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Abstract
Background  As investigator site audits have largely been conducted remotely during the COVID-19 pandemic, remote qual-
ity monitoring has gained some momentum. To further facilitate the conduct of remote quality assurance (QA) activities for 
clinical trials, we developed new quality indicators, building on a previously published statistical modeling methodology.
Methods  We modeled the risk of having an audit or inspection finding using historical audits and inspections data from 2011 
to 2019. We used logistic regression to model finding risk for 4 clinical impact factor (CIF) categories: Safety Reporting, 
Data Integrity, Consent and Protecting Endpoints.
Results  We could identify 15 interpretable factors influencing audit finding risk of 4 out of 5 CIF categories. They can be 
used to realistically predict differences in risk between 25 and 43% for different sites which suffice to rank sites by audit and 
inspection finding risk.
Conclusion  Continuous surveillance of the identified risk factors and resulting risk estimates could be used to complement 
remote QA strategies for clinical trials and help to manage audit targets and audit focus also in post-pandemic times.

Keywords  Quality assurance · Clinical trials · Advanced analytics · Statistical modeling · Good clinical practice (GCP) · 
Audit

Background

During the COVID-19 pandemic investigator site audits 
have largely been conducted remotely relying on digital 
technology. Site-specific quality indicators could be used to 
identify quality risk of specific sites. To validate potential 
quality indicators, we could estimate their influence on the 
probability of past audit findings. We have already shown 
that such an approach was feasible in the Good Clinical and 
Pharmacovigilance Practices areas and that we could over-
come challenges such as low signal-to-noise ratios and rela-
tively small data sets with high ratios of missing values [1, 
2]. Having expanded our operational dataset, we have gath-
ered historic investigator site audits/inspection findings from 
2011 to 2019 and grouped them into 5 clinical impact factors 

(CIFs). We then generated a large set of operational features 
for each audited or inspected site and used them to model the 
probability of having a finding in a given category. Our goal 
was to obtain a set of interpretable features which contribute 
to fairly accurate risk estimates rather than building a clas-
sification model for audit findings. In total we could identify 
13 site-specific quality indicators that are clearly associated 
with audit and inspection finding risk for 4 different CIFs. 
This was a major improvement over our last modeling itera-
tion in which we could only identify 5 site-specific quality 
indicators. This improvement is mostly attributable to the 
additional operational site data which allowed us to create 
new modeling features that were previously unavailable.

Methods

Audit finding, inspection and all clinical trial data were 
gathered from Roche internal data sources and contained 
(808 audits/inspections over 9 years). A full description can 
be found in the code repository. The risk for having one or 
more audit and inspection findings in a given category was 
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modeled using logistic regression as previously described 
[1].

Data Preparation and Feature Selection

Operational features (based on Adverse Events (AE), Issues 
and Deviations and Data Queries) were engineered to reflect 
the state of the site (at the time of the audit/inspection). 
They were complemented by site characteristics such as geo-
graphic population and study characteristics such as thera-
peutic area. To account for the number of patients and the 
individual study progress of each patient, we normalized 
features by either number of patient visits or total number 
of days that have passed for all patients since enrollment 
(referenced as days on study). As critical thresholds for qual-
ity indicators can be protocol specific, we also calculated 
the study percent rank for some features (e.g. percentage of 
missed visits and number of parallel trials) which indicated 
the percentage of sites in the same study that had a lower 
value.

To account for non-linear relationships between features 
and risk, continuous features were normalized using a Yeo 
Johnson power transformation [3] and binned into 5 groups 
with the same value range. For missing values all resulting 
binary bins were set to zero. Finding frequencies for each 
bin and categorical features were examined and promising 
candidates were preselected. The set of preselected features 
was narrowed down by fitting logistic regression models 
to a training data subset (2011–2015). We then iteratively 
removed uninterpretable features based on Subject Matter 
Expert (SME) review, and merged bins to facilitate their 
interpretation, to obtain a final feature set which was used to 
fit a model on the entire data set. We checked for multicol-
linearity between the features of each model by calculating 
the variance inflation factor (VIF) for each coefficient, and 
found that the maximum VIF per model was never greater 
than 2 (Table 1), which is well below the accepted critical 
threshold of 5 [4]. Sites that had missing values for all final 
features were removed before model fitting, otherwise for 
missing values all derived bins from that feature were set 
to zero.

Model Validation

To validate the models and to get a performance estimate, 
we used time series cross validation [5] in which data from 
each year would be used as a test set for a model fit with all 
data from previous years (see Fig. 1). The receiver opera-
tor characteristics area under the curve (AUC) and Brier 
Scores were calculated for each cross validation test set and 
mean and standard error were calculated. As we were more 
interested in accurate risk estimates than in classification, 
we proceeded to fit a calibration model. The probability risk 
estimates of the test set predictions were divided into 4 bins 
of semi-equal range with a minimum of 100 test predictions 
per bin. For each bin, the predicted risk was averaged and 
the actual observed risk was calculated. To fit the calibra-
tion model, we performed a linear regression on the mean 
predicted risk versus the observed risk. In order to avoid 
extreme predictions by combinations of risk factors that are 
unvalidated, we calculated a lower and upper range limit 
using the average observed risk of the 200 lowest and 200 
highest risk estimates.

As we were able to create more site-specific features, risk 
estimates for two sites from the same study were more likely 
to be different with more gradual increases and decreases. 
We therefore did not remove audits/inspection of previously 
audited/inspected studies from our test sets. The benefit of 
additional data points for calibration and performance esti-
mates outweighs the risk of overestimating performance due 
to data leakage of study related attributes. As we expect risk 
estimates to change more gradually as site features change, a 
linear fit seemed more appropriate than the manually fitted 
step function we previously used [1].

Results

Performance and Model Characteristics

We were able to model audit and inspection finding risk 
for 4 out of 5 CIFs which could estimate differences in risk 

Table 1   Mean modelling performance per CIF model—mean AUC and Brier score including standard error (SE) were calculated based on test 
set predictions derived from time series cross-validation strategy with one value per year from 2011 to 2018.

Clinical impact factor Maximum VIF Mean AUC ± SE Mean Brier score ± SE
Calibrated pre-
diction range %

Base rate 
probability 

%

Consent 1.25 0.61 ± 0.15 0.24 ± 0.01 34–61 (△27) 46
Data integrity 1.11 0.60 ± 0.1 0.19 ± 0.02 49–85 (△36) 73
Protecting endpoints 1.05 0.59 ± 0.06 0.23 ± 0.01 54–79 (△25) 69
Safety 1.97 0.63 ± 0.7 0.25 ± 0.01 26–69 (△43) 47
Sponsor oversight 1.05 0.53 ± 0.06 0.24 ± 0.01 63–65 (△2) 64
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between 25 and 41% for different sites with AUCs between 
0.59 and 0.63 and Brier Scores [6] from 0.19 to 0.25 
(Table 1; Fig. 2). While classification performance as meas-
ured by AUC is poor, the calibration of the native risk pre-
dictions as measured by the Brier Score with 0 (perfect accu-
racy) to 1 (perfect inaccuracy) can be described as adequate. 
A predictive difference in risk by 25% or more between sites 
has clear business value and can influence business deci-
sions. We were not able to model the impact factor sponsor 
oversight properly (Table 1; Fig. 2) most likely because we 
were lacking relevant features.

Features

The identified risk factors could be categorized into 7 groups 
(AE, Issues and Deviation, Data Queries, Geographical Pop-
ulations, Parallel Trials and Study Characteristics; Table 2). 
AEs, data queries, and issues and deviations represented fre-
quent on-site events that were connected to heavily regulated 
operational processes and left a coherent data trail. Thus, 
event frequencies and processing times could serve as proxy 
measures for operational quality and were likely to influence 
the risk of findings.

Figure 1   Time series cross-validation.

Figure 2   Calibration.
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Discussion

Interpretation

We were able to identify 15 quality indicators—of which 
13 were site specific—that could be linked with an increase 
or decrease in audit and inspection finding risk. The final 
model features were the result of a hypothesis-driven selec-
tion since we involved SMEs in the process. An algorithmic 
feature selection would have been unrealistic in this low 
signal-to-noise scenario which would have resulted in unin-
terpretable false-positive features. Although we could not 
conclude that there was a causal relationship between the 
model coefficients and the modeled events, many of them 
were process-related and would have naturally been identi-
fied by SMEs during process monitoring. This made them 
easy to integrate into a risk-based quality monitoring data 
product.

Clinical Impact Factor: Consent (Fig. 3)

Informed consent requires paper signatures on forms that 
include the most up to date study information. This process 
is not yet fully digitized in most studies [7]. Therefore, a 
common auditing activity is to verify the paper signatures. 
If signatures were missing or were obtained too late a con-
sent finding would be raised. The risk for such findings was 
increased for pediatric studies which require signatures 

from each parent. Moreover, when patients missed sched-
uled visits they might not have been able to reconsented in 
time. Consequently, risk increases with higher percentages 
of missed visits.

Site issues and protocol deviations must be captured 
in an issue log and need to get resolved within a specific 
timeframe. Issues can be classified as protocol deviations 
that can be graded as minor or major. A high number of 
minor deviations overall, as well as a high number of 
late-resolved issues, could theoretically indicate general 
quality issues at a site. Both metrics increased consent 
finding risk as well as protecting the endpoints finding 
risk (Table 2 and Fig. 6). Of note, the overall issue and 
deviations generation rate is dependent on the number 
of patients processed by a site, so we needed to nor-
malise in order to compare different sites. However, all 
sites should resolve their issues in time, so the absolute 
number of late issues carried similar weight for high and 
low enrolling sites. The absolute number of late issues 
was a better risk indicator than any normalised version. 
An increase in consent risk could also be found for sites 
located in densely populated areas. We could not see how 
this connected to the consent process. We did not find 
that population density was influencing any of the other 
risk models, thus we could only suspect that there was a 
strong unknown confounding variable that we were not 
yet capturing.

Table 2   Features contributing to each CIF model—features generally correlate positively with audit finding risk unless indicated otherwise 
(green downward arrow).

Clinical impact factor

Feature group Consent Data integrity Protecting endpoints Safety

Issues and deviations ▲# Late issues

▲# Minor deviations per days on 
study

▲ # Overdue issues at time of audit ▲ # Late issues

▲ # Minor deviations per 
days on study

Geographical populationa ▲Total population ▲ Male to female ratio in 18-39 age 
group

▲ % Over 60 years

Patient AEs and visits ▲% Visits not done ▲ AE reporting time ▲ AE per visit

▲ SAE per visit
Data queriesb ▲ Open queries per days on study ▲ Query processing time

Parallel trialsc ▲ Active Roche trials in the past 
year in the same therapeutic area

Study characteristics ▲Pediatric
▲ Cancer

▼ Neuro-psychiatric

▼ Autoimmune

a Living within a 100 km radius around site
b Automatic or manual data queries directed towards site by sponsor
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Clinical Impact Factor: Safety (Fig. 4)

AEs need to be adequately recorded into the medical 
database followed by a medical seriousness and causal-
ity assessment by qualified site staff. For serious AEs 

(SAEs) accelerated reporting timelines apply. Any detect-
able failure in this process would trigger safety findings. 
Accordingly, high rates of AEs increased the risk of 
safety findings while a low rate of SAEs or the absence of 
SAEs decreased risk. Independently of AE rates, cancer 

Figure 3   Clinical impact factor: consent.
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studies had an increased risk for safety findings as did 
sites that were located in a region with a high percentage 
of over 60-year-old in the geographical population around 
the site. We could speculate that older or terminally ill 
patients were more likely to suffer from concomitant dis-
eases which added additional complexity to the adequate 
AE capture and causality assessment.

Clinical Impact Factor: Data Integrity (Fig. 5)

Whenever there were mismatches between source data 
records and the clinical databases, a data integrity finding 
was raised. Invalid entries into the clinical database or a 

site monitor discovering questionable entries could trigger 
a data query that needed to be addressed by the site staff. 
In preparation for an audit or inspection, sites usually tend 
to double check data entries and resolve issues and open 
data queries. If the number of open queries and the number 
of overdue issues were low, risk for data integrity findings 
was decreased (possibly indicating that the site was well 
prepared for the audit/inspection). Furthermore, a compara-
tively low number of active trials in the last year at the site 
and the number of issues that were due at the time of the 
audit both decreased data integrity finding risk. These last 
two risk factors were not directly connected to data integ-
rity and thus should be viewed as generalizable site quality 

Figure 4   Clinical impact factor: safety.
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indicators. Additionally, a higher ratio of females in the 
younger working population aged 18–39 would decrease the 
risk of data integrity findings, which geographically cor-
related with larger urban areas, which in turn had a higher 
concentration of general research centers. This was an inter-
esting coincidental yet valuable correlation that we plan to 
investigate further.

Clinical Impact Factor: Protecting the Primary 
Endpoints (Fig. 6)

Root causes for findings that were raised because the pri-
mary endpoints were at risk were numerous. Among the most 
frequent were inadequate study documents, mishandling of 
samples or the investigational medicinal product (IMP) and 
mismanaged protocol deviations. In this category we mostly 
identified risk factors that were indicative of overall site opera-
tional quality, some of which also influenced risk for findings 

Figure 5   Clinical impact factor: data integrity.
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for other CIFs such as number late issues, number of minor 
deviations and query processing time. Furthermore, a speedy 
reporting of AEs decreased risk as well which was potentially 
another operative site quality indicator.

Challenges and Limitations

Using more operational site features over the more static 
study features of our previous iteration [1] was a major 
improvement. This resulted in more diverse risk predic-
tions for all sites in a given trial with risk estimates that 
would continuously adjust as sites continued to participate 
in the trial creating new data points. However, none of the 

new operational features correlated with sponsor-oversight-
related audit and inspection findings. Useful features could 
probably be engineered from monitoring visits, source data 
verification and vendor management, but we have not yet 
been able to obtain that data electronically for a sufficient 
fraction of previously audited sites. It was important to note 
that despite our effort to validate our models using time-
series cross validation and calibration we have merely mod-
eled the risk of historic investigator site audit and inspec-
tion findings. The COVID-19 pandemic has accelerated the 
decrease of traditionally conducted audits and inspections 
and remote quality activities are getting more and more com-
mon [8]. The number of traditional site audits in 2020 was 
already too low to include the data in this iteration. Sites 

Figure 6   Clinical impact factor: protecting the primary endpoint.
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audited in the past are often the sites that have recruited 
the most patients and thus carried the highest risk for the 
study outcome. Furthermore, findings were restricted to 
quality issues that could be identified by an auditing team 
on site. The risks and the quality indicators are integrated 
into a clinical analytics dashboard used by quality leads to 
manage audit focus and audit target selection. The risk as 
estimated by our models can only be used for a risk-based 
quality assurance strategy. It cannot be used to mitigate the 
individual risk of individual sites since we cannot assume 
a causal inference between the risk factors and the quality 
issues identified by the audits and inspections.

Conclusion

As travel and physical access to sites is getting more restric-
tive, new complementing strategies for QA based on remote 
data analytics are emerging. Monitoring quality indicators 
and audit finding risk assessment could help to manage audit 
target selection and audit focus. To establish regulatory and 
industry trust, and to foster adoption of analytics-driven QA, 
we will continue to focus our effort on cross-company col-
laboration [9] and data sharing.
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