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Highlights Impact and implications

� Intravenous NAC treatment improves bilirubin metabolism and

bile acid flow in patients with BA.

� NAC suppresses CD177+ hepatic immature neutrophil oxidative
phosphorylation and reactive oxygen species production in BA.

� NAC alleviates monocyte-mediated inflammation and reverses
hepatic macrophage dysfunction in BA.

� NAC downregulates innate/adaptive proinflammatory responses
via cell–cell interactions in BA.
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BA is a serious liver disease that affects newborns and
has no effective drug treatment. In this study, scRNA-
seq showed that NAC treatment can partially reverse
the immune dysfunction of neutrophil extracellular
trap-releasing CD177+ neutrophils and Kupffer cells,
and lower the inflammatory responses of other innate
immune cells in BA. In consequence, intravenous NAC
treatment improved the clinical outcomes of patients
with BA in term of bilirubin metabolism.
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Background & Aims: Our previous study indicated that CD177+ neutrophil activation has a vital role in the pathogenesis of
biliary atresia (BA), which is partially ameliorated by N-acetylcysteine (NAC) treatment. Here, we evaluated the clinical ef-
ficacy of NAC treatment and profiled liver-resident immune cells via single cell RNA-sequencing (scRNA-seq) analysis to
provide a comprehensive immune landscape of NAC-derived immune regulation.
Methods: A pilot clinical study was conducted to evaluate the potential effects of intravenous NAC treatment on infants with
BA, and a 3-month follow-up was carried out to assess treatment efficacy. scRNA-seq analysis of liver CD45+ immune cells in
the control (n = 4), BA (n = 6), and BA + NAC (n = 6) groups was performed and the effects on innate cells, including neutrophil
and monocyte–macrophage subsets, and lymphoid cells were evaluated.
Results: Intravenous NAC treatment demonstrated beneficial efficacy for infants with BA by improving bilirubin metabolism
and bile acid flow. Two hepatic neutrophil subsets of innate cells were identified by scRNA-seq analysis. NAC treatment
suppressed oxidative phosphorylation and reactive oxygen species production in immature neutrophils, which were tran-
scriptionally and functionally similar to CD177+ neutrophils. We also observed the suppression of hepatic monocyte-mediated
inflammation, decreased levels of oxidative phosphorylation, and M1 polarisation in Kupffer-like macrophages by NAC. In
lymphoid cells, enhancement of humoral immune responses and attenuation of cellular immune responses were observed
after NAC treatment. Moreover, cell–cell interaction analysis showed that innate/adaptive proinflammatory responses were
downregulated by NAC.
Conclusions: Our clinical and scRNA-seq data demonstrated that intravenous NAC treatment partially reversed liver immune
dysfunction, alleviated the proinflammatory responses in BA by targeting innate cells, and exhibited beneficial clinical
efficacy.
Impact and implications: BA is a serious liver disease that affects newborns and has no effective drug treatment. In this
study, scRNA-seq showed that NAC treatment can partially reverse the immune dysfunction of neutrophil extracellular trap-
releasing CD177+ neutrophils and Kupffer cells, and lower the inflammatory responses of other innate immune cells in BA. In
consequence, intravenous NAC treatment improved the clinical outcomes of patients with BA in term of bilirubin metabolism.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Biliary atresia (BA) is a progressive neonatal cholangiopathy
with poor prognosis and high mortality that is characterised by
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extrahepatic bile duct obstruction-induced pathological jaun-
dice, liver fibrosis, and liver failure. To date, surgery is the main
option for BA treatment given that pharmacotherapy for this
condition is lacking. However, there are numerous clinical trials
testing repurposed therapeutics, including corticosteroid,1

intravenous immunoglobulin,2 odevixibat,3 and colony-
stimulating factor.4 It was recently reported that rituximab
(anti-CD20), a B cell-modifying therapy, promotes immune re-
covery in infants with BA.5

N-acetylcysteine (NAC) is a cysteine precursor that has been
used to reduce the severity of liver injury caused by acetamin-
ophen overdose,6 as well as to treat non-acetaminophen-
induced acute liver failure in children.7 Our recent study also
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Fig. 1. Biochemical changes in infants with BA 3 months after Kasai surgery. (A) Overview depicting the workflow of this study. (B–E) Levels of (B) TBIL, (C)
DBIL, (D) IBIL, and (E) ALP over time. In all treatment groups n = 6 (prior BA treatment; BA+NAC prior treatment; BA 1 month post-surgery; BA+NAC 1 month post-
surgery; and BA 3 months post-surgery) except BA+NAC 3 months post-surgery (n = 5). Data are mean ± SD, analysed with Student 2-tailed t test; *p <−0.05; **p
<−0.01. ALP, alkaline phosphatase; BA, biliary atresia; Cont., control; DBIL, direct bilirubin; IBIL, indirect bilirubin; NAC, N-acetylcysteine; TBIL, total bilirubin.
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showed that NAC treatment significantly ameliorated pathology
by reducing oxidative phosphorylation (OXPHOS) and reactive
oxygen species (ROS) levels, which have a crucial role in biliary
epithelial cell (BEC) damage in both patients with BA and animal
models.8,9 However, the mechanism by which NAC treatment
alters liver immune regulation at single cell resolution in infants
with BA remains unexplored.

As part of our clinical trial, a 3-month clinical follow-up of
infants receiving NAC treatment after Kasai surgery was
performed. Additionally, we profiled the single cell tran-
scriptomes of 168,577 liver-resident immune cells (CD45+ cells)
from liver biopsies. The interactions between cell types were
also determined. Our data provide evidence that NAC partially
reverses liver immune dysfunction and alleviates proin-
flammatory responses in BA by targeting innate cells and, thus,
could be used in the clinical setting in infants with BA;
JHEP Reports 2023
however, large-scale clinical trials are needed to investigate
this further.
Patients and methods
Ethics statement and biopsy collection
The Medical Ethics Committee of Guangzhou Women and Chil-
dren’s Medical Center approved the study procedures and clin-
ical trial (ID: 62001). The clinical trial was registered with the
Chinese Clinical Trial Registry (ChiCTR2000040505). The imple-
mentations were in concordance with the International Ethical
Guidelines for Research Involving Human Subjects as stated in
the Helsinki Declaration. The legal guardians of all participants
signed consent forms. Liver biopsies were obtained during Kasai
surgery or laparoscopy from 16 patients enrolled in the clinical
2vol. 5 j 100908



trial. The details of the patients and methods are provided in the
supplementary material online.
Results
Clinical efficacy of NAC treatment for infants with BA
Given that our previous study found that intravenous NAC can
ameliorate the pathological condition of BA,8 we primarily
focussed here on the clinical efficacy of NAC treatment for infants
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with BA by carrying out a 3-month follow-up to evaluate the
condition and biochemical examination changes in these par-
ticipants (Fig. 1A).

Follow-up data showed that the levels of total bilirubin (TBIL),
direct bilirubin (DBIL), indirect bilirubin (IBIL), and alkaline
phosphatase (ALP), which can indicate cholestasis, were signifi-
cantly ameliorated in the BA+NAC group at both 1 and 3 months
post-surgery compared with those before treatment, whereas
there were no significant improvements in the BA group
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=

(without NAC treatment) (Fig. 1B–E). Although Kasai surgery
improves bilirubin metabolism and bile acid flow, these surgical
effects are not maintained in the long run; nevertheless, they
were enhanced by NAC treatment. However, the three patients
who received NAC treatment for an additional week post-surgery
did not show significant improvement compared with three
patients who only received NAC treatment for 1 week.

In addition, other parameters representing liver function and
the onset of post-surgical complications in the BA+NAC group
were not significantly different from those in the BA group post-
surgery, suggesting that NAC does not improve liver function
(Fig. S1A–D; Table S1). These results showed that NAC treatment
can ameliorate cholestasis and improve bile flow, suggesting
partial beneficial clinical efficacy of NAC treatment for infants
with BA.

Single cell transcriptomic landscape of liver immune cells
To fully understand the potential mechanism of clinical efficacy,
we conducted a comprehensive investigation of BA liver immune
regulation by NAC treatment at the single cell resolution. Liver
immune cells (CD45+ cells) from patients were isolated and
scRNA-seq analysis was performed using the 10X platform
(Fig. 1A). The raw off-machine sequencing data were pre-
processed by Cell Ranger. For downstream analysis, Seurat was
applied to process the raw unique molecular identifier (UMI)
count matrix. After data preprocessing and rigorous quality
control definition, low-quality cells, defined as those with a high
number of genes and UMIs and abnormal proportions of mito-
chondrial and erythrocyte RNA, were filtered out. This resulted in
168,577 high-quality transcriptomes from liver immune cells
(Fig. S2A–D and Table S2). To identify the heterogeneity and
remove batch effects, the Harmony algorithm was applied to
integrate the transcriptomes, enabling analysis of a total of
168,577 batch effect-corrected cells (Fig. S3A,B). The batch effect-
corrected gene expression matrix was clustered into 35 clusters
and nine major cell types with an abnormal subset (Doublets),
which were visualised via the uniform manifold approximation
and projection (UMAP) algorithm (Fig. 2A and Fig. S3C). The
major cell types were identified based on the expression of
known canonical marker genes (Fig. 2B,C). Given the high value
of complexity and absence of specific marker genes (details in
‘Patients and methods’ section), Doublets were identified and
removed in further downstream analysis (Fig. 2C and Fig. S3D).
The distribution of these major cell types across batches and
groups was visualised (Fig. 2D and Fig. S3E). Innate lymphoid
cells were relatively heterogeneous between batches; thus, we
did not perform any further analysis but focused mainly on the
other cell types.

NAC treatment suppressed hepatic immature neutrophil
oxidative phosphorylation
Gr-1+ cells (comprising Ly6g+ and Ly6c+) respond to virus infec-
tion and mediate bile duct damage in the initiation of mouse BA
represents the log10-transformed adjusted p value. (F) Comparison of DEGs for
selected enriched GO terms for immature neutrophils in the BA+NAC group comp
Colour represents the log10-transformed q value. (H) Representative image of Mit
of 8-OHdG (red) and TOM20 (green) and quantification. Data analysed with a 2-
<0.01, ***p <0.001. Scale bars: 10 lm. BA, biliary atresia; DEGs, differentially exp
Kyoto Encyclopedia of Genes and Genomes; MFI, mean fluorescence intensity; NA
species; UMAP, uniform manifold approximation and projection.
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model, indicating that they might be the main innate immune
cell population;8 thus, myeloid cells were examined by further
subclustering. They clustered into 12 cell subsets based on the
expression of known canonical marker genes, and an abnormal
subset (Doublets) was removed from downstream analysis
(Fig. 3A and Fig. S4A,B). The distribution of myeloid subsets
across groups is shown in Fig. S4C.

Given that hepatic CD177+ neutrophils exhibit increased
OXPHOS levels and release neutrophil extracellular traps (NETs),
which cause BEC apoptosis,8 we primarily focused on hepatic
neutrophil subsets. According to published markers,10,11 we
confirmed the status of the two neutrophil subsets by deter-
mining the secondary neutrophil granule gene expression
(Fig. 3B). The surface marker CD177 was highly expressed in
immature neutrophils, suggesting that hepatic immature neu-
trophils are transcriptionally similar to the CD177+ cells previ-
ously described.8 The functional scores of OXPHOS (Hallmark)
and the ROS biosynthetic process [Gene Ontology (GO):
1903409] were both significantly increased in immature neu-
trophils (Fig. 3C).

To further determine transcriptional and functional differ-
ences in these two neutrophil subsets between the BA+NAC
and BA groups, differentially expressed gene (DEG) analysis
was performed; scatter plots showed that chemokine genes,
interferon (IFN)-response genes, and other inflammation-
related genes were downregulated in the BA+NAC group,
indicating mature neutrophil hypoinflammation after NAC
treatment (Fig. 3D and Table S3). Further gene enrichment
analysis was applied for the downregulated DEGs, indicating
that the proinflammatory function and activation of mature
neutrophils might be downregulated in the innate immune
responses (Fig. 3E). DEG analysis of immature neutrophils
(Table S3) showed that chemokine genes, mitochondria-related
genes, respiratory chain-related genes, major histocompatibil-
ity complex (MHC) class II antigen-related genes, and
inflammation-related genes were downregulated in the
BA+NAC group (Fig. 3F). Compared with the control (Cont.)
group, these aforementioned genes were downregulated in the
BA+NAC group in both mature and immature neutrophils
(Fig. S4D and Table S3).

To further understand the effects of NAC on immature neu-
trophils, gene set enrichment analysis (GSEA) was performed
with gene signature sets from GO (Table S4). The significantly
downregulated pathways (Fig. 3G) indicated that NAC interven-
tion could suppress OXPHOS via the mitochondrial respiratory
electron chain.

To validate the suppression of immature neutrophil respira-
tion and OXPHOS by NAC, we next sorted neutrophils from pe-
ripheral blood from patients with BA that had been cultured with
or without NAC inhibition. Phenotype analysis confirmed that
most neutrophils highly expressed CD66b (Fig. S4E), which
matched the hepatic immature neutrophil phenotype. The level
of Complex V, an enzyme involved in mitochondrial OXPHOS,
immature neutrophils between the BA+NAC group and BA group. (G) GSEA of
ared with the BA group. The length of the bar indicates the enrichment score.
oSOX (red) and Complex V (green) and quantification. (I) Representative image
sided Wilcoxon rank-sum test (C) or Student 2-tailed t test (H,I); *p <0.05, **p
ressed genes; GSEA, gene set enrichment analysis; GO, Gene Ontology; KEGG,
C, N-acetylcysteine; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen
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decreased after culture with NAC, and the by-product of OXPHOS
mitochondrial superoxide was also reduced, as determined by
MitoSOX staining and ROS detection (Fig. 3H). In addition,
detecting mitochondrial DNA oxidation with 8-OHdG and
OXPHOS-related protein TOM20 showed that, with NAC inhibi-
tion, the level of mitochondrial oxidative DNA decreased signif-
icantly (Fig. 3I). These findings confirmed the downregulated
pathways identified in GSEA, indicating that NAC suppresses
hepatic immature neutrophil respiration and OXPHOS, thus
reducing ROS production.

In summary, two hepatic neutrophil subsets were defined; in
addition, CD177+ hepatic immature neutrophils with a higher
level of OXPHOS and ROS production that could be suppressed by
NAC treatment were identified.

NAC treatment alleviated monocyte-mediated inflammation
in liver
Monocyte–macrophage subsets (Fig. 4A) are another major
component of the innate immune system; thus, we further
investigated their expression and the effect of NAC treatment on
that expression. Comparison of DEGs between monocyte–
macrophage subsets revealed that proinflammatory, chemo-
kine, inflammasome, and apoptosis-related genes were highly
expressed in monocyte subsets (Fig. 4B), suggesting their
proinflammatory role in excessive chronic liver inflammation in
BA, which was also characterised by high proinflammatory12 and
inflammatory response (Hallmark) scores (Fig. 4C). In addition,
Mo_CD14 and Mo-like_CD14 comprised 20.4% and 38.0% of
monocyte–macrophage subsets, respectively (Fig. S5A), sug-
gesting their main role in monocyte-mediated inflammation. In
addition, the BA+NAC group exhibited higher proportions of
Mo_CD14 and Mo-like_CD14 compared with the BA group
(Fig. 4D).

To dissect the transcriptional differences between the
BA+NAC and BA groups, DEG analysis of Mo_CD14 showed that
proinflammatory, chemokine, and IFN-response genes were
downregulated in the BA+NAC group (Fig. 4E and Table S5).
Further GSEA was performed with gene sets from the GO, Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Hallmark
pathways in the BA+NAC group compared with the BA group and
revealed that numerous proinflammatory pathways were
significantly downregulated (Fig. 4F and Table S6). In addition,
DEG analysis and GSEA were performed for Mo-like_CD14.
Proinflammatory, chemokine, and IFN-response genes were
also downregulated in the BA+NAC group (Fig. 4G and Table S5).
GSEA revealed that proinflammatory pathways were also
significantly downregulated in the BA+NAC group (Fig. 4H and
Table S6). However, although the Mo-like_CD14CD16 and Mo-
like_CD16 subsets accounted for a minor proportion (15.7% and
11.4%, respectively) of the monocyte–macrophage subsets
(Fig. S5A) and showed insignificant changes (Fig. S5B), DEG
analysis and GSEA also showed that the most significantly
downregulated genes and pathways in the BA+NAC group were
proinflammatory and chemotaxis related (Fig. S5C–F and
Tables S5 and S6).

DEG analysis and GSEA of monocyte subsets between the
BA+NAC and Cont. group showed that proinflammatory,
cTh1, memory CD8, effector CD8, CD160+ CD8, Prolif CD8, cdT_1, cdT_2, and MAIT
<0.05, **p <0.01, ***p <0.001. BA, biliary atresia; Cont., control; HSC, hematopoiet
UMAP, uniform manifold approximation and projection.
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chemotaxis-related, and lymphocyte regulatory genes and
pathways were downregulated in the BA+NAC group (Fig. S6A–D
and Table S5), illustrating that monocyte-mediated inflammation
in BAwas reduced by NAC to an even lower level than that in the
Cont. group. Taken together, these results suggested that the
proinflammatory function of the hepatic monocyte subsets is
alleviated by NAC treatment.

NAC treatment induced hepatic macrophage polarisation and
increased phagocytic function
Proportions of both TREM2+ macrophages and MARCO+ Kupffer-
like macrophages were significantly decreased among all
monocyte–macrophage subsets in the BA+NAC group compared
with those of the BA group, but there were no significant dif-
ferences compared with the Cont. group (Fig. 5A). Thus, hepatic
macrophage subsets were extracted for detailed investigation.

Mac_TREM2 expressed apolipoprotein genes and class II HLA
molecules, suggesting capacities of lipid metabolism and antigen
presentation in this cluster. Mac_MARCO expressed complement
C1Q genes and scavenger receptors, suggesting capacities of
phagocytosis and innate antimicrobial immune response. How-
ever, both Mac_TREM2 and Mac_MARCO had a low expression of
inflammation-related genes, indicating their M2 phenotype
(Fig. 4B). These two subsets were also characterised by a high M2
and a low M1 signature score13 (Fig. S7A). Transcriptional dif-
ferences between the BA+NAC and BA groups showed that
numerous proinflammatory genes were upregulated in both
macrophage subsets (Fig. S7B,C and Table S7). GSEA revealed that
proinflammatory pathways were significantly upregulated in the
BA+NAC group, implicating enhanced inflammatory function in
hepatic macrophages (Fig. 5B,C and Table S8).

For Mac_TREM2, the peroxisome pathway was down-
regulated in the BA+NAC group compared with the BA group
(Fig. 5B). Peroxisomes, which are multipurpose organelles in
both catabolic and anabolic pathways, have important roles in
lipid metabolism, ether-phospholipid biosynthesis, and ROS
metabolism.14 The downregulated peroxisome pathway sug-
gested that NAC suppresses lipid metabolism and ROS produc-
tion via the peroxisome pathway in TREM2+ macrophages. For
Mac_MARCO, the OXPHOS, N-acetylglucosamine metabolism,
amino sugar catabolic process, and glucosamine-containing
compound metabolic process pathways were downregulated in
the BA+NAC group compared with the BA group (Fig. 5C). N-
acetylglucosamine, an amino sugar, has diverse roles in different
biological processes, including the modification of proteins.15 It
can be converted to uridine diphosphate N-acetylglucosamine
and, interestingly, the latter was recently reported to be reduced
upon inhibition of OXPHOS,16 which is consistent with our
findings. Moreover, DEG analysis and GSEA of macrophage sub-
sets between the BA+NAC and Cont. groups showed that both
Mac_TREM2 and Mac_MARCO had an enhanced inflammatory
function and that Mac_MARCO had lower levels of OXPHOS,
tricarboxylic acid cycle, and peroxisome metabolism processes
compared with Mac_TREM2 (Fig. S7E,F and Table S7).

Kupffer cells have been reported to have decreased inflam-
matory and phagocytic function in BA,5 implying an M2-like
phenotype, which was consistent with our GSEA results
across groups. Data analysed using a 2-sided Wilcoxon rank-sum test (C,G): *p
ic stem cell; MAIT, mucosal-associated invariant T cell; NAC, N-acetylcysteine;
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(Fig. 4B and Fig. S7A). However, hepatic macrophages had
increased inflammatory function after NAC intervention
(Fig. 5B,C). Functional scores examined in Mac_MARCO showed
that proinflammatory,12 phagocytosis (GO: 0006909), inflam-
mation response (Hallmark), and M1 scores significantly
increased, whereas M2 scores significantly decreased in the
BA+NAC group compared with the BA group, implying an M1-
like phenotype (Fig. S7D). Subsequently, the expression levels
of M1-related genes (IRF1, CD86, and HIF1A), proinflammatory
genes (IL1B, TNF, JUNB, FOSB, and PDE4B), and scavenger genes
(C1QA and CD5L) in Mac_MARCO were found to be significantly
elevated in the BA+NAC group compared with the BA group
(Fig. 5D).

To validate the downregulation of macrophage OXPHOS in the
NAC+BA group, multiplex immunohistochemistry was conducted
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to detect TOM20 and CD68 in liver biopsy slides. The results
revealed a significant decrease in the colocalisation of TOM20
and CD68 in the BA+NAC group (Fig. 5E). This finding indicates
that NAC treatment effectively inhibits OXPHOS in macrophages.
In conclusion, NAC treatment suppressed hepatic macrophage
OXPHOS and ROS production and reversed hepatic macrophage
dysfunction by driving M1 polarisation.
Enhancement of humoral immune responses and attenuation
of cellular immune responses
The adaptive immune responses, both humoral and cellular, of
patients in the BA+NAC group were assessed and compared with
those in the BA and Cont. groups. In total, eight B cell subsets
(Fig. 6A) were identified based on known canonical marker
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genes (Fig. 6B), and one abnormal subset of Doublets (Fig. S7A)
was removed in downstream analysis.

The distribution of eight B cell subsets across batches and
groups was visualised (Fig. S7B), and the proportions of plasma
cells of all B cell subsets were found to be significantly increased
in the BA+NAC group compared with the BA group, whereas
there were few plasma cells in the Cont. group (Fig. 6C), sug-
gesting that NAC treatment enhances humoral immune re-
sponses. Furthermore, gene enrichment analysis showed that
upregulated DEGs were mainly enriched in the GO terms
phagocytosis, humoral immune response, immunoglobulin-
mediated immune responses, and antigen binding (Fig. 6D).
Together, these findings suggested that NAC treatment promotes
humoral immune responses elicited in BA.

In addition, 14 T cell subsets were identified based on known
canonical marker genes (Fig. 6E,F), and an abnormal subset of
Doublets (Fig. S7C) was removed in downstream analysis. Given
that there was no significant variation in T cell subsets distri-
bution across groups (Fig. S7D), we focussed on the transcrip-
tional and functional analysis of T cells. Given the high
expression of cytotoxic genes (Fig. S7E), the cytokine, cytotox-
icity, and chemotaxis functional scores of cTh1, memory CD8,
effector CD8, CD160+ CD8, cdT, and mucosal-associated invariant
T cell (MAIT) subsets were examined; all were significantly
reduced in the BA+NAC group compared with the BA and Cont.
groups (Fig. 6G). Thus, overall, NAC treatment could attenuate T
cell-mediated cytotoxic immune responses and proinflammatory
function.

Interaction between innate and lymphoid cells
CellPhoneDB was utilised to infer the alterations in the in-
teractions among these immune cells. First, given the heteroge-
neity of immature neutrophils between the BA+NAC and BA
groups, we assessed the interactions between immature neu-
trophils and other innate/lymphoid cells (Fig. 7A). Although most
interactions were shared between the BA+NAC and BA groups,
several unique ligand–receptor pairs, including HLA-F/leukocyte
immunoglobulin-like receptor (LILR) B2 and CD1D/LILRB2 in the
BA group and CXCL12/CXCR4 in the BA+NAC group, were
observed. LILRB2, also known as immunoglobulin-like transcript
4 inhibitory receptor, is upregulated on the surface with granule
exocytosis after stimulation in neutrophils. Baudhuin et al.
demonstrated that crosslinking of LILRB2 with non-classical hu-
man leukocyte antigen I molecules suppresses degranulation and
phagocytosis by neutrophils, leading to neutrophil dysfunction.17

Furthermore, LILRB2 was reported to be able to inhibit CD1d
antigen presentation in natural killer T cells.18 Therefore,
immature neutrophils might affect lipid antigens presented by
CD1d molecules in CD14+ monocytes. Notably, CXCL12/CXCR4, a
chemokine axis reported to be involved in the retention of
neutrophils within the bone marrow,19 significantly interacted
between Kupffer-like macrophages and immature neutrophils in
the BA+NAC group, suggesting that NAC intervention suppresses
ROS-producing immature neutrophil mobilisation from bone
marrow to the liver.

To further explore the regulation of interactions of the
aforementioned immune cells between the BA+NAC and BA
groups by NAC treatment, we selected the significantly changed
ligand–receptor pairs (Fig. 7B). For neutrophils and other innate/
lymphoid cells, the chemokine–receptor interaction of CCL4L2/
VSIR, involved in cytokine storms as soluble mediators,20 was
downregulated in the BA+NAC group compared with the BA
JHEP Reports 2023
group. CD14+ monocytes and cytotoxic T cells were more prone
to utilise the ligand–receptor pair PECAM1/CD177 in the BA+NAC
group than in the BA group, resulting in attenuation of neutro-
phil activation.21 This suggests that NAC treatment suppresses
neutrophil activation via enhancement of PECAM1/CD177. In
addition, both CD14+ monocytes and cytotoxic T cells had an
increased interaction of Annexin A1 (ANXA1)/FPR1 in the
BA+NAC group. ANXA1 is an important glucocorticoid-regulated
protein that can limit neutrophil recruitment and the production
of proinflammatory mediators.22 By targeting ANXA1/FPR1, NAC
might downregulate neutrophil-mediated inflammation.
Notably, b2-adrenergic receptor (ADRB2) is a member of the
superfamily of G-protein-coupled receptors and its activation is
reported to lead to increased inflammatory cytokine secretion of
CD8+ T cells.23 It is suggested that NAC downregulates the in-
flammatory cytokine secretion of cytotoxic CD8+ T cells in the
liver through decreased activation of the IL1B/ADRB2 interaction
in the BA+NAC group.

In the monocyte–macrophage subsets and lymphoid cells,
expression of proinflammatory chemokines, including CCL3,
CCL4, CCL4L2, and their respective receptors, was decreased in
the BA+NAC group compared with the BA group, indicating the
potential of reducing the recruitment of these proinflammatory
and cytotoxic immune cells by NAC treatment (Fig. 7C). Collec-
tively, these findings demonstrate the potential downregulation
of innate/adaptive proinflammatory responses via cell–cell in-
teractions in BA by NAC treatment.
Discussion
In this study, we generated a clinical follow-up study and a
comprehensive liver immune landscape at a single cell resolu-
tion of the response to NAC treatment in infants with BA. The
findings provide further insight into alterations of various im-
mune cell types, especially directed targeting of innate cells, by
NAC treatment. BEC is a preferred target of inflammatory and
immune injury to the liver.24 Stimulation of innate immune re-
sponses to prolonged exogenous or endogenous insults gener-
ates an inflammatory reaction that can self-sustain and
perpetuate as a result of the activation of adaptive immune
mechanisms,25 which is coordinated with BA pathogenesis.
Collectively, the improvement in acid flow might benefit from
intravenous NAC treatment through interruption of hyper-
inflammation resulting from the over response of the innate
immune system and activation of the adaptive immune system
in BA pathology after Kasai surgery.

Recent studies indicated that immature neutrophils have a
crucial role in inflammatory processes, such as systemic vascular
inflammation26 or coronavirus disease 2019 (COVID-1927) via
NET release. Our previous study also showed that CD177+ neu-
trophils cause BEC damage by increasing OXPHOS and ROS
levels.8 According to our scRNA-seq and experimental data, NAC
treatment suppressed the downregulation of CD177+ immature
neutrophil proinflammatory function by suppressing OXPHOS,
ROS production, and NET release as innate immune responses,
highlighting the direct effects on innate cells. Interestingly, the
OXPHOS levels of immature neutrophils in the BA+NAC group
were even lower than those in the Cont. group, indicating strong
antioxidant effects of NAC. Additionally, although the OXPHOS
levels of mature neutrophils were not directly affected, NAC
appeared to suppress the innate immune responses of mature
11vol. 5 j 100908
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neutrophils; however, the details of the mechanism involved
require further exploration.

Monocytes and macrophages have central roles in the initia-
tion and resolution of inflammation in the innate immune sys-
tem.28 CD14+ monocytes have been considered to induce
monocyte-centric inflammatory storms in severe COVID-19,
which can be suppressed by the immunosuppressive agent
tocilizumab.29 Based on our data, four monocyte subsets were
identified in response to inflammation; proinflammatory func-
tion was significantly downregulated in the BA+NAC group
compared with both the BA and Cont. groups, suggesting that
NAC suppresses the proinflammatory responses triggered by
monocytes.

However, hypoinflammatory hepatic macrophages appeared
to exhibit enhanced phagocytic and inflammatory functions and
induced M1 polarisation following NAC intervention. Kupffer cell
dysfunction, characterised by decreased phagocytic and inflam-
matory function in BA,5 was reversed by NAC treatment. Proin-
flammatory M1 macrophages rely mainly on glycolysis and
exhibit impairment of the tricarboxylic acid cycle, whereas anti-
inflammatory M2 macrophages are more dependent on mito-
chondrial OXPHOS.30 NAC has also been reported to stimulate
inflammatory gene expression in peripheral blood mononuclear
cell cultures,31 which supports our findings. The suppression of
OXPHOS in Kupffer cells might drive M1 polarisation, although
the mechanism involved requires further investigation.
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In addition, plasma cells were upregulated after NAC treat-
ment. The increase in autoantibodies in patients with BA32

might be directly related to the functional dysregulation of B
cells.8,33 The detailed function of plasma cells in terms of
antibody production and BEC damage regulated by NAC still
needs further elucidation. Additionally, the attenuation of
cellular immune responses might be associated with the sup-
pression of innate immune responses, given that interactions
via chemokines/receptors between innate cells and lymphoid
cells were significantly decreased. Unexpectedly, interactions
involved in immune dysfunction and pathogenic immature
neutrophil mobilisation were downregulated, emphasising the
potential benefits of NAC. However, the recently reported
fibrosis-related interactive pairs in BA34 were not significantly
altered in the BA+NAC groups, indicating that NAC might not
affect liver fibrosis.

In conclusion, despite the limitations of a lack of hepatocytes
and CD45– non-parenchymal cells and a small sample size, our
data present deeper insights into the regulation of liver immune
function by intravenous NAC treatment in infants with BA at a
single cell resolution. The data showed that NAC partially re-
verses liver immune dysfunction and alleviates the proin-
flammatory responses in BAmainly by targeting innate cells. This
study also provides evidence for the beneficial response of BA to
NAC therapeutic strategies although further large-scale clinical
trials will be required to progress this treatment approach.
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