of examinations, but in practice we need not if we are sampling
from the posterior distribution, as any tree that does not haveM tips will have zero posterior
probability because the likelihood will be zero. So we can assume that G hasM tips and that no
tip date is before the infection date or after the noninfectiousness date of the corresponding
host, and merely check that Tinf, Tend and Texam implyM positive observations.

If the tip count is correct, we then calculate this probability by extending the procedure out-
lined by Didelot et al. [10] to allow for the use of any of the standard models of deterministic
population growth, and the possibility of host heterogeneity. The latter is accomplished by
dividing the set of hosts into categories and assigning a separate demographic model to all of
those in each one. Categories can be assigned from known epidemiological data about the
hosts; for example, in a livestock disease outbreak, they may reflect the size of farm. Naturally,
there is no requirement that there be more than one category. If c is such a category, there is a
corresponding demographic function Nc : R ! R

þ with parameters ψc where Nc(t) is the
product of the effective population size and generation time of the agents at time t on a separate
backwards timescale in each host. Let cc(i) be the category that ai belongs to.

Suppose that, according toN , Tinf and Texam, ai 2 A infected ni other hosts and that there
weremi positive observations of ai. SupposeHi is a phylogenetic tree that describes the part of
the outbreak that took place within ai. Because we assume transmission is a complete bottle-
neck, it is a single tree with a root note r. It will have ni +mi tips, one for each infection event
and each positive observation. If the time of the root r is trooti , we know that trooti is later than tinfi

and we giveHi a root branch of length trooti � tinfi . If we have aHi for each ai, and we knowN ,
we can build a phylogenetic tree for the entire epidemic by, if aj ¼ N ðaiÞ, attaching the root
node ofHi to the tip ofHj that corresponds to the infection of ai by a branch with length equal
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to the root branch length ofHi. If G cannot be built up fromHis in this way,

pðGjN ;Tinf ;Tend;c;TexamÞ ¼ 0. Otherwise, we calculate it as

pðGjN ;Tinf ;Tend;c;TexamÞ ¼
Y

i2f1;...;Ng
pðHijcccðiÞÞ:

In the standard coalescent model [30], the probability density function for the time t (in
backwards time) of the first coalescence of K� 2 lineages after t0 where the demographic func-
tion is Nc is given by

pðtÞ ¼ KðK � 1Þ
2NcðtÞ

exp �
Z t

t0

KðK � 1Þ
2NcðsÞ

ds

 !
:

and if we know which two specific lineages coalesced, the first K(K − 1)/2 cancels. As Didelot
et al. [10] note, this is not quite sufficient for our purposes because we have a maximum height
for the last coalescence. If this is tmax, the normalised probability distribution for the time of
first coalescence is

pðtjtmaxÞ ¼

KðK � 1Þ
2NcðtÞ

exp �
Z t

t0

KðK � 1Þ
2NcðsÞ

ds

 !

1� exp � R tmax

t0

KðK � 1Þ
2NcðsÞ

ds

� � t0 � t < tmax

0 otherwise:

ð1Þ

8>>>>>>><
>>>>>>>:

This is the probability of an interval inHi ending in a coalescent event. The probability of an
interval ending in a transmission or sampling event is the probability that no events occur in
the interval, which is one minus the cumulative distribution function P(t|tmax)

1� PðtjtmaxÞ ¼

1 t < t0

exp � R t

t0

KðK � 1Þ
2NcðsÞ

ds

� �
� exp � R tmax

t0

KðK � 1Þ
2NcðsÞ

ds

� �

1� exp � R tmax

t0

KðK � 1Þ
2NcðsÞ

ds

� � t0 � t < tmax

0 t � tmax:

ð2Þ

8>>>>>>>>><
>>>>>>>>>:

Note that while with no maximum root height, the formula happens to work for K = 1, here it
does not as the denominator is 0 for t0 � t< tmax, and we instead set the probability of any
interval with one lineage to 1. In particular, if ai has no children then pðHijcccðiÞÞ ¼ 1.

These formulae can be used to calculate pðHijcccðiÞÞ for everyHi in the established way for a

tree with temporally offset tips [23]. It is most intuitive to standardise the timescale of eachHi

such that the effective population size at the point of the infection can be the same across all
hosts. As a result, when (and only when) dealing with within-host phylogenies we depart from
the convention of making height 0 the time of the last tip, and instead put it at the time of infec-
tion (i.e. tmax = 0), with all later events occurring at negative heights. Appropriate demographic
functions should be picked for the Ncs; we suggest exponential or logistic growth [30, 31].

We now calculate the product pðN ;Tinf ;Tendjb; �; r; LÞpðrÞ. The first half,
pðN ;Tinf ;Tendjb; �; r; LÞ, is the probability that the observed transmission tree and all its tim-
ings occurred for a given b, ϕ and ρ. This can be calculated using a procedure similar to that
employed by Deardon et al. [21]. If there are, in addition to the N infected hosts a1, . . ., aN, N0
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known potential hosts aN+1, . . ., aN+N0 that were never infected, let o be a permutation function
such that tinfoð1Þ; . . . ; t

inf
oðNþN 0Þ is in increasing order of time (breaking ties arbitrarily and remem-

bering that never-infected hosts are given “infection times” after any others).
For the real infection events, there are N − 1 inter-infection intervals I2, . . ., IN where each

Ii ¼ ðtinfoði�1Þ; t
inf
oðiÞ�; let I1 ¼ ð�1; tinfoð1Þ� and INþ1 ¼ ðtinfoðNÞ; t

inf
oðNþ1Þ� (the end of the latter interval is

the time of infection assigned to all the never-infected susceptibles). Let SðtÞ be the set of sus-
ceptible hosts, IðtÞ the set of infected hosts, andRðtÞ the set of noninfectious hosts at time t.
For any i> 1, aoðiÞ 2 Sðtinfoði�1ÞÞ andN ðaoðiÞÞ 2 Iðtinfoði�1ÞÞ. Recall that we assume that the nonin-

fectiousness time of each host is determined upon infection by a draw from a probability distri-
bution with parameters ρ. For any i� N, the event Ei is taken to represent the combined
occurance of a) ao(i) being infected byN ðaoðiÞÞ at the end of Ii, b) the time of removal of ao(i)
being tendoðiÞ , and c) no other infection events taking place during Ii. The event EN+1 represents no

infections occurring amongst any remaining susceptibles during IN+1. We now derive the prob-

ability pðN ;Tinf ;Tendjb; �; r; LÞ:
pðN ;Tinf ;Tendjb; �; r; LÞ ¼ pðfEi : 1 � i � N þ 1gjb; �; r; LÞ

¼
YNþ1

i¼1

pðEijfEj : j < ig; b; �; r; LÞ: ð3Þ

The first term p(E1|b, ϕ, L, ρ) is the product of pðtendoð1Þjtinfoð1Þ; rÞ, and the probability that ao(1) was
infected at time tinfoð1Þ and was the first in the epidemic. The latter should be defined by a prior;

call this pðaindex; tinfindexÞ. For Ei with 2� i� N:

• Let Xi be the probabilityN ðaoðiÞÞ infected ao(i) at tinfoðiÞ, but not before that during Ii:

Xi ¼ bFðaoðiÞ;N ðaoðiÞÞÞ � exp �bFðaoðiÞ;N ðaoðiÞÞÞðtinfoðiÞ � tinfoði�1ÞÞ
� �

:

• Let Yi be the probability that no host in Iðtinfoði�1ÞÞ other thanN ðaoðiÞÞ infected ao(i) before tinfoðiÞ
in Ii. Noting that the upper bound on the time that such an aj could have infected ao(i) before

tinfoðiÞ is either t
inf
oðiÞ itself if aj was still infectious at that point or t

end
j if it was not, this is given by

Yi ¼
Y

aj 2 Iðtinfoði�1ÞÞ

aj 6¼ N ðaoðiÞÞ

exp �bFðaoðiÞ; ajÞðminftinfoðiÞ; t
end
j g � tinfoði�1ÞÞ

� �
:

• Let Zi be the probability that no host in Iðtinfoði�1ÞÞ infected any host other than ao(i) in Sðtinfoði�1ÞÞ
(a set that always includes all the never-infected susceptibles) during Ii. Again, the upper bound

on the time at which an aj could infect a third host ak before tinfoðiÞ isminftinfoðiÞ; t
end
j g.

Zi ¼
Y

aj2Iðtinfoði�1ÞÞ

Y
ak 2 Sðt infoði�1ÞÞ

k 6¼ oðiÞ

exp �bFðaj; akÞðminftinfoðiÞ; t
end
j g � tinfoði�1ÞÞ

� �
:

Then pðEijfEj : j < ig; b; �; r; LÞ ¼ XiYiZipðtendoðiÞjtinfoðiÞ; rÞ.
Finally, consider EN+1. After tinfoðNÞ, the only remaining susceptibles were never infected, and

their assignment of tinfoðNþ1Þ as an infection date is a consequence of this. IfW = p(EN+1|{Ei: i< N

+1}, b, ϕ, ρ, L), then it is just the probability that no never-infected susceptible is infected after
tinfoðNÞ (the probability that these were not infected earlier is handled in the construction of Zi
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above) and this is given by

W ¼
Y

aj2IðtinfoðNÞÞ

Y
ak2SðtinfoðNÞÞ

exp �bFðaj; akÞðtendj � tinfoðNÞÞ
� �

:

The time period after tinfoðNþ1Þ need not be considered. If the epidemic ended with the host aj
ceasing to be infectious at tendj < tinfoðNþ1Þ, the infectious pressure applied to all never-infected sus-

ceptibles after tendj will be zero permanently and hence the probability that they were not

infected after tendj , if they were not infected before it, is 1. All other hosts were removed by this

time and cannot be reinfected. If, on the other hand, any hosts remain infectious at the time of
analysis, the probability of no infection for any member of the never-infected set must be calcu-
lated up to that time, which is, by construction, tinfoðNþ1Þ. This method is not designed to infer

future events, so the timeline is truncated at this point.
We multiply the conditional probabilities of each Ei together to form Eq (3) and we have

pðN ;Tinf ;Tendjb; �; r; LÞpðrÞ ¼ pðaindex; tinfindexÞ W
YN
i¼2

XiYiZi

 !

�
YN
i¼1

pðtendoðiÞ jtinfoðiÞ; rÞ
 !

pðrÞ:

W and each product Xi Yi Zi can be calculated individually. A term pðtendi jtinfi ; rÞ can be seen as
the probability that the infectious period of ai has length tendi � tinfi given ρ. Writing linfi ¼
tendi � tinfi and assuming infectious periods are independent of each other, then

YN
i¼1

pðtendoðiÞjtinfoðiÞ; rÞ
 !

pðrÞ ¼ pðlinf1 ; . . . ; linfN jrÞpðrÞ:

There are two ways to handle this term. The simpler is to treat ρ as known, in which case p
(ρ) = 1 and what we are effectively doing is placing a prior distribution on the length of each
infectious period. No assumption is made that each linfi is drawn from the same distribution;
indeed every single infectious period can be treated as coming from a different distribution.
Previous work on foot-and-mouth disease virus [5, 7] has used clinical data to estimate times
of infection, and if this kind of information is available, it can be used to determine an individ-
ual prior for each li. This is also the preferable approach if infections are ongoing at the time of
sampling. If we cannot use information of this type, a similar approach can be taken to that in
the coalescent calculations above, assigning each host ai to an infectious period category ic(ai).
This again allows us to accommodate known heterogeneity; for example in an agricultural out-
break it is likely that infectious periods decrease as time goes by and control measures are
brought to bear.

It may be, however, that we want to estimate the distribution of infectious periods from the
genetic data. Suppose hosts in category A have infectious periods distributed according to a dis-
tribution DA with unknown parameters ρA. In this case p(ρA) would be determined by hyper-
priors. We suggest that, as an alternative to using MCMC to estimate both the parameters of
DA and a set of draws from it, the actual values of ρA be integrated out by appealing to a conju-
gate prior distribution for DA and calculating the marginal likelihood of the set {li: ic(ai) 2 A}
given the hyperpriors. Candidates for DA are then those continuous distributions for which
this marginal likelihood is analytically tractable. Examples are normal, lognormal, exponential,
and gamma if the shape parameter is known. Although it it not absolutely ideal as infectious
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periods are non-negative parameters, we suggest the normal distribution as the prior for the
reason that its mean and variance are independent.

Finally, all that remains is to place prior distributions on the parameters making up b, ϕ, ψ,
and ω.

An alternative approach
If it is reasonable to assume that all hosts cease to be infectious upon examination (and all
examinations of each host take place simultaneously), then Tend and Texam coincide (meaning
that we no longer must assume examination does not disturb the transmission process) and we
can replace the latter with a term Nexam which simply counts the number of sequences taken
from each host. Negative examinations no longer need to be considered, and D is simply
sequence data. A tree with a number of tips other thanM has zero prior probability as well as
zero likelihood because we condition on Nexam. The calculations are identical except that the
initial check for consistency of the number of examinations with Tinf and Tend can be skipped.

Latent periods
The above formulation has taken the course of infection to follow a SIR process; hosts are
assumed to be infectious as soon as they are infected. It is straightforward to replace this with a
SEIR process instead. While it is possible to treat latent periods as draws from a probability dis-
tribution in the same way as described for infectious periods in the previous section, in simula-
tions this resulted in poor mixing of the MCMC chain if an strongly informative hyperprior on
the parameters of this distribution was used, and poor estimation of their values if the hyper-
prior was weaker. Instead, we again subdivide the set of hosts into one or more discrete catego-
ries and assign a single value to the latent period for all hosts in each category, so that the latent
period of host ai is lc(ai). Let the complete set of latent periods be λ. Let Ttrans be the set of
infectiousness times of each host; then if ttransi 2 Ttrans is the infectiousness time of ai,
ttransi ¼ tinfi þ lcðaiÞ. We assume that hosts are infectious by the time they cease to be infected,
and that examinations of infected but noninfectious hosts are positive. The phylogeny G is
assumed to be conditionally independent of Ttrans given Tinf and Tend.

The new decomposition is

pðG;N ;Tinf ;Tend;Ttrans; �;c; r; l;ojTexam; LÞ ¼ pðGjN ;Tinf ;Tend;c;TexamÞ
�pðN ;Tinf ;Ttrans;Tendjb; �; r; l; LÞ
�pðbÞpð�ÞpðcÞpðrÞpðlÞpðoÞ:

Aside from the prior on λ, only the second term in this product is different, and it is not a
major modification to the SIR version to calculate it; see S2 Text.

Simulations
Epidemics and sequences were simulated using examples of the three models described above.
The epidemic simulations were intended to represented a situation analogous to an agricultural
outbreak, with the hosts as farms. The units of time were intended to represent days. In each
replicate of the simulation, A consisted of 50 potential hosts arranged spatially on a regular
5 × 5 grid contained in the unit square, such that every grid point contained two whose dis-
tance from each other was zero. A single host was chosen at random to be infected first at time
0. The infection of each followed a SEIR process: upon infection, a host ai was latently infected
for a time Plat which was identical across all hosts and subsequently infectious for a period pinfi

drawn from a normal distribution (negative draws were discarded, but the distribution used
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was such that the probability of these occurring was negligible). Let Pinf be the set of all the
infectious periods.

F was an exponential spatial transmission kernel function: the time for an newly infectious
ai to infect a susceptible aj was drawn from an exponential distribution with mean be − αd(ai, a

j
)

where d(ai, aj) is the Euclidean distance between the locations of ai and aj. The process was run
until no infections remained. A single positive examination was simulated at the point of non-
infectiousness of each host. As no infections persisted following the acquisition of a sequence,
we are in the special case outlined under “an alternative approach” above and so there is no
need to consider the possibility of negative examinations in the analysis. Only simulations in
which at least 45 of the 50 susceptibles (i.e. N� 45) were eventually infected were kept.

Once the epidemic simulation was completed, the transmission tree was transformed into a
phylogenetic tree by simulating a within-host phylogeny under a coalescent process. Variation
in the product of effective population size and generation time of the agents within each host
was identical and obeyed a logistic growth function Ne(t):

NeðtÞ ¼
N0ð1þ e�rT50Þ
1þ e�rðT50�tÞ :

where the timescale is in negative time and distinct for each host and t = 0 is the point of infec-
tion. N0 represents the effective population size at t = 0, r the growth rate during the exponen-
tial growth phase of the logistic function, and T50 the time such that Ne(T50) is half the value of
the limit of Ne(t) as it approaches −1. We conditioned the simulation on all lineages coalesc-
ing before t = 0. The complete set of such phylogenies was then joined up to produce a single
phylogeny for the entire simulated epidemic.

This full phylogeny was then used to generate simulated sequences using the program
πBUSS [32]. Sequences consisted of 14,000 base pairs (roughly equivalent to a full influenza A
genome). A strict molecular clock model with no rate variation between sites and equal nucleo-
tide frequencies was used. Two sets of sequences were generated. The first used an unrealisti-
cally fast molecular clock with a rate of 5 � 10−4 substitutions per site per day (0.183 per site per
year) while the second had a rate of 1 � 10−5 per site per day (3.65 � 10−3 per site per year). The
slower rate was intended to be be similar to the genuine substitution rate for influenza A. Both
used the HKY substitution model [26] with a κ value of 2.718. Table 2 gives the parameter val-
ues actually used in the simulations.

Sequence datasets from a total of 25 simulation replicates were used for analysis. We used
the within-host coalescent (WHC) method outlined in the previous sections, implemented in
BEAST, to reconstruct the full phylogeny and transmission tree for each replicate, and estimate
the parameters of the model that generated them. We also performed the same analysis using a
blank alignment, sampling from the prior distribution only. Uninfected susceptibles were
included in the analysis. For comparison, we also reconstructed the phylogeny only using a
GMRF Bayesian skyride [33] tree prior. Table 2 also details the prior distributions used on all
parameters. In this paper we concentrate primarily on the between-host model, so the chosen
priors on the within-host parameters were somewhat informative about their known values. In
the prior, the identity of the index host and its time of infection were taken to be independent,
so pðaindex; tinfindexÞ ¼ pðaindexÞpðtinfindexÞ. A couple of points warrant further explanation.

Firstly, in the reconstruction we assumed that all infectious periods are drawn from an
unknown normal distribution with mean μinf and precision τinf and placed a conjugate Nor-
malGamma(μ0, κ0, α0, β0) hyperprior on μinf and τinf. The meaning of this is that τinf is gamma
distributed with shape α0 and rate β0, and for a known value of τinf, μinf is normally distributed
with mean μ0 and precision κ0 τinf. Initial analyses of both datasets had μ0 = 10, κ0 = 0.01,
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α0 = 1, β0 = 1. While this value of μ0 is equal to the actual mean of the distribution used to gen-
erate the simulations, the low κ0 actually means that this hyperprior is only very weakly infor-
mative about μinf. As it proved that for datasets generated with the slower clock this resulted in
a systematic underestimation of the length of infectious periods (see Results), the analysis was
repeated with κ0 = 100, a modification which makes the hyperprior much more informative
about μinf.

Secondly, very large values of the probability expressions Eqs (1) and (2) can be obtained
when their denominators are very small. This occurs when the coalescence of all lineages before
the point of infection (in backwards time) is actually highly unlikely given the parameters of
the within-host model (because the denominators are the probability of coalescence of all line-
ages before infection), contrary to the assumption that transmission is a complete bottleneck.
There is therefore a mismatch between this bottleneck assumption and some values of the
parameters making up ψ, and this must be remedied by appropriate prior distributions for the
latter; uninformative priors are completely inappropriate. The nature of the mathematics of
the coalescent process used here is such that no values will literally make the bottleneck com-
plete, so we instead ensure that it is not unreasonably wide. The ratio S of the final asymptotic
value of N(t) to N0, its value at the point of infection, in our logistic model is

S ¼ lim t!�1NðtÞ
N0

¼ 1þ e�rT50 :

The concerning situation is where S is small. If T50 is positive then S cannot be greater than 2,
so we assume it is negative. We then place a lognormal prior on S. This prior, combined with
one on either T50 or r, specifies the prior probability of r so we give the latter no explicit distri-
bution. We also fixed N0 to its correct value in all simulations.

In analysing the sequence datasets generated by the slower molecular clock, the amount of
genetic variation accumulated over the timescale of each epidemic was found to be insufficient,
for some simulations, to provide good estimates of the clock rate. As a result, this parameter
was also fixed to its correct value. The same was done for the prior analysis. All MCMC chains
were run for sufficiently long to give effective sample sizes of at least 200 for all numerical
model parameters.

Accuracy of the reconstructed phylogenetic tree topology was assessed by counting, for each
tree in the posterior sample, the number of subtree prune and regraft (SPR) moves required to
take it to the correct phylogeny and taking the posterior median value of this count; we used
the program rSPR [34] to determine this. In addition, to investigate the extent to which the
imposition of a transmission model constrains the space of plausible phylogenies, we calculated
the number of unique clades in the 50% credible set of phylogenies for the WHC and skyride
analyses of each slow and fast clock dataset.

We used two methods to assess procedures by which transmission tree might be recon-
structed in practice. Firstly, the posterior set of trees was summarised in a single maximum par-
ent credibility (MPC) transmission tree, analogous to the maximum clade credibility (MCC)
tree for phylogenies. The posterior distribution of parents for each host in the epidemic was
calculated for each host in turn, and the parent credibility of each tree in the sample was calcu-
lated as the product of the posterior probabilities of each link in the chain. The MPC tree is the
tree in the sample that maximises this product. This was compared to the correct transmission
tree, and the proportion of parents that were correctly identified calculated.

As an alternative approach we identified, for each host, the infector with the highest poste-
rior probability, regardless of whether the result of doing this for every host actually constituted
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a proper transmission tree that was connected with no cycles. We calculated the proportion of
parents that would be correctly identified by doing this, firstly if the actual value of the poste-
rior probability was not considered, and subsequently for different values of a threshold proba-
bility below which inference of parental relationships would not be made.

Analysis of sequences from the 2003 H7N7 avian influenza outbreak in
the Netherlands
We used the WHCmethod to reanalyse the data from the Dutch H7N7 avian influenza out-
break of 2003. The outbreak has been the subject of many previous papers [35–37], including
several that incorporated genetic data [6, 18, 38–40].

Epidemiological data from the Dutch epidemic consisted of cull dates for all 241 farms, and
the matrix of spatial distances between them, rounded to the nearest kilometer. (We did not
have access to their precise spatial locations.) The GISAID database [41] contains sequences
for isolates taken from 229 of the farms (95.0%); this consists of the HA, NA and PB2 segments
in 226 cases, the HA and PB2 in 2, and the HA and NA in 1. The dates upon which these sam-
ples were taken were also available. In the absence of any other information, we assumed that a
single examination of each farm took place at this time.

The HA, NA and PB2 sequences were each aligned using the MUSCLE algorithm [42]; seg-
ments which were missing were given noninformative sequences consisting entirely of the code
“N”. This included entirely noninformative sequences for the twelve farms for which we had
no genetic data at all; the examination date of these was set to the cull date of the farm, a time
at which it was certainly possible to acquire a sequence. The three segments were then
concatenated to produce a single alignment. The 143rd codon position of the HA segment,
which has been observed to cause discrepancies between reconstructed phylogenies for each
segment probably as the result of convergent evolution [18], was removed. As we lacked data

Table 2. Explanation of the mathematical symbols used in the simulation model, and prior distributions for their values used in analysis of the sim-
ulated datasets.Mathematical symbols are given where they appear in the text.

Symbol Meaning Actual Value Prior distribution

aindex Identity of index host variable Uf1;Ng
tinfindex Infection time of index host 0 N ð0;2Þ
α Transmission kernel dispersion parameter 10 exp(1)

b Unmodified infection rate 0.1/day exp(0.5)

r Within-host logistic growth rate 1.5/day None1

N0 Ne at time of infection 0.1 None2

T50 Time before time of infection at which Ne achieves half its limit -4 days Gamma(10, 2)

S Ratio of limt ! −1 Ne(t) to N0 55.6 lnN ð4;0:5Þ
Plat Latent period 2 days Gamma(200, 100)

μinf, τinf Mean and precision of normal distribution of infectious periods 10 days, 1 days−2 NormalGamma(10, 0.01, 1, 1)3

Molecular clock rate, fast clock datasets 5 � 10−4/site/day exp(0.1)

Molecular clock rate, slow clock datasets and prior analysis 1 � 10−5/site/day None4

κ HKY model transition/transversion ratio 2.718 lnN ð1; 0:64Þ
1 The prior probability of r is implicitly specified by the priors on T50 and S
2 N0 was fixed to its correct value of 0.1 in the analysis
3 The slow clock analysis was also repeated with NormalGamma(10, 100, 1, 1) instead
4 In the analyses of the slow clock datasets and the analyses sampling from the prior distribution only, R was fixed to its correct value of 1 � 10−5/site/day

doi:10.1371/journal.pcbi.1004613.t002
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on the location of uninfected farms in the country, we did not include uninfected premises in
the analysis, and as a result we were estimating b0 and ϕ0 (see Bayesian Decomposition).

The parameters of this analysis, and the prior distributions used for them, are summarised
in Table 3. We used the SRD06 nucleotide substitution model [43] and an uncorrelated lognor-
mal relaxed molecular clock [29]; the mean clock rate was not fixed a priori. The type of spatial
transmission kernel function used here was the same as that used by Boender et al. [37] in their
analysis of the same epidemic, determined by a logistic expression

Fðai; ajÞ ¼
1

1þ dðai; ajÞ
a02

� �a0
1

:

where d(ai, aj) is the distance between the farms ai and aj. As before, the latent period of the
disease was assumed to be constant, and we placed a strong prior with a mean of two days on
its length. We also followed Boender et al. in assuming that the distribution of farm infectious
periods prior to the discovery of the epidemic and the implementation of control measures was

Table 3. Parameters used in the H7N7 analysis, and prior distributions for their values.

Parameter Symbol Prior distribution

Identity of index host aindex
pðai ¼ aindexÞ ¼

0:035 ai high� risk

0:0035 ai low� risk

(

Infection time of index host tinfindex N ðE; 2Þ1
Transmission kernel dispersion parameters2 a01; a

0
2 Uð0;1Þ

Unmodified transmission rate2 b0 Uð0;1Þ
Within-farm logistic growth rate r None3

Product of effective population size and pathogen
generation time at point of infection

N0 Gamma(20, 4)

Time before infection time at which Ne achieves half its
final asymptotic value

T50 None4

Ratio of limt ! −1 Ne(t) N0 S lnN ð4;0:5Þ
Latent period Plat Gamma(200, 100)

Mean and precision of normal distribution of infectious
periods, high-risk period

NormalGamma(7.3, 169.0, 1, 3.8)

Mean and precision of normal distribution of infectious
periods, low-risk period

NormalGamma(13.8, 2.64, 1, 3.8)

Mean molecular clock rate (real space) Uð0;1Þ
Standard deviation parameter of relaxed molecular
clock (log space)

Exp(0.33)

Transition/transversion ratio lnN ð1; 0:64Þ
Shape parameter of gamma distribution for between-
site rate variation

Exp(0.5)

Nucleotide frequencies Uð0;1Þ
Relative clock rates for nucleotide positions 1+2 and 3 Uð0;1Þ
1 E corresponds to 17 February 2003, an estimate for the time of the index infection taken from previous

literature [36].
2 These parameters is not the true values that that would be estimated in the presence of data on

uninfected susceptibles; see the text for details.
3 The prior probability of T50 is implicitly specified by the priors on r and S
4 N0 was fixed to 3.37 in the analysis

doi:10.1371/journal.pcbi.1004613.t003
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distinct from that afterwards, and grouped the set of farms into “high-risk” and “low-risk” cate-
gories accordingly. The first five detected cases (F1–F5) were in the high-risk category. The
hyperpriors on the distribution of infectious periods in both categories and the prior distribu-
tion for the time of the initial infection were informed by estimates from Boender et al. and Ste-
geman et al. [36]. The prior distribution for the identity of the index farm was such that each
high-risk farm was given ten times the weight of each low-risk farm.

We chose to regard the agent population as being made up of infected birds. As in the simu-
lations, we assumed that the product of the effective size and the generation time of this popula-
tion within each farm underwent logistic growth, and that the same growth function was shared
by all farms. Also as in the simulations, we did not estimate N0 and instead assumed that the
effective population size at the point of infection was 1, and that the generation time (the serial
interval of the infection) was 3.37 days, a number derived fromWhite and Pagano [44].

Multiple MCMC runs were performed, and the results combined using the LogCombiner
utility in order to achieve ESS values over 200 for the posterior and prior probabilities, the like-
lihood, and all parameters listed in Table 3. The MPC transmission tree was visualised with
Cytoscape 3.2 [45].

Results

Simulations
The simulation needed to be run only 26 times in order to obtain 25 instances in which at least
45 hosts were infected, suggesting that there was little bias involved in discarding those that
failed to meet this threshold. Fig 3 summarises the accuracy of the reconstruction of the trans-
mission tree and the estimates of infection times for each host. For the latter, we saw low bias
and error when the molecular clock rate was fast. However, the use of realistic sequences led to
a systematic tendency to underestimate times from infectiousness to removal when the mean
parameter of the probability distribution from which infectious periods are drawn was not
given a strongly informative prior. It is clear from the results of the prior analysis that the effec-
tive prior distribution favours short infected periods. Re-running the analysis with an informa-
tive prior on μinf (by setting κ0 = 100, see Methods) greatly reduced this effect, but did not
entirely eliminate it.

The transmission tree was very well reconstructed when the clock was fast, with the poste-
rior median proportion of parents being correctly identified, across the 25 simulations, having
a median of 0.94 (range 0.8–1). For the slower clock this was considerably reduced, with a
median of 0.64 (0.46–0.78). Increasing κ0 had no noticeable effect on this (median 0.62, range
0.37–0.78). As expected, reconstruction of the transmission tree when MCMC samples were
taken from the prior distribution only was extremely poor. The MPC transmission tree’s
median proportion of correctly identified parents was 0.96 (0.82, 1.00) for the fast clock dataset,
0.71 (0.46, 0.88) for initial slow clock dataset, and 0.72 (0.43, 0.86) for the slow clock dataset
with κ0 = 100.

Table 4 summarises the accuracy of the procedure of picking the infector with the highest
posterior probability, for no probability threshold and thresholds of 0.5, 0.8, and 0.9. It can be
seen that for a threshold of 0.8, inferences are highly accurate even for the slow clock dataset
and that the use of a value of this size leaves up to two-thirds of hosts with an inferred infector.

For the fast clock sequences, the phylogeny was sufficiently well resolved by the genetic data
that both methods, the established skyride coalescent tree prior and the WHC introduced in
this paper, performed similarly in reconstructing it, but WHC performed better when the
molecular clock rate was more realistic (Fig 4). Error and bias in the estimates of the TMRCA
of each pair of sequences was notably reduced for WHC. Using an informative prior on μinf
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made estimates better still. The reconstruction of the topological structure of the phylogeny
was also improved, with the number of SPR moves needed to take a sampled tree from the
MCMC chain to the true phylogeny being consistently smaller for WHC, where the median
(across the 25 simulations) posterior median number of required SPR moves was 15 (range
8–21), compared to the skyride analysis, where it was was 18 (range 11–24). The informative
prior on μinf made no noticeable difference in this case. In the slow clock analyses, the number
of unique clades in the 50% credible set of phylogenies was always larger when the skyride was
used than when the WHC was, sometimes by a factor of as much as 2; the median ratio of the
former to the latter was 1.87 (range 1.19–2.78). For the fast clock datasets, however, the num-
bers from each method were extremely similar, indicating the extent to which the phylogeny
could be resolved by the genetic data alone.

Fig 3. Accuracy of the reconstruction of the transmission tree. Each violin plot represents the density of a statistic calculated from the results of separate
analyses of 25 simulated datasets; the clock model used to generate the dataset and the analysis method are indicated on the y-axis. (A) posterior median of
mean bias in estimation of infection dates. (B) posterior median of mean error in estimation of infection dates. (C) Posterior median proportion of hosts whose
infector is correctly identified. (D) Proportion of hosts whose infector is correctly identified in the maximum parent credibility (MPC) transmission tree.

doi:10.1371/journal.pcbi.1004613.g003
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Table 5 summarises the posterior parameter estimates and their accuracy. Figures given are
the medians across the 25 simulations. The tendency of WHC to substantially underestimate
infectious periods unless an informative prior is used on the mean of their distribution is also
clear here; latent periods were also slightly underestimated although the true values were
always well within the 95% highest posterior density (HPD) interval. It is also noticeable that
the parameters r and T50 of the logistic growth function describing within-host effective popu-
lation size are not well estimated for the slow clock dataset, with very wide HPD intervals and
also a great bias towards underestimating the value of the latter, to the extent that the 95%
HPD was frequently inaccurate. The informative prior on μinf improved matters somewhat, at
least ensuring that the true T50 usually lay within the HPD interval. On the other hand, the
ratio S was recovered with much more precision and much less error and bias. These within-
host parameters were in fact rather better estimated when sampling was from the prior only,
but this is presumably because the prior distributions on them were chosen with knowledge of
their true values. To investigate this further, we re-ran the analyses on the fast and slow clock
datasets (with κ0 = 0.01), fixing the parameters of the within-host model to their true values,
and once again determined the accuracy of the reconstruction of the transmission tree. The
results of this can be seen in S2 Fig. For the slow clock dataset, this improved the reconstruction
somewhat, although the effect was not dramatic.

Analysis of sequences from the 2003 H7N7 avian influenza outbreak in
the Netherlands
The MPC transmission tree can be seen in Fig 5. It can be seen that most of the inferred trans-
missions have a quite low posterior probability. In fact, if we were to use a posterior probability
threshold of 0.5 to infer transmissions, we would draw conclusions about only 90 farms
(37.3%), with this dropping to 24 (10%) for a threshold of 0.8, and 9 (3.7%) for a threshold of
0.9. None of the five “high-risk” farms met the 0.5 threshold, although the posterior probability
that the index case was among these five was 0.62 compared to the prior probability of 0.17.
This lack of resolution is the reason why in the MPC tree the presumed index farm F1 is not
correctly identified, and why, while it and the other five high-risk period farms are close
together at the start in the transmission chain, they are intermingled with other infected farms
identified early in the epidemic. The posterior median date of the first infection was the 19th
February, 2003, nine days prior to detection, with the 95% HPD ranging from the 16th until
the 21st. This is somewhat later than previous estimates [36, 46]. The orange-bordered nodes
in the tree are the twelve farms for which no sequence is available. Notably, the procedure

Table 4. Percentage of hosts with parents correctly identified by picking the infector host with the highest posterior probability for different thresh-
olds, and percentage of hosts whose parents are inferred in this way for each threshold.Numbers are median and range across the 25 simulations.

Analysis Statistic Threshold

None 0.5 0.8 0.9

Prior % Parents correctly identified 22 (10, 28.5) 40 (25, 75) 66.7 (0, 100) 75 (0, 100)

% Parents inferred 100 21.3 (10, 36) 8.0 (2.0, 16.7) 6.0 (2.0, 14.6)

Fast clock % Parents correctly identified 95.9 (82.0, 100) 95.9 (82, 100) 97.8 (85.7, 100) 100 (88.9, 100)

% Parents inferred 100 100 (97.8, 100) 91.7 (79.6, 100) 84.0 (68.0, 100)

Slow clock % Parents correctly identified 72.0 (54.2, 88) 84.2 (69, 100) 94.1 (85.7, 100) 100 (86.4, 100)

% Parents inferred 100 76 (42.9, 94) 42.9 (16.3, 64) 28 (4.1, 50)

Slow clock, κ0 = 100 % Parents correctly identified 70.2 (52.1, 86) 85.3 (67.6, 95.7) 96 (85.2, 100) 100 (85.7, 100)

% Parents inferred 100 75.5 (36.7, 92) 41.7 (4.1, 64) 28.3 (2, 54)

doi:10.1371/journal.pcbi.1004613.t004
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placed them amongst their geographical neighbours. S2 Fig is the MCC phylogeny, with
branches coloured by individual farm. It should be noted that the branch colourings in this fig-
ure do not reflect a history of the epidemic that is particularly representative of the posterior
sample of transmission trees; they are simply the colourings of the phylogeny from the poste-
rior with the highest clade credibility.

Table 6 summarises the parameter estimates. Of note, while we used an extremely informa-
tive prior distribution with a mean of two days on the length of the latent period, the estimate
was still considerably shorter (posterior median 1.47 days, 95% HPD 1.26–1.69). The estimate
of the mean infectious period in the low-risk period did not deviate greatly from the prior
expected value of 7.3 (posterior median 7.52 days, 95% HPD 7.02–8.05). The posterior distribu-
tion for the mean during for the high-risk period, however, actually had a smaller median at

Fig 4. Accuracy of the reconstruction of the phylogeny. Each violin plot represents the density of a statistic calculated from the results of separate
analyses of 25 simulated datasets; the clockmodel used to generate the dataset and the analysis method are indicated on the y-axis. (A) posterior
median of mean bias in estimation of all pairwise TMRCAs. (B) posterior median of mean error in estimation of all pairwise TMRCAs. (C) Posterior median
SPR distance from the true phylogeny.

doi:10.1371/journal.pcbi.1004613.g004
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Table 5. Estimates of simulation parameters from the various analyses. The median values, across the 25 simulations, of the posterior median, relative
error in the posterior median, relative bias in the posterior median and relative width of the 95%HPD interval of each parameter are given, along with the num-
ber out of 25 simulations that the correct value was contained within the 95% HPD interval. Where estimates are not given for a particular analysis, this
parameter was either fixed to its correct value or, in the case of WHC-related parameters in skyride analyses, not part of the analysis. Mathematical symbols
are given where they are referred to in the text.

Symbol Meaning Dataset Model True
value

Median Error Bias 95% HPD
width

HPD
accuracy

Molecular clock rate1 Fast Skyride 5 � 10−4 5.11 � 10−4 2.68 � 10−2 2.13 � 10−2 0.125 24

Fast WHC 5 � 10−4 5.1 � 10−4 2.32 � 10−2 1.91 � 10−2 0.112 23

κ Transition/transversion ratio Prior WHC 2.72 2.59 4.67 � 10−2−4.67 � 10−2 7.41 25

Fast Skyride 2.72 2.72 2.12 � 10−2−1.09 � 10−3 0.113 23

Fast WHC 2.72 2.72 2.16 � 10−2 6.58 � 10−4 0.114 23

Slow Skyride 2.72 2.52 0.132 −7.13 � 10−2 0.745 24

Slow WHC 2.72 2.51 0.13 −7.53 � 10−2 0.77 24

Slow WHC (κ0 = 10) 2.72 2.53 0.129 −7.04 � 10−2 0.763 24

Pinf� Mean infectious period2 Prior WHC 10 1.99 0.802 −0.802 0.141 0

Fast WHC 10 9.85 2.18 � 10−2−7.88 � 10−3 0.161 25

Slow WHC 10 8.26 0.177 −0.177 0.309 13

Slow WHC (κ0 = 10) 10 9.87 1.9 � 10−2 −1.8 � 10−2 0.134 24

σ(Pinf) Standard deviation of infectious periods2 Prior WHC 1 0.944 0.216 −0.107 0.593 18

Fast WHC 1 1.06 0.12 3.13 � 10−2 0.774 25

Slow WHC 1 1.63 0.724 0.724 1.99 22

Slow WHC (κ0 = 10) 1 1.39 0.373 0.373 2.29 20

Plat Latent period Prior WHC 2 1.78 0.112 −0.112 0.257 17

Fast WHC 2 1.98 1.12 � 10−2−9.13 � 10−3 0.264 25

Slow WHC 2 1.93 3.75 � 10−2−3.75 � 10−2 0.268 25

Slow WHC (κ0 = 10) 2 1.86 6.88 � 10−2−6.88 � 10−2 0.254 25

α Transmission kernel dispersion parameter Prior WHC 7 4.03 0.423 −0.425 0.682 9

Fast WHC 7 6.72 6.43 � 10−2−4.04 � 10−2 0.469 23

Slow WHC 7 6.81 6.87 � 10−2−2.69 � 10−2 0.53 24

Slow WHC (κ0 = 10) 7 6.90 5.67 � 10−2−1.41 � 10−2 0.538 24

b Unmodified transmission rate Prior WHC 0.1 0.143 0.462 0.43 2.49 25

Fast WHC 0.1 9.88 � 10−2 0.186 −1.24 � 10−2 1.03 24

Slow WHC 0.1 0.111 0.182 0.105 1.43 25

Slow WHC (κ0 = 10) 0.1 0.103 0.186 3.1 � 10−2 1.31 25

r Within-host logistic growth rate Prior WHC 1 0.75 0.25 −0.25 2.84 25

Fast WHC 1 1.09 0.141 9.32 � 10−2 0.986 25

Slow WHC 1 2.63 1.63 1.63 5.87 24

Slow WHC (κ0 = 10) 1 2.17 1.17 1.17 5.54 25

T50 Time at which within-host population size
is half its final value

Prior WHC −4 −4.25 0.27 −0.254 7.05 25

Fast WHC −4 −3.45 0.698 0.552 3.27 24

Slow WHC −4 −1.42 2.58 2.58 3.86 16

Slow WHC (κ0 = 10) −4 −1.71 2.29 2.29 4.68 23

S Ratio of final within-host population size to
size at infection

Prior WHC 55.6 25.1 0.547 −0.549 1.53 25

Fast WHC 55.6 41.5 0.3 −0.253 1.08 23

Slow WHC 55.6 41.4 0.255 −0.255 1.33 23

Slow WHC (κ0 = 10) 55.6 41.5 0.253 −0.253 1.09 25

1 Molecular clock rates were not estimated for runs on the slow clock dataset
2 Infectious periods were drawn from a normal distribution with the “actual values” given here as mean and standard deviation. Error and bias were,

however, calculated using the mean and standard deviation of the actual set of estimated periods from each simulated epidemic.

doi:10.1371/journal.pcbi.1004613.t005
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6.19 days (95% HPD 4.57–7.65), considerably shorter than the prior expected value of 13.8. On
the other hand, the median infectious period of the index case (whichever it was in each MCMC
state) was 12.7 days (9.59–16.7). Compared to the prior expected value of the precision of the
distribution in both high-risk and low-risk periods of 0.263 days−2, the estimated precisions
were lower, with posterior medians of 0.167 (6.1 � 10−2-5.41)days−2 for the high-risk period and
8.03 � 10−2 (6.28 � 10−2-0.105)days−2 for the low-risk period. The parameters of the within host
population function suggested that the effective size of the infected population rose very quickly
towards its asymptotic value, achieving values extremely close to it within a day or so. If the
median estimates were used, this asymptotic population size was 10.6 times the value at the
point of infection. While this behaviour would not seem to reflect the likely course of an

Fig 5. Maximum parent credibility transmission tree for the H7N7 outbreak.Nodes represent farms and are coloured by geographical region. Arrows
represent direct transmissions and are coloured by the posterior probability of this particular direct infection. The cyan-bordered nodes, which are also
labelled with farm ID numbers from previous literature [18], are were detected during the “high-risk” period before the implementation of control measures.
Orange-bordered nodes are farms for which no sequence was available.

doi:10.1371/journal.pcbi.1004613.g005
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epidemic within a flock, it should be remembered that the within-farm model was extremely
simplistic for this example. As the analysis in here lacks data on uninfected susceptibles, the esti-
mated parameters of the transmission kernel here differ considerably to the maximum likeli-
hood figures from Boender et al (which were, in our notation, b = 2 � 10−3 days−1, α1 = 2.1 and
α2 = 1.9) since the authors of that paper had access to data about every farm in the Netherlands.

While properties of epidemics such as reproduction numbers are not readily derived from
the parameters of a model of this type, they can be estimated post-hoc. For example, the poste-
rior median number of farms infected by the index farm in this epidemic, which is analogous
to the basic reproduction number (for farms) R0, was 7 (3–11). We also calculated, for each day
in the epidemic, the mean number of farms subsequently infected by a farm infected on that
day, which is equivalent to the effective case reproduction number R; the posterior distribution
of this is summarised in S3 Fig. It should be noted the high values of R towards the start of the
timeline come only fromMCMC states for which the date of the index case was earlier than
the median date of the 19th February; for many states no epidemic was present at that time and
hence there were no infections to contribute to the calculation.

Discussion
We provide here a novel method for simultaneous reconstruction of both phylogenies and trans-
mission trees, fully incorporated into the existing BEAST package. Being part of an established
package has the advantage that users of our method have access to existing models and methods
for, for example, relaxed molecular clocks, ancestral sequence reconstruction, coalescent popula-
tion models, and marginal likelihood estimation, without the need for extra programming work.

Table 6. Estimates of parameters from the H7N7 outbreak, posterior median and 95%HPD interval.

Parameter Symbol Median value (95% HPD)

Transmission kernel parameters α1 1.72 (1.53, 1.95)

α2 0.652 (0.341, 1.03)

Unmodified transmission rate b0 0.124 /day (5.39 � 10−2, 0.218)
Within-farm population growth rate r 6.99 /day (4.61, 9.88)

Time before infection time at which Ne achieves half its final asymptotic value T50 -0.321 days (-0.441, -0.22)

Latent period Plat 1.56 days (1.34, 1.8)

Mean infectious period (high-risk period) 6.19 days (4.57, 7.65)

Standard deviation of infectious periods (high-risk period) 2.45 days (0.43, 4.05)

Mean infectious period (low-risk period) 7.52 days (7.02, 8.05)

Standard deviation of infectious periods (low-risk period) 3.53 days (3.09, 3.99)

Mean molecular clock rate 2.78 � 10−5 subs/site/day (2.34 � 10−5, 3.25 � 10−5)
Standard deviation of molecular clock rates 1.34 � 10−5 subs/site/day (2.24 � 10−6, 2.40 � 10−5)
Transition/transversion ratio, positions 1+2 7.22 (4.78, 9.99)

Transition/transversion ratio, position 3 9.03 (5.56, 13.5)

Gamma shape parameter for between-site rate variation, positions 1+2 4.27 � 10−2 (1.02 � 10−3, 9.32 � 10−2)
Gamma shape parameter for between-site rate variation, position 3 0.231 (1.08 � 10−3, 0.677)
Nucleotide frequency, adenine (A) 0.333 (0.321, 0.346)

Nucleotide frequency, cytosine (C) 0.188 (0.178, 0.198)

Nucleotide frequency, guanine (G) 0.249 (0.238, 0.26)

Nucleotide frequency, uracil (U) 0.230 (0.219, 0.24)

Relative clock rate parameter, positions 1+2 0.853 (0.763, 0.939)

Relative clock rate parameter, position 3 1.29 (1.12, 1.47)

doi:10.1371/journal.pcbi.1004613.t006
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The prior probability decomposition outlined above is also very flexible, allowing for many dif-
ferent distributions of infectious periods and models of spread between hosts.

The framework here builds primarily on the previous work of Didelot et al. [10] and Ypma
et al. [8] combining the co-estimation of both trees from the latter with the internal node anno-
tation of the former. The “colours” of Didelot et al correspond to our partition elements. (The
earlier work of Cottam et al. [5] took a similar approach but insisted that each node was in the
same partition element as one of its children, which makes the implicit assumption that line-
ages split at transmission as it is then impossible for any lineage to exist in a host if it is not the
ancestor of a tip taken from that host.) We have extended this annotation to allow more than
one tip to come from the same host, under the assumption that the host was infected only
once. (If this may not be true, it might be more appropriate to treat the two introductions as
separate “hosts”, particularly in an agricultural scenario.) This would be of use in, for example,
the study of HIV, where multiple samples are often taken from the same patient over the course
of treatment [47]. Our infection branch move serves the same purpose as the single move
described by Didelot et al. but takes a rather different approach. The main difference is that it is
a change to the tree partition, which may indirectly change an infection date, rather than to the
infection dates themselves. Direct changes to infection dates in our framework are constrained
to be those that cannot change the transmission tree, as they modify just the qis. Other differ-
ences are that our version makes only moves that respect the partition rules (and hence the
proposal never violates them) and makes no assumption that hosts cease to be infectious at any
point (which is left as a job for likelihood calculations).

The work of Ypma et al. [8] has now been placed fully in the framework of modern phyloge-
netic inference. That paper treated every within-host phylogeny as a separate entity to be modi-
fied individually. For compatibility with existing packages such as BEAST, which estimate a
single tree, it is more convenient to partition that tree instead. We also provide a more formal
mathematical exploration of the properties of the joint space (see S1 Text), demonstrating that
it is impossible for an MCMC procedure to fully explore the space of transmission trees with-
out letting the phylogeny vary if the latter has more than two tips, and also that varying the
phylogeny does allow the algorithm complete access. Finally, we show that this is indeed true
in our case, by demonstrating irreducibility of our Markov chain. The move modifying the
transmission tree proposed by Ypma et al. is most similar (although not identical) to our type
B Wilson-Balding proposal, but irreducibility is not proven in the paper; the partition structure
that we propose makes this much easier to show.

Exploration of the space of both trees is important, as the short timespan of phylogenies
from epidemics and outbreaks often results in phylogenies that are not particularly well
resolved, and as a result, a two-step procedure such as that of Didelot et al. or Cottam et al.
may make it impossible to infer many plausible transmission histories. While in some circum-
stances access to the full space of transmission trees may not be necessary because some are
very implausible (it is unlikely, for example, that the last host in an outbreak lasting months
was infected by the first), which trees are implausible will vary greatly depending on the nature
of the pathogen. It would be reasonable to rule out direct transmission between two individuals
if their infection dates were separated by years if the pathogen was influenza, but not if it was
HIV. Therefore, we considered it important, in designing a method intended to be general and
flexible, to allow access to every single transmission tree. A simultaneous procedure such as
this is to be preferred to the option of running a separate fixed-tree analysis on each of a set of
trees from a Bayesian posterior sample for reasons of computational time, and because the
fixed trees may have been estimated using an inappropriate model (see below).

The extent to which a fixed phylogeny constrains the space of transmission trees, or indeed
vice versa, is a mathematical problem which is worthy of investigation. For a fixed phylogeny
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with three tips, 5 out of 9 transmission tree are possible (a proportion of 0.56); for four tips, it
is either 12 or 13 out of 64 (0.19 or 0.2) (see Figure S1.1 in S1 Text); the total number of trans-
mission trees increases faster than the total number of partitions of the phylogeny. As the parti-
tion count varies with the phylogenetic topology, there is no simple expression for the former
based simply on the tip count of the latter, and analytical work to formally describe the rela-
tionship would be instructive. The opposite question, by how much the set of potential phylo-
genetic topologies is constrained if the transmission tree is known, also arises. While every
transmission tree is possible in the joint framework presented here, the imposition of a trans-
mission model certainly has a constraining effect on the credible set of phylogenies, as we saw
when we compared the number of clades in the credible sets between the WHC and skyride
slow clock results. The lack of difference between the two for the fast clock results is due to the
fact that the genetic data alone is enough to largely resolve the phylogeny in that case and the
reconstruction needs no additional help from the population model.

We found here that the WHCmethod was superior in estimating both the topological struc-
ture of the phylogeny and its node heights than an analysis using the GMRF Skyride tree prior;
the latter, which assumes all lineages belong to a single, freely-mixing population, is amongst
the most frequently employed current methods for the reconstruction of time-resolved phylog-
enies. This adds weight to the concerns we expressed in the Introduction about two-step meth-
ods that use a phylogeny or set of phylogenies estimated by another method as input for
epidemiological reconstruction; the assumptions under which those trees were made may vio-
late the population model that the epidemiological inference is using, and as a result they may
not be accurate. As we have here developed a more accurate tree prior for an epidemic situa-
tion, we would recommend that the WHC be used for reconstruction of the phylogeny of suit-
able datasets even if the transmission tree is not of interest.

A frequent concern surrounding analyses of this sort has been the question of unsampled
hosts or clinical cases. Some progress has been made in dealing with this issue recently in the
non-phylogenetic methods [4, 11], and Numminen et al. [48] outlined a novel two-step, impor-
tance sampling method for the investigation of transmission trees using potentially sparsely
sampled data based on a fixed, maximum-parsimony phylogeny. We go some way to address-
ing this problem in a one-step process because, as demonstrated, our method can include epi-
demiological information for known clinical cases for which no sequence is available. Scenarios
of this sort, indeed, provide another reason to prefer a one-step approach; as a standard phylo-
genetic analysis is unaware of any epidemiological information other than dates of sampling, it
has no information to use in placing a noninformative sequence in the tree. The position of a
corresponding tip in a fixed phylogeny used as input for a two-step method will be effectively
random. Our method can, instead, use epidemiological data such as the location of the case, as
well as a prior or hyperprior on the time from infection to noninfectiousness, to place these
with more certainty. It can be seen from the reconstructed transmission tree (Fig 5) from the
H7N7 epidemic that the farms for which no sequence was available are placed amongst their
geographical neighbours, which would be expected unless there was a particular reason to
believe otherwise.

This is obviously not a complete solution to the problem; more challenging is the issue of
the identification of unknown unsampled hosts in the transmission chain, and the quantifica-
tion of the number of them. This is the principal limitation of this method, and further work is
needed to address it. Two approaches have been suggested previously [10, 11], both of which
could be accommodated as a modification to the WHC. The first is to create a pool of
unsampled hosts, of variable size, and use reversible-jump MCMC [49] to add and subtract
from it. Internal nodes in the phylogeny can then be assigned to elements of this set, obeying
the rules about connectedness but disregarding that about each partition element containing a

Epidemic Reconstruction in a Phylogenetics Framework

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004613 December 30, 2015 29 / 36



tip. The second is to allow hosts to “indirectly” infect others even after they ceased to be infec-
tious. The assignment of a node to a particular partition element would no longer indicate that
the lineage represented by that node was actually present in the host represented by the tip in
the same element, but just that it was infected by that host before it entered any other sampled
host. We suggest a third option, which is to allow the assignment of internal nodes to no host
at all. The mathematical framework would require modification; for example, an expression
would be needed for the probability of the infection of a host from an unknown source.

The assumption that transmission is a complete bottleneck is hard to relax, as one of the
fundamental principles of the correspondence between transmission trees and partitions, that
the nodes in a partition element form a connected subtree of the whole phylogeny, must then
be discarded as the common ancestral node of two nodes in the same host may be outside that
host. The realism of this assumption is often unclear and will vary from pathogen to pathogen;
while the bottleneck has been found to be quite loose for individual-to-individual transmission
of influenza [50], this may be less true when, as in our example, transmission is between farms
[18]. For other organisms, such as HIV [51] and hepatitis C virus [52], it has been found that
the number of transmitted variants is usually very small between individuals.

The assumption that the parameters of the three models are independent of each other is a
simplification which could be relaxed in subsequent work. Potentially, all three could interact:
within-host dynamics are likely to affect both the infectiousness of a particular host and the dura-
tion of its infection, and particular mutations may modify the behaviour of the infection both
within and between hosts. The assumption that mutation is a neutral process is quite standard in
phylogenetics, but there is considerable scope for work which instead accounts for selection.

Treating the infection status of a host upon examination as part of the data, rather than as
background information, simplifies the mathematics surrounding infectious periods while
allowing multiple examinations of the same host at different times. It has other consequences.
On the positive side, it opens up the possibility of including the results of genuinely negative
examinations as data, in a way that does not involve adjusting individual prior probabilities for
infection times. Such a negative examination must be as near as possible to conclusive, how-
ever; the absence of clinical symptoms is certainly not sufficient. On the negative side, it means
that an algorithm to sample from the prior probability distribution must be able to vary the
number of tips in the tree, a very non-standard procedure which is not implemented currently
in BEAST or any other commonly-used package. In addition, the assumption that examination
does not disturb the infection will be in most cases a simplification; for many pathogens, posi-
tive examinations will result in clinical intervention which will shorten the time to noninfec-
tiousness. The alternative described here whereby hosts become noninfectious upon
examination avoids both these issues. If this too is regarded as unacceptable, the framework
here could be adjusted to model the time from infection to first examination, rather than from
infection to noninfectiousness.

As outlined in Methods, the parameters b and ψ determining between-host transmission
cannot be estimated unless the set of uninfected susceptibles can be described. This may not be
possible in many cases; in our H7N7 analysis we did not have such data and hence can only
estimate b0 and ψ0, the values that they would take if no susceptibles remained at the end of the
epidemic. One would expect transmission rates to be overestimated if there is no contribution
from hosts that were never infected. If it is not feasible to acquire this information and these
parameter are still of particular interest, then a method to estimate the contribution of the set
of uninfecteds is needed.

The WHCmethod was very successful in recapturing the epidemiological parameters of the
simulations where sequences were generated by a fast clock, in which case the level of genetic
diversity was such that there was little uncertainty in the phylogeny. Moving to a more realistic
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level of diversity decreased the accuracy of estimates considerably, and this illustrates the
importance of using existing information, be it genetic or epidemiological, when configuring
an analysis of this type. In particular, the results of the simulation analysis showed a clear bias
towards underestimating the infectious periods of hosts. The reason for this is that the kind of
within-host phylogenies that maximise the probability expressions Eqs (1) and (2) with an
increasing within-host population are those that have only short periods in which the tree has
more than one lineage, and where those short periods are close to the time of infection. The
probability each such phylogeny is therefore increased, all else being equal, by moving the
infection time towards the tips. This phenomenon seems similar to that which arises from the
specification of “calibration densities” [53] for the root height in a standard time-tree analysis
where that prior distribution conflicts with the root height that would be expected from the pri-
ors on the coalescent parameters, although as the WHC considers multiple coalescent trees
with variable tip dates, the situation is considerably more complicated. The interaction between
within- and between-host models is clearly complex and could motivate analytical work to find
variants in which the effective priors do not interfere with each other in this way.

In any case, the bias in estimation of infectious periods is overwhelmed by sufficient genetic
data (as in the fast clock dataset) and can be largely mitigated by placing a suitably informative
prior on the length of infectious periods. A clear implication of this is that genetic data should
not be relied upon to estimate infectious periods on their own if other information is available
to inform such a prior. (We note that this bias does not affect estimation of who infected who,
as the accuracy of transmission tree reconstruction did not significantly change when we
changed the prior on μinf.) In a similar vein, the lack of genetic diversity in the slow clock data-
set meant that in some cases the molecular clock rate itself could not be reliably estimated and
had to be fixed to its known value. In an actual epidemic situation it would seem perfectly rea-
sonable to do this, using a rate derived from older data, unless it was clear that the pathogen in
question was novel.

The concerns about the use of uninformative priors on infectious periods led us to use infor-
mative distributions taken from previous literature in the H7N7 analysis, and we continued the
practice from the simulations of using highly informative priors on latent periods as prelimi-
nary work had shown that these tended not to be well estimated using uninformative priors.
Some analysis results nevertheless deviated from what would be expected under the prior dis-
tributions; in particular the estimated mean infectious period during the high-risk period, and
the estimated latent period, were both considerably smaller than their prior expected values.
While it is possible that these underestimates are at least partly the result of the bias that was
noted in the simulations, the difference is considerably more extreme than anything observed
there. While our analysis agrees that the infectious period in the index case may have been
around two weeks, the genetic data seems to suggest, contrary to previous work [36, 37], this
was not the case for the remaining high-risk farms and that they may have been infectious for a
shorter time than the low-risk period farms. This suggests that the infection was present within
the index farm for a considerable time before transmission began to occur. The estimated
shorter periods in the other high-risk farms may be due to increased surveillance in nearby
facilities once the index infection was discovered. In the case of the latent period, the MCMC
never actually sampled a value of two days or more at all, which previous work had assumed a
priori as its length. While it is true that the assumption of a single latent period for all farms is a
considerable simplification, this still suggests that the phylogeny is simply unable to accommo-
date a situation where all latent periods are of two days or greater. This analysis also suggested
much greater variation in the lengths of infectious periods than had been previously estimated,
in the low-risk period at least. These three observations suggest possible insights that genetic
data can provide have not been apparent in traditional analyses.
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The other model parameters that are not well recovered in the slow clock simulation dataset
are those of the within-host coalescent process. This paper has concentrated on the between-
host model, and if theWHCmethod it is to be used to investigate within-host dynamics in detail
then further work is needed. It may be that the situation is improved if multiple sequences are
taken from the same host. The estimated parameters of the logistic growth function for H7N7
should certainly not be overinterpreted, for several reasons. First, it is a gross oversimplification
to assume that the infected population of each farm grew according to the same function, espe-
cially when the farms infected in this epidemic ranged from hobby farms to large agricultural
facilities. Secondly, the “effective number of infections” will differ from the true size of the
infected population due to the violation of assumptions made in the coalescent process. While
theWHC is designed to deal with violations of the assumption of homogeneous mixing of line-
ages that in fact infect separate hosts in an epidemic, lineages would not be expected to mix
freely within farms (or indeed host organisms) either. It has also been shown that if the popula-
tion in a coalescent model is treated as being made up of infected individuals, the relationship
between the effective population size and prevalence is not as straightforward as might be
assumed [17, 54]. Lastly, logistic growth may be too simplistic a model of the infected popula-
tion. It was picked here because it is clearly a better fit to growth within a farm than a constant
population size or exponential growth, but true dynamics are no doubt more complicated still.

Even the “slow clock” simulation dataset was intended to represent the full genome of influ-
enza A, one of the most fast-evolving pathogens that is likely to cause an outbreak of this type.
The resolution in the reconstruction of the transmission tree for the H7N7 outbreak could be
increased if sequences for the remaining segments of the genome were available; consistently
higher posterior probabilities for infectors were observed in the simulation analyses. As the
short timescale of an epidemic already places a limit on the amount of information that can be
gleaned from genetic data, we would suggest that resources be expended to sequence as much
of the pathogen genome as possible in a situation of this sort.

In conclusion, what we have demonstrated here is both a new phylogenetic method for the
analysis of genetic data taken from outbreaks and epidemics, and a new transmission tree
reconstruction method. For phylogeny reconstruction we have developed a population model
that is more realistic than the assumptions of freely-mixing lineages that are made in the most
widely-used current methods. For transmission tree reconstruction, we have advanced the
development of models that accommodate within-host diversity with a procedure that main-
tains the previously-noted correspondence between transmission trees and the annotation of
internal nodes in a phylogeny while exploring the full space of phylogenies, which is required
to allow access to the full space of transmission trees. As part of BEAST, it is publicly available
(as of version 1.8.2), and compatible with any other model of interest that is implemented in
that package. We hope that it will prove useful in future for researchers working on genetic
analysis of outbreaks.

Supporting Information
S1 Fig. The effects of fixing the within-host model parameters on the reconstruction of the
transmission tree. Each violin plot represents the density of a statistic over the 25 simulations;
results come from analyses where the within-host model parameters were estimated and fixed
for the fast and slow clock datasets. (A) posterior median of mean bias in estimation of infection
dates. (B) posterior median of mean error in estimation of infection dates. (C) Posterior median
proportion of hosts whose infector is correctly identified. (D) Proportion of hosts whose infector
is correctly identified in the maximum parent credibility (MPC) transmission tree.
(EPS)
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S2 Fig. Maximum clade credibility phylogentic tree for the H7N7 outbreak. This is the
actual sampled tree with highest clade credibility from the posterior set; branch lengths have
not been adjusted. Branches are coloured by farm; colour changes along branches reflect infec-
tion events.
(EPS)

S3 Fig. Reconstruction of the change in effective case reproduction number over the H7N7
epidemic. The black line represents the posterior median value of the mean number of second-
ary cases caused by a case infected during each day, the blue lines the upper and lower bounds
of the 95% highest posterior density interval.
(EPS)

S1 Text. Supplementary methods. Full details of the correspondence between transmission
trees and partitions of the nodes of a phylogeny, and of the MCMC proposals.
(PDF)

S2 Text. Supplementary methods 2. Derivation of the probability

pðN ;Tinf ;Ttrans;Tendjb; �; r; l; LÞ.
(PDF)

S1 Data. BEAST XML files for simulated data. BEAST input file for all WHC analyses of all
simulated datasets.
(ZIP)
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