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Abstract: Obesity is a worrisomely escalating public health problem globally and one of the leading
causes of morbidity and mortality from noncommunicable disease. The epidemiological link between
obesity and a broad spectrum of cardiometabolic disorders has been well documented; however, the
underlying pathophysiological mechanisms are only partially understood, and effective treatment
options remain scarce. Given its critical role in glucose metabolism, skeletal muscle has increasingly
become a focus of attention in understanding the mechanisms of impaired insulin function in obesity
and the associated metabolic sequelae. We examined the current evidence on the relationship between
microvascular dysfunction and insulin resistance in obesity. A growing body of evidence suggest an
intimate and reciprocal relationship between skeletal muscle microvascular and glucometabolic phys-
iology. The obesity phenotype is characterized by structural and functional changes in the skeletal
muscle microcirculation which contribute to insulin dysfunction and disturbed glucose homeostasis.
Several interconnected etiologic molecular mechanisms have been suggested, including endothelial
dysfunction by several factors, extracellular matrix remodelling, and induction of oxidative stress
and the immunoinflammatory phenotype. We further correlated currently available pharmacological
agents that have deductive therapeutic relevance to the explored pathophysiological mechanisms,
highlighting a potential clinical perspective in obesity treatment.
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1. Introduction

Obesity (body mass index (BMI) ≥ 30.0 kg/m2) [1] is an escalating global health
challenge affecting 13% of the world’s population, according to recent World Health
Organization estimates [2]. Over the past five decades, the global prevalence of obesity
has risen to pandemic proportions [3,4]. The rising global trend of obesity is associated
with the increasing prevalence of diabetes mellitus (DM) type 2, hypertension and other
cardiovascular morbidities, liver disease, and malignancies [5,6]. Much of the obesity-
related mortality is due to cardiovascular disease, but although the epidemiological links
between obesity and a broad spectrum of cardiometabolic disorders are clearly recognised,
the specific pathophysiological mechanisms are not yet fully understood [6,7].

Skeletal muscle accounts for 40–50% of the total body mass and structurally consists of
multiple fascicles or bundles of different physiochemically and metabolically distinct fibre
types, classified based on the expression of different myosin heavy-chain isoforms [8,9].
The skeletal muscle represents the largest endocrine tissue involved in glucose metabolism,
mediating ~80% of insulin-stimulated glucose uptake under euglycemic hyperinsulinaemic
conditions [10]. Decreased sensitivity for insulin-mediated glucose uptake in skeletal mus-
cle is a core pathophysiological denominator in obesity-related alterations in metabolic
phenotype [11]. However, the exact mechanisms of such attenuated biological response are
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not fully understood. Skeletal muscle microvascular and metabolic physiology and patho-
physiology are closely linked, and a growing body of evidence has confirmed the critical role
of microvascular dysfunction (inadequate microvascular response to physiologic metabolic
demand or challenge) in the mediation of obesity-related insulin resistance [12–15]. Several
pathophysiological mechanisms in obesity, e.g., oxidative stress, alterations in adipokine
secretion, decreased adiponectin levels, increased inflammatory mediators, and increased
activation of the renin–angiotensin system, may contribute to impaired microvascular dilata-
tion and insulin-mediated capillary recruitment, leading to suboptimal glucose and insulin
delivery to the skeletal muscle, and subsequent impaired glucose homeostasis [16–20].
Previously, microvascular dysfunction was merely regarded as a diabetic sequela, mani-
festing as classical microangiopathic complications such as retinopathy, nephropathy, and
neuropathy. Current evidence, however, demonstrates that microvascular dysfunction and
hyperglycaemia exhibit a bidirectional relationship: microvascular dysfunction antedates
and mediates hyperglycaemia in insulin-resistant states, while being a known consequence
of prediabetic and diabetic levels of hyperglycaemia [21,22]. It has equally been shown that
microvascular and macrovascular complications share similar risk factors and reciprocal
pathophysiological mechanisms [23].

In chronic obesity, microvascular dysfunction has been shown to mediate impaired
insulin sensitivity and β-cell dysfunction via multifactorial mechanisms, providing scaf-
folding for subsequent hyperglycaemic sequelae and complications, including multiorgan
microangiopathy [13,21,24,25]. Therefore, targeting microvascular dysfunction in this vi-
cious cycle may provide an important pharmacotherapeutic window for preventing or
abrogating obesity-related insulin resistance and its ramifications. Recent clinical evidence
shows that optimizing glycaemic control improved microvascular function in early but
not advanced phase of DM type 2, suggesting a strong benefit of initiating early aggres-
sive interventions to prevent or attenuate the progression of microvascular complications
and insulin-resistant phenotypes [26]. The aim of this paper was to review the general
background of the relationship between skeletal muscle microvascular and metabolic phys-
iology, as a point of departure to explore the etiological role of microvascular dysfunction
in obesity-related insulin resistance. Furthermore, it also highlights the therapeutic im-
plications of the elucidated pathophysiological mechanisms and correlates the currently
available or potential pharmacological agents that bear important therapeutic relevance.

2. Vascular and Metabolic Physiology of Skeletal Muscle Microcirculation
2.1. Anatomical Background

Microcirculation includes all vessels less than 150 µm in diameter, namely capillar-
ies, venules, and third- or fourth-order arterioles [27]. However, this definition excludes
larger arterioles with important microcirculatory function. A more inclusive definition
based on vessel physiology considers all vessels that myogenically alter the luminal diam-
eter in response to increased pressure as part of the microvasculature [14,27]. Arterioles
consist of a layer of smooth muscle cells surrounding a layer of endothelial cells, while
capillaries consist of a monolayer of squamous endothelial cells without a muscle layer.
The microcirculation represents much of the total vascular surface area and controls the
delivery of oxygen and nutrients to tissues by regulating capillary vascular resistance and
trans-endothelial exchange of blood solutes.

Although the skeletal muscle’s microvascular histological architecture varies according
to muscle typology and location, the basic gross anatomical characteristics are shared. One
or more feed arteries in the epimysium ramify into an intertwined network of arterioles
in the perimysium, which then branch at regular intervals into transverse arterioles that
pierce the endomysium and asymmetrically divide into terminal arterioles that give rise
to capillary networks running parallel to the muscle fibres. The venules arise from the
contralateral loop of the capillary arcade and ramify progressively into larger venules in
tandem with the arteriolar branching. Each muscle fibre is perfused by multiple terminal
arterioles and capillary units along its length, and the loop of capillaries supplied by
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one terminal arteriole and drained by a venule constitutes the microvascular unit which
represents the basic functional unit of skeletal muscle microcirculation [28].

2.2. The Microvascular Endothelium Is the Key Regulator of Vascular Homeostasis

The regulation of microvascular function is controlled by the balance in the activation
of the sympathetic and parasympathetic nervous system, as well as by local metabolic and
myogenic autoregulatory mechanisms. The microvascular endothelium plays multifaceted
biological functions, including serving as a semipermeable physiological barrier and com-
ponent of innate immunity, as well as regulation of vascular tone, mechano-transduction,
procoagulant/anticoagulant balance, endothelial repair, and angiogenesis, among other
functions [29]. It produces both vasodilators/anti-thrombogenic factors and vasoconstric-
tors/prothrombotic factors. The former include nitric oxide (NO), prostacyclin, bradykinin,
and endothelium-derived hyperpolarizing factor, while the latter consists of endothelin-1
(ET-1), angiotensin II (Ang II), thromboxane A2 (TXA2), prostacyclin H2, and superox-
ide [30]. These vasoactive molecules may act in autocrine, paracrine, or endocrine fashion
to regulate vessel tone and diameter, proliferation of vascular smooth muscle cells (VSMC),
and activation and adhesion of platelets and leukocytes.

NO is the most characterized endothelium-derived relaxing factor and is synthe-
sized by the calcium-calmodulin-dependent endothelial nitric oxide synthase (eNOS) from
L-arginine substrate, with tetrahydrobiopterin (BH4) as co-factor. Various mechanisms
of eNOS activation have been identified, including phosphorylation, glutathionylation,
S-nitrosylation, and N-acetyl glycosylation [31]. Insulin induces insulin receptor substrates
(IRS) 1 and 2 signalling, which activates the phosphatidylinositol 3-kinase (PI3K) and
protein kinase B (Akt), to phosphorylate eNOS at Ser1177 (in humans), catalysing the con-
version of L-arginine to L-citrulline and NO [32]. Several cofactors, including calmodulin,
flavinmononucleotide, flavin adenine dinucleotide, and nicotinamide adenine dinucleotide
phosphate, are involved in this reaction [33]. NO diffuses to the vascular smooth muscle
cells, where it mediates vasodilatation by activating guanylate cyclase to catalyse increased
cyclic guanosine monophosphate (cGMP) synthesis [34].

2.3. Role of Insulin in the Regulation of Microvascular Tone

Vascular smooth muscle tone is maintained by the dynamic balance of the endothelium-
derived relaxing and contracting factors. This vasomotor balance may shift in response
to both mechanical factors such as enhanced shear stress, and endocrine factors such as
insulin. Insulin is a potent hormone produced by the pancreatic β-cell of the Islets of
Langerhans, which exerts a wide range of anabolic effects, including promoting glucose
uptake in skeletal muscles and adipocytes, glycogen synthesis in skeletal muscles, and
triacylglycerol synthesis in adipocytes and suppressing glucose production in hepatocytes
and lipolysis in adipocytes [35].

In healthy vasculature, insulin predominantly mediates microvascular dilatation by
activating PI3K with consequent eNOS activation and NO production, although it can
also mediate vasoconstriction by increasing ET-1 and vasoconstrictor eicosanoids via
the intracellular mitogen-activated protein kinase (MAPK) signalling pathway and the
extracellular signal-regulated kinase-1/2 (ERK-1/2) pathway [30,36,37]. Insulin signal
transduction via the PI3K/Akt pathway also modulates vascular immuno-inflammation by
increasing vascular endothelial growth factor (VEGF) and hemeoxygenase-1 expression
and decreasing vascular cell adhesion molecule 1(VCAM-1) expression [38].

The ET-1/NO balance is maintained in favour of insulin-stimulated vasodilatation,
which enhances downstream capillary perfusion and trans-endothelial transport of insulin.
Direct visualisation of the trans-endothelial transport of fluorescent insulin shows that the
movement to the skeletal muscle interstitium occurs by a fluid-phase transport mecha-
nism that is receptor-dependent and regulated by the balance of oncotic and hydrostatic
pressures [39]. The ability of insulin to dose- and time-dependently increase total skeletal
muscle blood flow and consequent insulin-mediated glucose uptake via dilatation of re-
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sistance vessels was first reported by Baron and colleagues about three decades ago and
demonstrates the link between the vascular and metabolic function of insulin [40–42].

2.4. Functional Capillary Recruitment

Furthermore, it has also been established that without increasing total blood flow,
insulin can selectively redirect microvascular circulation in favour of perfusion of nutritive
capillary beds by decreasing precapillary arteriolar tone or altering arteriolar vasomotor
response, facilitating glucose delivery and uptake in skeletal muscle [43,44]. During physio-
logic hyperinsulinaemia or glucose challenge, contrast-enhanced ultrasound has been used
to demonstrate in vivo that capillary recruitment is an early forerunner phenomenon to
muscle glucose uptake, ensuring a maximal metabolic effect of insulin [45]. The resistance
arterioles that regulate total blood flux were shown to be less insulin-sensitive than the
precapillary arterioles mediating microvascular recruitment [44]. This functional capillary
recruitment which accounts for about 40% of insulin-mediated muscle glucose uptake
is dependent on the activation of endothelial PI3K pathway including autophosphoryla-
tion of the insulin receptor, phosphorylation of tyrosine residues of the IRS-1 and 2, and
phosphorylation of phosphoinositide-dependent kinase 1 (PDK-1) and Akt, leading to
the translocation of glucose transporter-4 (GLUT-4) to the cell membrane, which is the
rate-limiting process for skeletal muscles’ insulin-mediated glucose uptake [14,15,46].

2.5. Assessment of Skeletal Muscle Microvascular Structure and Function

Microvasculature research remains relatively underdeveloped, largely on account the
limitations in techniques for morphological and functional studies. Accordingly, it is hoped
that our understanding of the physiological mechanisms of microvascular function will
continue to evolve as new study techniques emerge. Currently, microvascular function in
skeletal muscles can be measured by plethysmography, contrast-enhanced ultrasonography,
intravital microscopy, plasma concentration of several endothelial biomarkers, and other
surrogate clinical markers such as urinary albumin excretion [36,44,45,47–51]. Addition-
ally, application of various stimuli including local ischaemia, temperature changes, and
vasoactive agents such as acetylcholine, adenosine, serotonin, bradykinin, and sodium
nitroprusside, can be used to study microvascular response. Histological assessment of
skeletal muscle microvasculature is conventionally accomplished by two-dimensional (2D)
analyses of tissue cross-sections [52,53], although recently, a three-dimensional (3D) analytic
technique that overcomes the usual technical biases and inconsistencies associated with the
traditional 2D approach has been proposed [54–56].

3. Skeletal Muscle Microvascular Dysfunction in Obesity

Obesity is associated with a broad spectrum of metabolic derangements including
hyperglycaemia, insulin resistance, and a proinflammatory milieu, all of which contribute
to vascular endothelial vasodilator and fibrinolytic dysfunction and extracellular matrix
remodelling [47]. Insulin resistance precedes the development of hyperglycaemia and DM
type 2 and results in compensatory hyperinsulinaemia, which contributes to increased
inflammation and oxidative stress. Elevated plasma free fatty acids (FFAs) is considered an
important etiologic factor linking insulin resistance, oxidative stress, and inflammation with
obesity and other cardiometabolic disorders, and impaired insulin-mediated glucose uptake
correlates with circulating FFA levels [57,58]. The increased circulating free fatty acids in
obesity probably triggers the early phase of microvascular dysfunction via downregulation
of the of the endothelial AMPK-PI3K-Akt-eNOS pathway [59], while other factors such
as alterations in adipokines (e.g., leptins, adiponectin, monocyte chemotactic protein-1,
and retinol binding protein 4) and inflammatory cytokines (e.g., interleukin-6 (IL-6), and
tumour necrosis factor-alpha (TNFα)) released from both visceral and perivascular adipose
tissue, help to drive the progression of the dysfunction (Figure 1) [60–62]. Besides visceral
or extracellular lipids, accumulation of saturated lipid droplets, mainly triglycerides, in
skeletal muscle fibres has been shown to have a pathogenic role in insulin resistance [63].
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It was recently demonstrated that such intramyocellular lipid accumulation exhibit both
muscle- and fibre-type specificity in obese mice, meaning that similar muscle fibres in
different muscles may show different pattern of lipid accumulation [9]. Moreover, it was
also shown that capillary network changes in obesity are muscle-fibre-specific, being more
pronounced around small and more oxidative muscle fibres than around large fibres [56].
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Figure 1. Pathophysiological mechanisms linking skeletal muscle microvascular dysfunction with glu-
cometabolic disorder in obesity and potential therapeutic agents. ACEi, Angiotensin-Converting En-
zyme inhibitors; AMPK 5’-, Adenosine Monophosphate-activated Protein Kinase; ARBs, Angiotensin
Receptor Blockers; Akt, Protein Kinase B; DPP4i, Dipeptidyl-Peptidase-4 inhibitors; EC, Endothelial
Cell; ECM, Extracellular Matrix; eNOS, endothelial Nitric Oxide Synthase; ERK, Extracellular-signal-
regulated Kinase; ET-1, Endothelin 1; FFA, Free Fatty Acids; GLP-1RA, Glucagon-like Peptide-1
Receptor Agonists; GLUT-4, Glucose Transporter 4; HMGB 1, High Mobility Group Box chromoso-
mal protein 1; IRS, Insulin Receptor Substrate; ICAM1, Intercellular Adhesion Molecule 1; IL-1β,
Interleukin-1Beta; IL-6, Interleukin-6; MAPK, Mitogen-Activated Protein Kinase; miRNAs, Micro
RNAs; mTOR, Mammalian Target of Rapamycin; MVD, Microvascular Dysfunction; NF-κB, Nuclear
Factor-Kappa B; NO, Nitric Oxide; NOX, Nicotinamide Adenine Dinucleotide Phosphate (NADPH)
Oxidase; PDE-5i, Phosphodiesterase-5 inhibitors; PI3K, Phosphatidylinositol 3 Kinase; RAAS, Renin-
Angiotensin-Aldosterone System; ROS, Reactive Oxygen Species; RAGE, Receptor for Advanced
Glycation End products; SGLT2i, Sodium Glucose co-Transporter 2 inhibitors; TNF-α, Tumour Necro-
sis Factor-alpha; UA, Uric Acid; VCAM1, Vascular Cell Adhesion Molecule 1; VSMC, Vascular
Smooth Muscle Cells.

3.1. Skeletal Muscle Microvascular Functional and Structural Dynamics in Obesity

Skeletal muscle microvascular perfusion, blood flow dynamics, and insulin perme-
ability are critical determinants of insulin action in skeletal muscles and have become a
compelling focus of investigation in studying disorders of glucose metabolism. While some
studies have described relatively preserved skeletal muscle blood flow in obese young adult
humans [64–66], several other investigations in obese humans and animal models suggest
a blunted vascular conductance that is independent of age and vascular bed [24,67–71]. In
a systematic review and meta-analysis probing the association between BMI and retinal
vascular calibre, a surrogate marker of microvascular disease, Boillot et al. noted a narrower
retinal arteriolar and wider venular calibres in both adults and children with increasing
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BMI, affirming that the biological mechanisms of microvascular dysfunction are similar
across organs and independent of age [16].

Obesity is associated with decreased endothelial NO production, decreased insulin-
stimulated vasomotion, and reduced capillary density, leading to impaired insulin-mediated
capillary recruitment and microvascular dilatation [24]. During an insulin clamp, impaired
capillary insulin delivery in humans with prediabetes and mouse models of insulin re-
sistance results in increased insulin concentration gradient from plasma to the interstitial
fluid [51,72,73]. Skeletal muscle perfusion is determined by changes in the flux rate through
individual capillaries and the number of actively perfused capillaries. The capacity of
vasodilators such as the phosphodiesterase (PDE5) inhibitor sildenafil to improve vascular
function and prevent diet-induced insulin resistance in obese mice [74,75] provides indirect
evidence that impaired capillary blood flow is an important mechanism of the develop-
ment of obesity-related insulin resistance and the progression of prediabetes to diabetes.
Conversely, Chadderdon et al. noted that in the early phase of high-fat diet-induced obesity
in rhesus macaques, an increased basal and glucose-mediated capillary blood volume via
endothelial-derived vasodilator pathways, may represent a compensatory mechanism for
insulin resistance [76].

Besides changes in microvascular blood flow dynamics, structural changes in capil-
laries may contribute to insulin resistance [56]. In obesity, actual reduction of microvessel
per given tissue volume, or structural capillary regression, has been suggested to be bipha-
sic: an early phase characterized by increased leukocyte adhesion/rolling, oxidant stress,
tumour necrosis factor-alpha (TNF-α) levels, and vascular TXA2 and a later phase medi-
ated by impaired NO-bioavailability [71,77]. Several mechanisms including endothelial
dysfunction, oxidative stress, apoptosis, and other antiangiogenic factors are thought to
underlie capillary regression. Capillary rarefaction in skeletal muscle vascular endothelial
growth factor (VEGF)-knockout mice was associated with reduced skeletal muscle insulin-
stimulated glucose uptake and glucose tolerance [78]. In contrast to the suggestions that
capillary regression contributes to the pathogenesis of skeletal muscle insulin resistance,
increased skeletal muscle capillarisation has been demonstrated both in a mouse model of
early-stage obesity with insulin resistance [56,79] and in middle-aged men with impaired
glucose tolerance precedent to the development of DM type 2 [80]. Thus, the precise role of
skeletal muscle capillary rarefaction in the pathophysiology of insulin resistance remains a
subject for continued investigation.

Remarkably, sexual dimorphism in skeletal muscle functional and metabolic proper-
ties have been well-described in animal models in terms of fibre typology, microvascular
architecture, and transcriptomics profile, reflecting the genomic and non-genomic influ-
ences of reproductive hormones and sex-specific gene expression [81,82]. In obesity, sex
differences have been reported in the interplay of skeletal muscle microvascular dysfunc-
tion and metabolic dysregulation. High-fat-diet-induced obesity in male C57BL/6 mice
was associated with impaired vasoconstriction in second-order arterioles compared to
male control, whereas diet-induced obesity in the female model resulted in significant
alterations in both arteriolar vasodilation and vasoconstrictor responses compared to a
female control [83].

3.2. Endothelial Dysfunction Is the Key Driver of Microvascular Dysfunction in Obesity

As already noted, the vascular endothelium plays a critical role in the regulation of
vascular permeability and tone, and endothelial vasodilator dysfunction in the peripheral
microcirculation is a hallmark of chronic obesity and insulin resistance and precedes
the development of DM type 2 [18,24,68–70]. Using peripheral arterial tonometry and
laser Doppler flowmetry, van der Heijden et al. recently demonstrated that higher BMI
was significantly associated with impaired endothelial function even after adjustment for
confounding risk factors such as diabetes mellitus, hypertension, hypercholesterolemia,
and smoking [18]. Endothelial cell dysfunction results in impaired NO bioavailability,
and enhanced platelet activation, smooth muscle cell proliferation, and adhesion molecule
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expression [17,84–87]. In addition, obesity is associated with ultrastructural alterations in
the skeletal muscle capillary endothelium, which impair trans-endothelial insulin transport,
a critical step in skeletal muscle glucose uptake [51].

Insulin-stimulated NO-dependent skeletal muscle microvascular dilatation involves
several mechanisms including activation of the insulin receptor, IRS1 and 2, and the
PI3K-Akt-eNOS pathway [32,88]. Decreased expression of IRS-1 and 2 and decreased
phosphorylation of Akt and eNOS are key hallmarks of vascular insulin resistance [37,48].
Attenuation of insulin-induced capillary recruitment and consequent reduction in glucose
uptake by skeletal muscle was demonstrated in tissue-specific knockout mice lacking
endothelial IRS-2 [73]. In obesity, insulin-mediated vasoconstriction via the activation
of the ERK1/2 pathway becomes dominant, as its activation of the PI3K pathway in
endothelial cells is selectively inhibited, consequently blocking downstream capillary
recruitment [36,61].

Increased circulating free fatty acids seen in obesity mediates endothelial dysfunction
through several mechanisms including decreased tyrosine phosphorylation of IRS-1/2,
impaired phosphorylation of eNOS via inhibition of the PI3K/Akt pathway, impaired ATP-
induced mobilization, and influx of calcium in endothelial cells, increased ROS production
via protein kinase C (PKC)-dependent activation of NADPH oxidase and consequent
stimulation of inflammation via NF-κB activation [57,58,62]. Additionally, the role of in-
flammasome activation in free-fatty-acid-induced endothelial injury in obesity has been
increasingly demonstrated [89–91]. It was shown that palmitate markedly induces Nlrp3
inflammasome complex formation in microvascular endothelial cells, leading to down-
regulation of inter-endothelial tight junction proteins ZO-1/ZO-2, which correlates with
increased paracellular endothelial permeability [91]. Additionally, chronic exposure to
palmitate has been shown to impair autophagic turnover by decreasing lysosomal acidifi-
cation via suppressed mitochondrial bioenergetics and cellular ATP levels [92]. Autophagy
plays a critical role in the maintenance of endothelial NO bioavailability and regulation
of oxido-inflammatory balance, and defective autophagic flux contributes to endothelial
dysfunction [93].

Obesity and other insulin-resistant phenotypes are associated with hyperuricaemia [94–96].
High uric acid concentration has been suggested to induce endothelial dysfunction via
the interaction of high-mobility group box chromosomal protein 1 with the receptor for
advanced glycation end products (HMGB1/RAGE pathway). In human umbilical vein, uric
acid was shown to inhibit eNOS expression and NO production by increasing the intracel-
lular expression and extracellular secretion of HMGB1, enhancing the expression of RAGE,
activating NF-κB, and upregulating the levels of adhesion molecules and inflammatory
cytokines including ICAM-1, VCAM-1, TNF-α, and IL-6 [97].

Recent studies have indicated that the upregulation of arginase, a dual isoform man-
ganese metalloenzyme of the urea cycle, represents another important mechanism of
endothelial dysfunction. Arginase hydrolyses L-arginine to urea and L-ornithine, and
because L-arginine is a common substrate of eNOS and arginase, increased expression or
activity of the latter reduces eNOS-dependent NO synthesis in the vascular endothelium via
substrate competition [98–100]. An enhanced vascular activity and expression of arginase
has been demonstrated in obesity [101–103]; however, the contribution of this to microvas-
cular endothelial dysfunction is attenuated by aging due to the overriding modulation by
the high levels of vascular reactive oxygen species (ROS) from age-dependent increased
activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [103].

The enhanced activation of the renin–angiotensin–aldosterone system in obesity fur-
ther contributes to vascular insulin resistance and endothelial dysfunction. Both Ang II
and aldosterone induce degradation of IRS-1; the former via the proto-oncogene tyrosine-
protein kinase Src, and the latter via a mineralocorticoid receptor-, ROS-, and Src-dependent
mechanism [104,105]. Aldosterone promotes insulin resistance via increased insulin-like
growth factor (IGF)-1 receptor expression and hybridization with IRS-1, in addition to medi-
ating Ang II-stimulated ERK1/2 phosphorylation in vascular smooth muscle cells [106,107].
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Furthermore, more recent evidence suggests that increased expression of Ang II and the
activation of mineralocorticoid receptor by aldosterone may activate the mammalian target
of rapamycin (mTOR)–S6K1 signal transduction pathway and promote insulin resistance
by inducing phosphorylation of serine residues of IRS [108].

Vascular endothelial dysfunction related to glucometabolic dysregulation may also
result from enhanced expression of several endothelial miRNAs (short, single-stranded,
non-coding RNA molecules) which mediate gene-regulatory mechanisms in angiogenesis,
vascular repair, and inflammation. Obesity has been associated with enhanced expression of
miR-24, miR-155, miR-15b, miR-16, miR-221/222, and miR-765, which mediate endothelial
dysfunction via direct inhibition of eNOS translation [109,110].

Furthermore, gut microbiota and their metabolites have been suggested to play an im-
portant role in vascular homeostasis through different mechanisms, notably by influencing
endothelial NO production and bioavailability and the expression of immunoinflammatory
mediators [111–114]. It was shown that gut microbiota can impair endothelium-dependent
vasorelaxation by remotely downregulating Sirtuin1 (Sirt 1) and stimulating the expression
of vascular miRNA-204, while broad-spectrum antibiotic administration was shown to
reverse high-fat diet induced endothelial dysfunction mediated via the microRNA–Sirt
1 nexus [115]. A study of obese children and adolescents noted a significant positive as-
sociation between endothelial dysfunction markers such as ICAM-1 and VCAM-1 and
changes in gut microbiota [116]. Similarly, a cross-sectional study of aging overweight
and obese individuals found that independently of BMI, gut microbiota phenotypes corre-
lated positively with vascular endothelial dysfunction as assessed by reactive hyperaemia
index [117].

3.3. Endothelial and Perivascular Adipose Tissue Inflammatory Mediators

The endothelium and perivascular adipose tissue both secrete vasoactive substances
and share important common pathways in the regulation of vascular function (NO,
prostaglandins, K+ channels, hydrogen peroxide, and hydrogen sulphide) [33]. How-
ever, while the role of the endothelium in the regulation of vascular tone has been well
established, the mechanisms by which perivascular adipose tissue contributes to microvas-
cular function and dysfunction remains an active area of investigation. Obesity-related
chronic inflammatory phenotype is characterized by release of an array of proinflam-
matory mediators including cytokines (e.g., interleukin-6 (IL-6), interleukin 1β, tumour
necrosis factor-α (TNF-α)), and adipokines (e.g., leptins) [118], which promote insulin
resistance through alterations in the extracellular matrix, capillary network architecture,
and glucose uptake mechanisms. TNF-α regulates insulin-mediated cell signalling, and
its increased expression may decrease both insulin-mediated capillary recruitment and
glucose uptake in the skeletal muscle by activating the intracellular c-Jun N-terminal kinase
(JNK), which attenuates the PI3K pathway and promotes vasoconstriction by activating
endothelial ERK-1/2 phosphorylation [119]. Both TNF-α and IL-6 derived from periph-
eral vascular tissue can stimulate ROS production via activation of NAD(P)H oxidase.
Additionally, both inflammatory cytokines can also enhance ROS generation by activat-
ing nuclear transcription factor-kappa B (NF-κB) and xanthine oxidase, respectively. It
has been further suggested that TNF-α, IL-6, and other inflammatory mediators reduce
the production of adiponectin [120,121], an anti-inflammatory adipokine which promotes
insulin-mediated vasodilatation through increased eNOS phosphorylation [122]. In concert,
these pro-inflammatory mechanisms result in the activation of macrophages, migration,
and proliferation of VSMCs, induction of endothelial adhesion molecules such as intercel-
lular adhesion molecule-1 (ICAM1), VCAM-1 and E-selectin, and increased synthesis of
endothelin [16,17,123,124]. This suggests that perivascular adipose tissue is an important
regulator of vascular homeostasis, and that induction of inflammation represents a pivotal
mechanism by which pathological perivascular adipose tissue promotes deleterious effect
on the microvasculature [125].
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3.4. Dysregulation of Redox Homeostasis

The production of ROS in the mitochondria plays a key role in regulating the cellu-
lar redox status. Superoxide is the proximal mitochondrial ROS and rapidly undergoes
dismutation to yield hydrogen peroxide, which modulates retrograde redox signalling
from the organelle to the cytosol and nucleus. Overproduction of ROS in the mitochondria
(superoxide and hydrogen peroxide) induces oxidative damage to mitochondrial proteins,
membranes, and DNA, consequently impairing mitochondrial ATP synthesis as well as
mitochondrial pathways for fatty acid, urea, and amino acid metabolism [126]. Impaired
mitochondrial oxidative phosphorylation tilts the cellular metabolism towards greater
reliance on glycolytic ATP production with consequent lactic acid accumulation. It has been
suggested that endothelial dysfunction and vascular insulin resistance may result from
the impairment of cellular adaptive mechanisms against mitochondrial dysfunction and
oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related
factor 2 (Nrf2) and the antioxidant response element (ARE), which modulate cellular antiox-
idant activity [127,128]. Insulin resistance and persistent hyperglycaemia further exacerbate
redox dysregulation through a positive feedback loop [129].

The balance between the vaso-protective NO and the vaso-deleterious ROS is dis-
rupted in the setting of hyperglycaemia and insulin resistance [130]. Hyperglycaemia
alters the endothelial redox environment by inducing increased ROS generation via several
mechanisms, including PKC-dependent activation of vascular NAD(P)H oxidase [62,131].
Skeletal muscles express three isoforms of NAD(P)H oxidases (NOX1, NOX2, and NOX4),
which are critically important in the modulation of redox homeostasis [132]. NOX2 gen-
erates most of the skeletal muscle ROS during contractions and is involved in insulin
signalling and glucose transport [133,134]. In the setting of hyperglycaemia and hyperin-
sulinaemia, endothelial NOX2 activation promotes vasoconstriction by altering the balance
between MAPK-dependent vasoconstriction and PI3K/Akt-dependent vasodilation [133].

In addition to uncoupling eNOS and impairing endothelium-dependent vasodilation,
excess ROS derived from NOX1 and NOX2 in the setting of hyperglycaemia also impairs
NO production and bioavailability by increasing the production of superoxide anion,
which reacts with NO to form peroxynitrite, which in turn oxidises the eNOS cofactor
BH4 [30]. The superoxide anion further enhances ROS generation via increased formation
of glucose-derived advanced glycation end products (AGEs) and activation of the AGE
receptor on vascular cells [135]. The build-up of AGEs is pathogenically important in the
development of arteriosclerosis. Obesity and insulin resistance also decrease NO production
via different mechanisms, including blunting of skeletal muscle eNOS expression and
activity, consequently impairing the NO-driven endothelium-dependent vasoreactivity [62].
On the other hand, recent studies have suggested that NO can mediate vasoconstriction
rather than vasorelaxation in certain conditions, notably hypoxia, via activation of soluble
guanylyl cyclase and consequent production of cyclic inosine monophosphate (cIMP) rather
than cGMP [30,136].

Much of the highlighted mechanisms have been derived from preclinical studies,
and it therefore remains unclear if the findings can be translated to humans. Other areas
requiring clarification in this regard include the relative contribution of hyperglycaemia
vs. hyperinsulinaemia in the induction of NOX-derived superoxide production, and the
interactions and coordination between the different NOX isoforms and between NOX
family and other sources of pathological ROS generation [137].

3.5. The Role of Extracellular Matrix Remodelling

The extracellular matrix (ECM) is an important structure in the microvascular environ-
ment composed of proteins and proteoglycans. Alterations in this dynamic structure as
seen in an inflammatory milieu may mediate skeletal muscle insulin resistance by causing
capillary regression and endothelial dysfunction [47]. The chronic inflammatory phenotype
seen in obesity and DM type 2 induces compositional changes in the ECM, including
increased expression of ECM proteins such as collagen, and glycosaminoglycans such as
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hyaluronan, which are a major constituent of the capillary luminal endothelial cell glyco-
calyx [138,139]. The expansion and remodelling of the ECM is associated with capillary
rarefaction and insulin resistance. ECM collagen level is inversely related to muscle cap-
illarisation and insulin sensitivity [138,140]. Similarly, decreasing hyaluronan expression
using PEGylated hyaluronidase or antibodies against CD44, which is the main hyaluronan
cell surface receptor, is associated with improved insulin action [139,141,142].

4. Crossroads of Microvascular Pathophysiology and Pharmacology: Clinical
Perspectives in Obesity Treatment
4.1. Current Paradigm

While lifestyle adjustments like increased physical activity and dietary modification
and vigilance remain the fundamental treatment modalities for obesity, such conservative
approaches are often insufficient, and adjunctive pharmacological or surgical treatment
is usually indicated to realise target clinical outcomes [7,143,144]. Remarkably, conser-
vative obesity treatment measures such as physical activity and healthy dietary habits
were even further negatively impacted by the series of lockdown measures instituted
to limit the spread of the novel coronavirus [145,146], further highlighting the practical
need for supportive medical therapy for obesity and related complications. Unfortunately,
although several drugs have been approved for the treatment of obesity over the past
few decades, most have been withdrawn due to safety concerns, and only a very lim-
ited number are currently available for clinical use [147,148]. Even more far-fetched are
treatments rationally designed to counteract the pathways and mechanisms of the chronic
effects of obesity. Accordingly, an enhanced understanding of the multiple pathophysiolog-
ical pathways in obesity will be critical in developing or adapting targeted therapies for
obesity-related complications.

Current medications approved by the United States Food and Drug Administration
(US-FDA) for the treatment of chronic obesity include orlistat (lipase inhibitor, decreases
lipid absorption), phentermine/topiramate (norepinephrine/GABA agonist and gluta-
mate antagonist, which suppress appetite), naltrexone/bupropion (opioid receptor antago-
nist/dopamine agonist and norepinephrine reuptake inhibitor, which increase satiety and
suppress appetite), and liraglutide (glucagon-like peptide-1 (GLP-1) agonist, which pro-
motes slow gastric emptying and satiety) [149,150]. However, phentermine/topiramate is
currently not approved by the European Medicines Agency (EMA). In February 2020,
the US-FDA ordered the withdrawal of lorcaserin, which until then was one of the
most frequently prescribed weight-loss drugs since its approval in 2012, following ev-
idence of increased cancer risks by safety clinical trials [149,151]. Other promising anti-
obesity drugs that were withdrawn from the market due to life-threatening adverse effects
include aminorex, fenfluramine, dexfenfluramine, phenylpropanolamine, rimonabant,
and sibutramine (respectively associated with pulmonary hypertension, cardiac valvopa-
thy, valvopathy, stroke, suicidal ideation and behaviour, and myocardial infarction and
stroke) [152]. Although the development and maintenance of obesity and its sequelae
are mediated by both central and peripheral mechanisms, most of the currently available
pharmacological agents for treatment of obesity act primarily on pathways in the central
nervous system, and thus expectedly show a wider potential adverse effect profile in both
short- and long-term use [148,149]. Furthermore, the recruitment of alternate and counter-
regulatory pathways significantly reduces the long-term efficacy of most of the anti-obesity
monotherapies [153].

4.2. Targeting Microvascular Inflammatory Phenotype and Endothelial Dysfunction as a
Therapeutic Strategy for Insulin Dysfunction in Obesity

Given the limitations of centrally acting anti-obesity medications, specific or adapted
therapies targeting the peripheral mechanisms of obesity-related complications seems
attractive in terms of risk/benefit balance and the possibilities of tailoring therapy towards
the specific downstream metabolic effects of chronic obesity. The mechanisms of the
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intimate reciprocal relationship between microvascular and metabolic pathophysiology in
obesity provides a promising window for pharmacotherapeutic exploitation.

4.2.1. Current Anti-Obesity Drugs

A few studies have evaluated the effects of some of the currently available anti-obesity
drugs on inflammatory markers in obese and insulin-resistant patients. The modulation of
visceral and vascular inflammatory phenotypes may bear indirect therapeutic relevance to
microvascular dysfunction. It was shown that treatment with orlistat for at least 6 months
was associated with reduction in serum IL-6, TNFα and high-sensitivity C-reactive protein
(hsCRP) levels [154,155]. This anti-inflammatory effect appears to strongly correlate with
the degree of weight loss over the treatment duration. Data on the anti-inflammatory prop-
erties of naltrexone/bupropion are inconsistent with different trials reporting reductions in
hsCRP or no significant change [156]. In the CONQUER trial, phentermine/topiramate
was associated with decreased hsCRP and increased adiponectin levels [157].

A randomized, double-blind, placebo-controlled trial in DM type 2 patients with
persistent albuminuria showed that liraglutide treatment for 12 weeks reduced TNFα and
mid-regional pro-adrenomedullin levels [158]. Liraglutide was also shown to mediate
modulatory effects on inflammatory gene expression in peripheral blood mononuclear
cells [159]. Using [64Cu] DOTATATE, a novel high-resolution PET tracer, it was recently
suggested in a randomized placebo-controlled study that liraglutide treatment reduced vas-
cular inflammation, which is a probable mechanistic explanation of the clinically observed
cardiovascular protective effect of GLP-1 receptor agonists [160]. However, this study was
limited by a small sample size and the lack of statistical significance in the observed effect.
In obese patients with DM type 2, Liraglutide treatment was associated with inhibition of
NF-κB pathways and up-regulation of Sirt1 expression, and decreased levels of inflamma-
tory markers such as TNFα and ceruloplasmin [161]. Conversely, compared to the placebo
group, 26-week liraglutide treatment in a low- to moderate-risk population DM type 2
patients did not change vascular inflammation as assessed by [18F]-fluorodeoxyglucose
PET-CT, although an explorative analysis indicated a possible effect in patients with pre-
existing background of cardiovascular disease [162]. Similarly, a 12-week treatment with
liraglutide yielded no effect on capillary perfusion or vasomotion in diabetic patients,
suggesting that the glycaemic effects of GLP-1-based therapies may be independent of
microvascular responses [163]. Further investigations are therefore warranted to clarify the
role of GLP-1 receptor agonists in microvascular response.

4.2.2. Anti-Hyperglycaemic and Other Agents

Several other antihyperglycemic agents, notably metformin, dipeptidyl-peptidase
(DPP)-4 inhibitors (e.g., vildagliptin, linagliptin), GLP-1 analogues (e.g., exenatide), and
sodium-glucose cotransporter 2 inhibitors (SGLT2i) (e.g., empagliflozin), have also been
suggested to confer microvascular protective benefit related to, or independent of, gly-
caemic control mechanisms. Metformin is the first-line drug for treating patients with DM
type 2 and is increasingly also used for clinical management of other insulin-resistant states
such as prediabetes and polycystic ovarian disease [164] on account of known cardiovascu-
lar benefits and pleiotropic effects. A growing body of evidence suggests that metformin
improves vascular endothelial dysfunction via AMPK dependent and independent mech-
anisms, including downregulation of NF-κB and upregulation of PI3K-Akt-eNOS, Sirt1,
forkhead box O1 (FOXO1), and krüppel-like factors (KLF) 2 and 4 [29]. Compared to con-
trol, obese diabetic patients treated with metformin expressed lower levels of inflammatory
markers such as hsCRP, TNF-α, and Toll-like receptors 2/4 [165]. In a recent study on
obese newly diagnosed drug-naïve DM type 2 women, metformin treatment for 30 days
was associated with increased nutritive microvascular reactivity and functional capillary
density during post-occlusive reactive hyperaemia [166].

Metformin and vildagliptin have been suggested to exert microvascular effects via
distinct but potentially complementary mechanisms. Following ingestion of a lipid-rich
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meal, metformin, but not vildagliptin, was shown to increase functional capillary recruit-
ment in obese patients with DM type 2 [167]. Vildagliptin on the other hand increased
endothelial-dependent and -independent vasodilatations at the arteriolar level, following
30 days of treatment in obese diabetic women [166]. Conversely, a multicentre, prospective,
randomized, parallel-group comparison of double-dose metformin (1–1.5 g/d) vs. low-
dose metformin (0.5–0.75 g/d) plus add-on vildagliptin in DM type 2 patients found that
combination therapy of vildagliptin and metformin had no effect on endothelial function
as assessed by flow-mediated dilation before and after 12 weeks of treatment, although
favourable effects on adipokine levels were noted [168]. Furthermore, Petrie et al. also noted
that regardless of a wider role in cardiovascular risk management, metformin treatment in
patients with long-standing DM type 1 had no effect on endothelial function as assessed
by reactive hyperaemia index, or on retinopathy [169]. While linagliptin showed no effect
on macrovascular function, it was significantly associated with improved fasting-state mi-
crovascular function in DM type 2 patients [170]. An ongoing multinational, randomised,
partially double-blind, placebo-controlled clinical trial on the effect of lifestyle and phar-
macological interventions on early prevention of hyperglycaemia-related microvascular
complications will hopefully shed new light on the effects of metformin and linagliptin on
microvascular function in people with prediabetes [171].

Three-month therapy with the GLP-1 receptor agonist exenatide showed a similar
effect to metformin on microvascular endothelial function, inflammatory phenotype, and
redox homeostasis, as assessed by reactive hyperaemic index, C-reactive protein (CRP), cir-
culating oxidized low-density lipoprotein, and VCAM-1 [172]. However, in obese patients
with insulin resistance, acute treatment with exenatide following a high-fat meal was asso-
ciated with blunted postprandial vasodilatory response [173]. On the other hand, SGLT2
inhibitors such as empagliflozin, canagliflozin, and dapagliflozin, which are clinically
remarkable for their favourable cardiovascular and renal profile in diabetic patients [174],
have additionally been suggested to have benefits in obesity. In high-fat-diet-induced obese
C57BL/6J mice, it was shown that empagliflozin significantly reduced whole body weight
and fat, improved metabolic function, and ameliorated obesity-related myocardial hyper-
trophy/fibrosis and dysfunction [175]. These effects were mediated via upregulation of
Sestrin2-mediated increase in AMPK and eNOS phosphorylation and inhibition of Akt and
mTOR phosphorylation. Sestrin2 is a stress-inducible protein that regulates AMPK-mTOR
signalling and redox homeostasis. However, in patients with DM type 2 and cardiovascular
morbidity, empagliflozin treatment for 24 weeks had no effect on peripheral endothelial
function, suggesting that its cardiovascular benefits may be attributed to other mechanisms
rather than improvement in endothelial function [176].

Targeting the mammalian Sirt1, which reciprocally activates AMPK to inhibit lipid
accumulation and stimulate fatty acid oxidation, has also been proposed as a therapeutic
option in obesity. L-leucine and metformin are a known allosteric activator and a synergistic
coactivator of Sirt1, respectively, while sildenafil is a phosphodiesterase-5 inhibitor and
vasodilator which indirectly stimulates Sirt1 by increasing NO bioavailability. The Leucine–
Metformin–Sildenafil fixed-dose combination is a pharmacologic attempt to synergistically
exploit these mechanisms, and recent randomized control trials noted significant weight
reduction in obese non-diabetic patients treated for 16 and 24 weeks [177,178].

It has also been shown that alpha adrenergic blockers (e.g., prazosin) can mediate
capillary growth in human skeletal muscles via increased shear stress [179,180]. While
this angiogenic effect may beneficially counteract structural capillary regression and its
metabolic sequelae in obesity, the pharmacodynamic mechanisms exploited here are not
directly related to the microvascular metabolic mechanisms described in the pathogen-
esis of obesity-related insulin resistance. Furthermore, given the contribution of the
renin–angiotensin–aldosterone system to the pathogenesis of endothelial dysfunction,
angiotensin-converting enzyme inhibitors (ACEi, e.g., lisinopril) and angiotensin receptor
blockers (ARBs, e.g., losartan) have been shown to exert microvascular protective and
insulin resistance counteractive effects beyond their basic antihypertensive actions. Be-
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sides improving endothelial function and redox homeostasis, the peripheral vasodilatory
actions of ACE inhibitors and ARBs contribute to enhanced skeletal muscle blood flow. A
meta-analysis of 12 randomized controlled clinical trials of ACEi or ARBs found that both
antihypertensive medication types decreased the incidence of new-onset diabetes by 27%
and 23%, respectively, highlighting a significant clinical benefit in patients with prediabetic
conditions such as obesity and metabolic syndrome [181].

4.2.3. Experimental Phytochemicals and Dietary Interventions

Several medicinal herbs have been suggested to have therapeutic benefit in vascular
endothelial dysfunction, notably via anti-inflammatory, anti-oxidative, and anti-apoptotic
effects. For example, traditional Chinese medicinal herbs like Danshen (Salvia miltiorrhiza),
Shanchi (Panax notoginseng), Shanzai (Hawthorn), and Heshouwu (Polygonum multiflo-
rum Thunb) were shown to decrease apoptosis and inhibit adhesion molecule expression
in human umbilical vein endothelial cells [182]. Similarly, Naoxintong, a compound herbal
mixture containing Radix Astragali, Angelicae sinensis, Paeoniae radix rubra, and Ligus-
ticum wallichii, was shown to improve the protective effect of high-density lipoprotein
on endothelial function in DM type 2 patients [183]. Hydroalcoholic extract of Teucrium
polium, a traditional antidiabetic medicinal herb, improved endothelial dysfunction by reg-
ulating vasoreactivity and eNOS and VCAM-1 genes’ expression in streptozocin-induced
diabetic rats [184]. However, the specific chemical compounds responsible for the putative
pharmacologic effect of the herbal extracts, and their toxicological properties, are yet to be
identified and characterized.

Other bioactive compounds have also been suggested to exert microvascular pro-
tective actions in obesity via favourable effects on various microvascular dysfunction
pathophysiological mechanisms described above. A typical example is resveratrol, a nat-
urally occurring polyphenolic phytoalexin found in red wine that modulates endothelial
function by targeting AMPK, eNOS, nuclear factor-erythroid-derived 2-related factor-2
(Nrf2), KLF2, and NF-κB [185]. In addition, polyphenol compounds such as chlorogenic
acid, piceatannol, taxifolin, quercetin, fisetin, kaempferol, and caffeic acid have been shown
to inhibit arginase activity and enhance endothelial function by increasing NO levels and
decreasing ROS generation [186]. Other naturally occurring bioactive compounds with
suggested beneficial effects in microvascular dysfunction include garlic, cinnamon, olive,
extra virgin olive oil, ginger, cocoa (modulation of endothelial function), hydroxytyrosol,
oleocanthal, and quercetin (modulation of inflammation and oxidative stress) [187]. Fur-
thermore, given the increasing recognition of the role of gut microbiota in pathogenesis of
vascular endothelial dysfunction, several interventions targeting gut dysbiosis have been
suggested, including high-fibre diet, zinc supplementation, use of pre- or probiotics and
faecal microbiota transplantation [188].

5. Conclusions

In this review, we discussed the current evidence on the relationship between skeletal
muscle microvascular dysfunction and insulin resistance in obesity. Several reciprocal
and interconnected pathways were shown to intimately link microvascular physiology
and metabolic functions, with the delicate balance in these pathways disrupted in obesity.
Several intertwined mechanisms, including endothelial cell dysfunction from various
factors, induction of immuno-inflammatory cascades in endothelial cells and perivascular
adipocytes, dysregulation of redox hemostasias and extracellular matrix remodelling, are
thought to mediate obesity-related structural and functional alterations in skeletal muscle
microcirculation and contribute to insulin dysfunction and glucose dysregulation. We
further reviewed the therapeutic implications thereof by correlating the explored peripheral
pathophysiological mechanisms with clinical and pharmacodynamic data on both currently
approved and adapted medications for treatment of obesity and its complications.

While several preclinical studies have suggested a close link between microvascular
and metabolic dysfunction in obesity, overall, the paucity of clearcut prospective evidence
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for many of the suggested mechanisms means that direct causal effect awaits conclusive
proof. Similarly, while many of the examined anti-obesity medications appear to make
pathophysiological sense, remarkable inconsistencies in the clinical data question suggested
effects and benefits. Nevertheless, adapting existing or developing novel therapies targeting
peripheral mechanisms such as the pathophysiological interface between skeletal muscle
microvascular and metabolic function in obesity still represents a rational perspective in
obesity pharmacotherapy requiring further exploration.
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JNK C-Jun N-terminal Kinase
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NO Nitric Oxide
NOX NADPH Oxidase
Nrf2 E2-related factor 2
PDE-5i Phosphodiesterase-5 inhibitors
PET-CT Positron emission tomography—computed tomography
PI3K Phosphatidylinositol 3 Kinase
PKC Protein Kinase C
ROS Reactive Oxygen Species
RAGE Receptor for AGEs
SGLT2i Sodium Glucose Cotransporter 2 inhibitors
SIRT1 Sirtuin 1
TXA2 Thromboxane A2
TNF-α Tumour Necrosis Factor-A
VCAM1 Vascular Cell Adhesion Molecule 1
VEGF Vascular Endothelial Growth Factor
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