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ABSTRACT Pigeon-adapted strains of Salmonella enterica serovar Typhimurium var.
Copenhagen phage types 2 and 99 obtained from the provinces of Alberta, British
Columbia, and Ontario, Canada, were analyzed using whole-genome sequencing. All
isolates contained the Salmonella virulence plasmid despite the low pathogenicity of
this lineage in their avian host.

The prevalence of foodborne salmonellosis in North America has remained high
despite improved diagnostic tools and many years of investments in food testing.

Efforts to disrupt the dissemination of Salmonella spp. from their sources into the food
chain have met with limited success, and often, the source of contamination is
unknown. Cases of foodborne salmonellosis of bird origin have been well documented
in the literature (1–3), but a quantitative assessment of risk posed by birds in the spread
of foodborne salmonellosis in Canada or elsewhere is lacking. Pigeons carry host-
adapted strains of Salmonella enterica serovar Typhimurium var. Copenhagen phage
type 2 (PT2) and PT99, often without showing clinical signs (1, 4). Consequently, these
host-adapted Salmonella strains are considered an insignificant public health risk (4).
However, Salmonella enterica serovar Typhimurium PT2 has been isolated from human
clinical cases in Canada (5), and experimental infection with PT99 can result in death in
pigeons (6). A previous evaluation of a single genome of Salmonella Typhimurium PT99
did not reveal any distinguishing features from other PTs infecting other species (7).
Thus, host adaptation may well be the consequence of complex interactions between
the organism and its host and could be overwhelmed by exposure to large doses (6).
Genome analysis of multiple isolates of this Salmonella lineage should help identify genetic
attributes that contribute to host adaptations and virulence factors that could help evaluate
the potential risk to food safety if introduced into the food chain. To that end, we have
sequenced the genomes of 13 isolates of Salmonella Typhimurium from dead pigeons
submitted as part of wild bird surveillance programs in the provinces of Alberta, British
Columbia, and Ontario, Canada. Nine isolates belonged to PT2, while the remaining four
were designated PT46, PT99, PT193, and atypical (Table 1).

We performed Illumina MiSeq whole-genome sequencing on DNA libraries con-
structed with a TruSeq kit and used the version 3 sequencing kit, according to the
manufacturer’s instructions (Illumina, San Diego, CA). Quality trimming and filtering of
Illumina reads were performed using the BBTools software suite (http://jgi.doe.gov/
data-and-tools/bbtools/). Assembly of Illumina paired-end reads was performed with
SPAdes version 3.11.1 (8) and polished with Pilon version 1.22 (9) using Unicycler version
0.4.4 (10) (https://github.com/rrwick/Unicycler). Annotation of the final assemblies was
done using the National Center for Biotechnology Information Prokaryotic Genome Anno-
tation Pipeline (11), and the presence of antimicrobial resistance (AMR) genes was inves-
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tigated with ResFinder (12). The estimated mean genome size and standard deviation were
4,859,860 � 17,288 bp, and the genomes contained an average of 4,580 � 25 coding
sequences and 72 � 1 transfer RNAs. The large virulence plasmid of Salmonella spp. was
demonstrated in all isolates, as confirmed by reference assembly with a published plasmid
sequence (strain 22495, accession number CP017618 [13]). AMR genes were not found in
any of the isolates using ResFinder. These genomes should allow for a detailed comparison
of the attributes of Salmonella Typhimurium isolates from pigeons with those of other wild
birds and with isolates contaminating the food chain.

Accession number(s). The nucleotide sequences for the chromosome and plasmids
have been deposited at DDBJ/ENA/GenBank under BioProject number PRJNA434296.
GenBank accession numbers are listed in Table 1.
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TABLE 1 Salmonella enterica serovar Typhimurium var. Copenhagen of pigeon origin

Isolate Provincea Phage type Accession no.

OLF-FSR1-ST-44 BC 2 PYUR00000000
OLF-FSR1-STCopenhagen-46 ON Atypical PYUS00000000
OLF-FSR1-STCopenhagen-47 BC 2 PYUT00000000
OLF-FSR1-STCopenhagen-48 BC 2 PYUU00000000
OLF-FSR1-STCopenhagen-49 BC 193 PYUV00000000
OLF-FSR1-STCopenhagen-50 ON 2 PYUW00000000
OLF-FSR1-STCopenhagen-51 ON 2 PYUX00000000
OLF-FSR1-STCopenhagen-52 ON 2 PYUY00000000
OLF-FSR1-STCopenhagen-53 ON 2 PYUZ00000000
OLF-FSR1-STCopenhagen-55 BC 2 PYVA00000000
OLF-FSR1-STCopenhagen-56 BC 46 PYVB00000000
OLF-FSR1-STCopenhagen-57 ON 2 PYVC00000000
OLF-FSR1-STCopenhagen-SA20132913 AB 99 PYVD00000000
aBC, British Columbia; ON, Ontario; AB, Alberta.
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