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Abstract. The κ‑opioid receptor (KOR) is one of the primary 
receptors of opioids and serves a vital role in the regulation 
of pain, anesthesia, addiction and other pathological and 
physiological processes. KOR is associated with several types 
of cancer and may influence cancer progression. It has been 
proposed that KOR may represent a new tumor molecular 
marker and provide a novel basis for molecular targeted thera‑
pies for cancer. However, the association between KOR and 
cancer remains to be explored comprehensively. The present 
review introduces KOR and its association with different types 
of cancer. Improved understanding of KOR may facilitate 
development of novel antitumor therapies.
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1. Introduction

Cancer represents a significant threat to human health world‑
wide and its burden of morbidity and mortality continues 
to rise. According to 2020 estimates from the World Health 
Organization, cancer is the first or second leading cause of 
premature death (death between the ages of 30 and 69 years) 

in 91 out of 172 countries, and the third or fourth leading cause 
in another 22 countries (1).

Opioids serve a role in controlling the sensation of pain in 
the central and peripheral nervous systems; they also regulate 
cellular and humoral immune responses, as well as the expres‑
sion of chemokines and chemokine receptors (2). Thus, the 
clinical application of opioids is extensive and includes peri‑
operative analgesia and sedation, as well as pain reduction for 
patients with cancers (3), including pancreatic cancer (4), lung 
cancer (5), colorectal cancer (6), breast cancer (7) and head 
and neck cancer (8). Several experimental studies have shown 
that opioids promote proliferation, migration, invasion and 
angiogenesis in cancer cell culture and in vivo animal cancer 
models, such as morphine in the regulation of colorectal 
cancer cells  (9) and human clear cell renal cell carcinoma 
cells (10), meanwhile morphine stimulates angiogenesis in 
mouse breast cancer models (11), which suggests that they may 
be harmful to patients with cancer. Preclinical studies have 
shown that opioids may be associated with cancer progression 
and recurrence, increased risk of infection and decreased 
overall survival (12,13). However, other studies have found the 
opposite effect, namely that opioids may exhibit an inhibitory 
effect on a range of cancer cells and that use of opioids in 
in vivo animal cancer models does not promote tumor growth. 
For example, fentanyl inhibits the cell viability and invasion 
of lung (14), gastric (15) and colorectal (16) cancer. A study in 
which melanoma cells were injected into mice led to hyperal‑
gesia at the injection site. Treatment with morphine can reduce 
local tumor growth and lung metastasis (17).

To date, an increasing number of studies (18) have shown 
that opioids and opioid receptors and peptides are widely 
distributed in various types of tumor cell and their expres‑
sion levels differ depending on the tumor tissue type, such as 
breast cancer (19), colon cancer (20), endometrial cancer (21) 
and lung cancer (22). The upregulation of µ‑opioid receptor 
(MOR) in lung cancer samples with metastasis was found to be 
significantly higher than that in lung cancer samples without 
metastasis (23). MOR overexpression in human bronchoal‑
veolar lung carcinoma cells led to increased tumor growth and 
lung metastases in nude mice compared with vector transfected 
cells (24). In addition, the stimulatory or inhibitory effects of 
opioids differ in different tumor cell types and are associated 
with growth, metastasis and prognosis of cancer. As MOR 
agonists, such as morphine and fentanyl, are the leading anal‑
gesics in clinical treatment of moderate and severe pain (25), 
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MOR has greater clinical relevance than the κ‑opioid receptor 
(KOR) and a relatively high number of studies on the associa‑
tion between MOR and cancer have been published (26‑28). 
However, such opioids can cause side effects, such as euphoria, 
tolerance and respiratory depression, and have a high risk of 
addiction, drug abuse and death (29,30).

Exogenous and endogenous opioid peptides regulate 
multiple functions of the body via ORs, such as food intake 
and weight control (31), response to pain (32), and regulation 
of cardiac function and the immune system (33,34). KOR is 
one of the primary targets of opioids, with a potent analgesic 
effect and few side effects compared with MOR (35). KOR 
is a member of the G‑protein‑coupled receptor family and 
its natural endogenous ligand is dynorphin, which decreases 
synaptic transmission by inhibiting adenylate cyclase and 
voltage‑gated calcium channels and activating voltage‑gated 
potassium channels, resulting in decreased neuronal action 
potential production and neurotransmitter release (36). KOR 
was first cloned in 1993 (37) and is detectable in different 
tissues in rats, mice, guinea pigs, cattle and other animals. The 
understanding of ORs is increasing. KOR can be divided into 
different subtypes (38,39). KOR is distributed in the brain, 
spinal cord and pain‑sensing nerves (40,41), thus it is most 
widely used in clinical analgesia during the perioperative 
period, such as using drugs that target KOR (e.g., oxyco‑
done) (42,43). Moreover, KOR is also expressed in the heart, 
lung, colon, liver and other organs, and is associated with 
the regulation of organ development, respiration, emotions, 
and motor, cardiovascular, neuroendocrine and cognitive 
function (44‑48).

The structure and distribution of KOR provide an 
important basis for its participation in regulating various 
pathophysiological functions of the body  (49,50). Current 
evidence suggests that KOR serves a key role in the progres‑
sion of tumors (51,52). For example, clinical drugs targeting 
KOR, such as oxycodone and butorphanol, are given to patients 
with cancer to help eliminate or minimize the harmful effects 
of pain and stress on cancer progression (53). As commonly 
known, psychological states can affect the outcome of human 
disease, for example pain has a profoundly negative impact on 
the mood, social activities, day to day life, sleep and cogni‑
tive function of patients with cancer, which can even cause 
negative emotions such as stress and depression in caregivers 
too (54). Stress can promote tumor progression by inhibition of 
the expression of class‑I and class‑II major histocompatibility 
complex molecules and by reducing natural killer (NK) cell 
activity (55). KOR agonists acting on peripheral and spinal 
sites block tumor‑induced bone pain (56). In addition, KOR 
is primarily expressed in the cell membrane, cytoplasm and 
nucleus. The expression levels of KOR in different subcel‑
lular locations may predict the prognosis of patients with 
tumors  (57). In  vitro experiments have demonstrated that 
KOR has different effects on different cancer cell types. For 
example, KOR inhibits proliferation and promotes apoptosis 
of nasopharyngeal carcinoma cells (58), and its overexpression 
may promote activation and invasion of breast cancer cells; 
these effects all involve activation of downstream signaling 
pathways (59).

Previous studies have shown that KOR is upregulated in 
various types of solid tumor, such as liver and non‑small cell 

lung cancer and other malignant tumors, and KOR expression 
is associated with cancer growth and poor prognosis (60,61). 
However, additional experiments are required to confirm the 
specific underlying mechanism. These observations confirm 
that KOR serves an important role in cancer development, 
including potentially promoting or inhibiting growth and 
metastasis of tumors and affecting patient prognosis.

Furthermore, inf lammation promotes carcinogenic 
mutations that trigger changes in cytokine levels, stimulate 
angiogenesis and promote tumor immune evasion (2,53). KOR 
expression has also been detected in immune cells, such as 
myeloid and CD4+ and CD8+ T cells (2,62). Moreover, KOR 
mediates immunosuppressive effects, including decreased 
antibody production and inhibition of cytokine and chemokine 
expression (2).

2. Discovery, structure and typing of KOR

The existence of ORs was discovered in mammalian brain 
tissue using radioactive ligand binding in 1973 (63). To date, 
five opioid receptors have been identified: MOR, KOR, δ‑ and 
ζ‑OR and nociception receptor (36,64). Numerous researchers 
have investigated the structure, typing, localization and func‑
tion of ORs, which has provided novels routes for opioid drug 
research and development and laid a foundation for drug 
development and use  (65,66). KOR was first cloned from 
mouse brain in 1993 by Minami et al (37). The KOR endog‑
enous ligand, dynorphin, was later identified as a 17‑amino 
acid peptide derived from prodynorphin that is distributed in 
the central nervous system (67). However, they bind to ORs on 
the cell membrane, thereby regulating neuronal excitation via 
intracellular signaling pathways, which affect learning, cogni‑
tion, nociception and endocrine function  (68). Exogenous 
opioid peptides, such as morphine, heroin and fentanyl, also 
act by binding to ORs (69).

KOR belongs to the G protein‑coupled receptor family of 
proteins, which share the same basic structure: An extracellular 
N‑terminal region, seven transmembrane domains and intra‑
cellular C‑terminal and caudal regions (70). Hydrophobicity 
analysis has shown that the structure of KOR consists of three 
intracellular and three cytoplasmic rings, two extracellular 
glycosylation sites at the N‑terminus and one intracellular 
phosphorylation site at the C‑terminus containing a disulfide 
bond (45,46). Genetic analysis has suggested that OR genes 
are located on different human chromosomes (45,71). As their 
exon/intron sequence is similar, it was originally hypothesized 
that the MOR, DOR and KOR may be derived from the same 
ancestral gene (72). However, different ORs have different 
pharmacological properties and are expressed in different 
anatomical locations (70). Terenius (69) isolated the full‑length 
cDNA encoding human KOR using cDNA cloning technology. 
The KOR gene is located at q11‑12 of human chromosome 8, 
with a coding region length of ~1,143 bases, translating into a 
protein of 380 amino acid residues. In addition, KOR mRNA 
transcripts are detectable in different tissues in rats, mice, 
guinea pigs and other animals, and have high homology with 
the sequence of the human KOR gene. This indicates that 
KOR gene sequences are highly conserved between different 
species (37,73). However, the role of KOR splice variants at 
different sites is not fully understood.
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Receptor‑ligand binding and competitive inhibition 
experiments have demonstrated that KOR has two different 
binding sites (74,75). Accordingly, KOR is divided into two 
different subtypes. The κ1 subtype is sensitive to [D‑Ala2, 
D‑Leu5]‑enkephalin (DADLE), but not to U50488H, whereas 
the κ2 subtype is sensitive to U50488H, but not to DADLE. 
κ1 ORs can also be divided into κ1A and κ1B sub‑subtypes. 
Similarly, κ2‑subtype ORs can be divided into κ2A and κ2B 
sub‑subtypes. In addition, a third subtype, subtype κ3, has also 
been proposed. The receptor‑binding characteristics of the 
κ3‑ and κ2‑subtype opioid receptors are similar (38,39). Thus, 
KOR is still largely divided into only two subtypes, κ1 and 
κ2. Since most of the aforementioned KOR types are based on 
radioligand receptor binding experiments, further studies are 
needed to confirm their classification. Given the heterogeneity 
of the effects of KOR, additional preclinical studies are needed 
to gain insight into the specific mechanisms of action.

3. Expression and physiological function of KOR

KOR was originally considered to be expressed exclusively in 
the central nervous system (37). In situ hybridization experi‑
ments in rats revealed that KOR mRNA is present in the dentate 
gyrus of the hippocampus, hypothalamus, certain thalamic 
nuclei, descending conduction pathway of the cerebral cortex, 
caudate nucleus, olfactory bulb, nucleus accumbens, brainstem, 

spinal cord and other parts (46). Previous studies have observed 
KOR mRNA expression in the heart, kidney, adrenal medulla, 
digestive tract, peripheral vascular, uterus, placenta, T cells 
and macrophages of humans and animals. Nevertheless, the 
density of KOR in central nervous tissue is higher than that 
in peripheral tissue (44‑48). This suggests that KOR is widely 
distributed, which provides a basis for its potential involvement 
in regulating various physiological functions of the body.

KOR can bind to the heterotrimer G proteins Gi and 
Go, which are sensitive to pertussis toxin (72). When opioid 
peptides or specific receptor agonists bind to KOR on the 
cell membrane, KOR activation leads to the dissociation of 
G proteins into Gα and Gβγ subunits, which mediate various 
intracellular signaling pathways (76,77) (Fig. 1).

KOR also interact with various helper proteins and alter 
the effectiveness of agonist‑mediated cell signaling path‑
ways, such as activating the extracellular signal‑regulated 
kinase (ERK1/2)  (78), c‑Jun amino‑terminal kinase  (79), 
JAK2/STAT3 and interferon regulatory factor 2 signaling (80), 
which determine the signals produced and influence receptor 
transport, targeting, fine‑tuning and intracellular localization 
by providing scaffolds that connect receptors and cytoskeletal 
networks (77,81).

Pain is a common initial signal for a patient to seek 
medical attention and 30‑50% of patients with cancer expe‑
rience moderate to severe pain that has a notable negative 

Figure 1. Common signal transduction and regulation of KOR. Activation of KOR leads to conformational changes and dissociation of the pertussis 
toxin‑sensitive G‑protein subunits, activating G‑protein‑gated inwardly rectifying potassium channels and inhibiting voltage‑gated calcium ion channels. The 
α subunit binds GTP and dissociates from Gβγ. The GTP‑binding protein α subunit inhibits the classical adenylyl cyclase/cyclic AMP/PKA pathway. Both 
Gα‑GTP and free Gβγ can regulate secondary cascade activation. KOR activation also activates a β‑arrestin‑dependent signaling cascade. This interaction 
with scaffolding partners, such as β‑arrestin, can be dependent or independent of receptor phosphorylation. KOR is phosphorylated in response to agonist 
occupation by multiple kinases, each of which has multiple isoforms. Phosphorylation by a particular kinase dictates secondary cascade interactions or subse‑
quent receptor fate. Phosphorylation of KOR leads to internalization of the receptor, contributing to KOR agonist tolerance, response to agonist occupancy 
and subsequent signaling pathway activation, desensitization or degradation of the receptor. +, activation; ‑, blockade or inhibition; KOR, κ‑opioid receptor; 
AC, adenylyl cyclase; cAMP, cyclic AMP; CREB, cAMP responsive element binding protein; PKA, protein kinase A; Gα/βγ, G protein α/βγ subunit; GRK, G 
protein‑coupled receptor kinase 1; ‑P, pyrophosphate.
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impact on their quality of life (82). Opioids are often used to 
relieve cancer‑associated pain in patients and improve quality 
of life (83,84). KOR has long been a research target for novel 
analgesics because activating KOR relieves pain effectively 
without causing side effects such as addiction, respiratory 
depression and constipation (85).

Moreover, KOR is essential for emotional regulation. Studies 
have shown that the endogenous opioid peptide dynorphin 
activates KOR in the nucleus accumbens and KOR agonists 
inhibit dopamine (DA) transmission (86). By contrast, KOR 
antagonists increase the release of basal DA and may produce 
antidepressant‑like effects (35). The role of KOR in behavioral 
despair, stress and other depression models has been studied and 
activation of KOR can regulate anxiety‑like behavior (87‑89). 
Buprenorphine is a KOR antagonist and a MOR partial agonist. 
In animal models, buprenorphine significantly decreased forced 
swimming immobility time (90) and clinical trials have shown 
potential for the treatment of depression in patients who do not 
respond to traditional antidepressants (91,92). It has been reported 
that the KOR and MOR agonist (‑)‑3‑N‑Ethylaminothiazolo 
[5,4‑b]‑N‑cyclopropylmethylmorphinan hydrochloride serves 
an antidepressant and anti‑anxiety role (93), however, the under‑
lying mechanism remains to be explored.

KOR activation also stimulates hippocampal cholinergic 
neurons, thus alleviating scopolamine‑induced memory 
impairment and decreasing cognitive impairment caused by 
ischemic hippocampal nerve injury (94,95). Moreover, activa‑
tion of KOR decreases brain tissue damage, improves brain 
function and promotes brain function recovery in numerous 
animal models of cerebral ischemia (96,97).

A variety of ORs are found in the heart, among which KOR 
is dominant. The heart secretes endogenous or paracrine opioid 
peptides and regulates cardiac function by acting on ORs on 
the myocardium; this serves a critical role in fighting oxidative 
stress and myocardial ischemia/reperfusion injury (44,98). 
The myocardial protective effects of selective KOR agonist 
U50488H and butorphanol tartrate, which primarily acts on 
KOR‑based analgesic agents, have been demonstrated (99‑101).

Lastly, KOR agonists can be used for the treatment of 
refractory pruritus. Nalfurafine (TRK‑820), a highly selective 
KOR agonist is used to treat pruritus in patients with uremia 
and chronic pain liver disease and those receiving peritoneal 
dialysis (102). In addition, KOR is also involved in regulating 
respiration, immunity, exercise, addiction, feeding, diuresis 
and other functions (103).

4. Expression, function and significance of KOR in various 
types of cancer

Hepatocellular carcinoma (HCC). Liver cancer is predicted to 
be the sixth most commonly diagnosed cancer and the fourth 
leading cause of cancer death worldwide in 2018, accounting 
for ~841,000 new cases and 782,000 deaths annually (104). 
HCC is the most common subtype of liver cancer, accounting 
for 75‑85% of primary liver cancer (104). The main risk factors 
for HCC include chronic infection with hepatitis B virus or 
hepatitis C virus, aflatoxin‑contaminated food, heavy alcohol 
intake and type 2 diabetes (105).

Chen et al (60) used reverse transcription (RT) fluorescence 
quantitative (q)PCR to detect the expression of KOR mRNA 
in liver cancer and adjacent tissue samples and found that the 
expression of KOR mRNA in liver cancer tissue was signifi‑
cantly lower than that in adjacent tissue samples (Table I). 
Subsequent immunohistochemical detection of 174 cases of 
liver cancer showed that the expression of KOR protein in liver 
cancer tissue was significantly downregulated (60). Further 
analysis showed that low expression of KOR at both the mRNA 
and protein levels was significantly associated with invasive 
clinicopathological features (such as tumor size, vascular inva‑
sion, differentiation and TNM stage) of patients with HCC. 
Moreover, Kaplan‑Meier survival analysis suggested that 
downregulation of KOR in HCC predicted a poor prognosis for 
patients with HCC (60). Patients with decreased KOR expres‑
sion had a lower survival rate and increased recurrence (60). 
Therefore, KOR may inhibit the progression of HCC and could 
represent a potential therapeutic target for the treatment of 

Table Ⅰ. Regulation of KOR in various types of cancer.

Type of cancer 	 Regulation of KOR	 Function	 Prognosis	 (Refs.)

Hepatocellular carcinoma	 Downregulated	 Promotes growth, invasion and angiogenesis;	 Poor	 (60)
		  inhibits differentiation		
Esophageal squamous	 Upregulated	 Promotes metastasis and growth	 Poor	 (57)
cell carcinoma		   		
Non‑small cell lung	 Upregulated	 Promotes chemosensitivity; inhibits proliferation	 Good	 (108)
		  and growth		
Breast	 Upregulated	 Promotes chemosensitivity; inhibits growth and	 Good	 (117‑119)
		  proliferation		
Prostate 	 Upregulated	 Inhibits proliferation	 Unknown	 (126,127)
Kidney	 Upregulated	 Promotes proliferation	 Unknown	 (10)
Nasopharyngeal carcinoma	 Upregulated	 Promotes apoptosis	 Unknown	 (58)
Glioma	 Upregulated	 Promotes proliferation and DNA synthesis	 Unknown	 (132)

KOR, κ‑opioid receptor.
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HCC. These results indicate that down‑regulation of KOR in 
HCC tumor tissues has a strong association with poor prognosis 
and KOR might be a potential tumor suppressor. However, 
the localization of KOR in HCC cells remain unclear, and 
the association between KOR and HCC remains to be fully 
elucidated. Future studies should examine the role of KOR in 
the occurrence and development of HCC and other types of 
liver cancer, as well as the underlying regulatory mechanisms.

Non‑small cell lung cancer (NSCLC). At present, the incidence 
and mortality of lung cancer rank among the highest across 
all cancer types globally, and most cases are NSCLC (106). A 
research analysis (61) indicated that opioid receptors are more 
highly expressed in various human solid cancers, and KOR 
expression was found to be increased at the mRNA level in 
adenocarcinomas of the lung and pancreas, prostate carcinoma 
and myxoid/round cell liposarcoma, compared with healthy 
control tissues (Table I).

As early as 1990, KOR agonists were shown to inhibit 
the proliferation of H157 NSCLC cells  (107). A follow‑up 
study (108) has reported that KOR is highly expressed in two 
NSCLC cell lines (HCC827 and H1975) and treating these 
cells with the selective KOR agonist U50488H decreases 
their viability and proliferation in a concentration‑dependent 
manner and the selective KOR antagonist norbinaltorphimine 
reverses this effect. Gefitinib is an oral epidermal growth 
factor receptor‑tyrosine kinase (EGFR‑TK) inhibitor (109). 
Inhibition of EGFR‑TK inhibits tumor growth, metastasis and 
angiogenesis, and increases cancer cell apoptosis (110,111).

The inhibition of tumor cell viability and proliferation 
by gefitinib in HCC827 cells can be further enhanced by 
co‑treatment with the selective KOR agonist U50488H (108). 
Glycogen synthase kinase (GSK)3‑β is a multifunctional 
serine/threonine kinase involved in regulating the function of 
several metabolism and signaling pathways, as well as proteins 
and transcription factors  (112). GSK3β drives oncogenic 
progression either by its inhibition or its activation, depending 
on the cell type. Inactivation of GSK3β has been reported in 
lung cancer (113) and higher level of inactivated of GSK3β 
(pSer9GSK3β) observed (114). Phosphorylation of GSK3‑β 
leads to inactivation of the tumor suppressor gene p53, which 
is key to the progression of several types of cancer (115,116). 
Following treatment with KOR agonist U50488H, phosphory‑
lation of GSK‑3β is decreased in H1975 lung cancer cells (108). 
Activation of KOR may decrease GSK‑3β phosphorylation by 
inhibiting the cAMP/protein kinase A pathway or activating 
the JNK pathway, thus inhibiting NSCLC growth (108). These 
findings suggest that KOR may serve a role in the prevention 
and treatment of NSCLC and KOR may augment the effect 
of anti‑tumor drugs, decreasing drug resistance and activating 
key signaling pathways and molecules to inhibit lung cancer 
cell proliferation and promote apoptosis (108).

Breast cancer. KOR is also expressed in primary breast 
cancer and different breast cancer cell lines, such as MCF7 
and T47D (117,118). It has been reported that opioids inhibit 
the growth of the human T47D breast cancer cell line via KOR 
in a dose‑dependent manner (118). In a follow‑up study, it was 
also found that the chemotherapeutic drug paclitaxel bound to 
KOR, which exhibited an anti‑tumor effect in breast cancer, 

suggesting that KOR directly enhanced the effect of this drug 
and modulated cancer cell viability and proliferation (118). 
A retrospective analysis of triple‑negative breast cancer 
found that intraoperative use of opioids was associated with 
decreased risk of tumor recurrence (119). KOR is upregulated 
and Toll‑like receptor 4 is downregulated in breast tumor 
tissue compared with normal breast tissue (119). Kaplan‑Meier 
survival analysis has suggested that low expression of KOR in 
patients with breast cancer is associated with shorter overall 
and disease‑free survival (52). KOR is also upregulated in 
breast cancer compared with normal human mammary epithe‑
lial cells (59). In addition, downregulation of KOR inhibits 
survival and migration of breast cancer cells and decreases 
expression of proteins and genes associated with epithe‑
lial‑to‑mesenchymal transition, such as N‑cadherin, Snail and 
vimentin, while increasing the expression of E‑cadherin (59). 
KOR knockdown also promotes inactivation of the PI3K/AKT 
signaling pathway, which decreases cell viability and promotes 
cell death (59). KOR may be a potential tumor suppressor, which 
may be associated with epithelial‑mesenchymal transforma‑
tion and regulation of the PI3K/AKT signaling pathway (59). 
Altogether, these findings suggest that analgesics that target 
KOR activation may be suitable for patients with breast cancer.

Esophageal squamous cell carcinoma (ESCC). Esophageal 
cancer is the sixth leading cause of cancer‑associated mortality 
in the world. According to statistics from the International 
Agency for Research on Cancer, >80% of esophageal cancer 
cases are ESCC  (120). The geographical distribution of 
ESCC is heterogeneous and China has a high incidence of 
ESCC (120), where it is the fourth most common malignancy.

Zhang et al (57) found that KOR is highly expressed in the 
KYSE180 and EC109 ESCC cell lines. Immunohistochemical 
staining results of patients with ESCC suggested that KOR 
was highly expressed in esophageal cancer tissue. In addi‑
tion, KOR protein was highly expressed on the membrane of 
cancer cells and significantly upregulated in the nucleus and 
cytoplasm. Follow‑up analysis of clinicopathological features 
of 256 patients with ESCC showed that high nuclear expres‑
sion of KOR was significantly associated with lymph node 
metastasis. Therefore, overexpression of KOR in ESCC may 
have functional significance, and nuclear KOR expression may 
be a risk factor for lymph node metastasis. However, there is 
no clear evidence that KOR is as a tumor marker of ESCC.

Urological and prostate tumors. Previous retrospective studies 
have shown that patients undergoing prostate or bladder cancer 
surgery have higher disease‑specific and disease‑free survival, 
as well as increased tumor recurrence rates are likely to 
increase with increased perioperative opioid use (12,121,122).

In 1988, dynorphin was shown to promote proliferation of the 
DU145 prostate cancer cell line by activating KOR. Naloxone, 
a classical OR antagonist, increased cell viability and prolif‑
eration by 25% when used alone but paradoxically inhibits the 
effects of dynorphin on cell viability and proliferation when 
the two drugs are used in combination (123). Kampa et al (124) 
demonstrated that KOR is expressed in the PC3 and DU145 
androgen‑independent prostate cancer cell lines. Subsequently, 
a novel opiate‑active peptide (Tyr‑Ile‑Phe‑Asn‑Leu) was found 
to bind to KOR and exhibit an effective, dose‑dependent and 
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reversible anti‑proliferation effect on PC3 and DU145 prostate 
cancer cells (125). Yamashita et al (126) detected KOR mRNA 
expression in the LNCaP and VCaP cell lines using RT‑qPCR 
analysis. Androgens may affect the proliferation and viability 
of prostate cancer cells partly by regulating OR expression and 
other mechanisms (126,127).

The selective KOR opioid agonist U50488 induces prolif‑
eration of 768‑O and RLC‑310 renal carcinoma cells; this may 
be mediated by the anti‑apoptotic protein surviving (10).

The aforementioned individual reports revealed the asso‑
ciation between KOR, androgens and anti‑apoptotic proteins 
and may have important implications for understanding 
urological tumor formation and treatment. To the best of our 
knowledge, however, studies on the association between KOR 
and tumors of the urinary system are still scarce, and further 
studies are needed to confirm the aforementioned preliminary 
findings.

Glioma. Glioma is the most common tumor of the central 
nervous system, accounting for 80% of malignant brain 
tumors (128). The rat C6 glioma cell line has been used as a 
model to study various mechanisms of opioid action (129‑131). 
Using RT‑PCR analysis and radioligand studies, it has 
been demonstrated that C6 cells express KOR  (129,130). 
Bohn et al (132) found that the KOR selective agonist U‑69,593 
stimulates proliferation of C6 cells by activating phospholi‑
pase C (PLC), PKC and ERK (132). In this regard, the function 
of KOR seems to be the opposite of that of MOR; activation 
of MOR in C6 glioma cells attenuates KOR‑induced DNA 
synthesis and tumor proliferation, suggesting that MOR may 
be a negative regulator of KOR in glioma (133).

Other types of cancer. Pheochromocytoma results in 
production of opioid peptides, such as dynorphins (134). The 
KOR binding site is the most common opioid binding site 
in surgically resected pheochromocytoma and the Kat45 
human pheochromocytoma cell line  (134). Activation of 
KOR inhibits biosynthesis and release of catecholamine in 
pheochromocytoma (134). In addition, the expression of KOR 
may be associated with paracrine regulation of the prolifera‑
tion of pheochromocytoma cells (134,135). The KOR agonist 
U‑69,593 inhibits the expression of EGF on pheochromocy‑
toma cells in PC12 rats (136). However, the upregulation of 
the KOR ligand in human pheochromocytoma compared with 
normal tissue has not been demonstrated to be statistically 
significant, and it is unclear whether KOR agonists activate 
other molecules and downstream signaling pathways via KOR.

In the endometrium, KOR is the most common opioid 
binding site  (21), and its endogenous ligand dynorphin is 
produced in also this tissue (137). TGFβ1 is a primary endo‑
metrial growth factor that affects proliferation of normal 
and tumor human endometrial epithelial and stromal cells 
and promotes apoptosis of normal endometrial stromal 
cells (138,139). Chatzaki et al (137) found that treatment with 
U‑69,593, a specific KOR activator, inhibits production of 
TGFβ1 in normal, epithelial, stromal and Ishikawa endometrial 
cancer cells.

It has been reported that the presence of KOR in the CNE‑2 
human nasopharyngeal carcinoma cell line promotes tumor 
cell apoptosis by activating the PLC pathway (58).

KOR is located in the excitatory and inhibitory motor 
neurons of the intermuscular nerve of the gastrointestinal tract 
and human colon (140). KOR inhibits excitatory transmission 
of the neuromuscular and attenuates gastrointestinal peri‑
stalsis (140). The expression of KOR is increased in primary 
gastric and duodenal neuroendocrine tumors compared with 
paracancerous tissue. In a prospective study, KOR expression 
was associated with distant liver metastasis of small intestinal 
and pancreatic neuroendocrine tumors (141). These results all 
suggest that KOR serves an essential role in cancer.

5. Potential roles of KOR in cancer

Angiogenesis. Tumor angiogenesis is necessary for tumor 
progression, the provision of nutrients and oxygen, as well 
as the removal of metabolic waste and carbon dioxide (142). 
Neovascularization in tumor tissue is a complex process of 
imbalance between pro‑ and antiangiogenic factors in the 
tumor microenvironment (142). Anti‑angiogenesis therapy has 
achieved promising results in gastric and colorectal cancer, as 
well as NSCLC and other types of malignant tumor (143,144). 
Vascular growth factors such as vascular endothelial growth 
factor (VEGF) are highly expressed in tumors and induce tumor 
angiogenesis (142,145). In the clinic, angiogenesis inhibitors 
targeting VEGF signaling are used as anticancer drugs (146), 
such as Avastin (bevacizumab) is a monoclonal antibody 
against VEGF in ovarian (147), colorectal (148), kidney (149) 
and breast (150) cancer. Studies by Yamamizu et al (51,151,152) 
have suggested that activation of KOR inhibits differentiation 
and tissue angiogenesis of embryonic stem cell‑derived Flk1+ 
vascular endothelial progenitor cells. KOR agonists U50488H 
and TRK820 inhibit vascular endothelial cell migration and 
angiogenesis by inhibiting VEGF receptor expression, although 
continued use of higher doses of TRK820 have no significant 
effect on tumor growth. In addition, Lewis lung cancer (LLC) 
or B16 melanoma has been transplanted subcutaneously into 
KOR knockout mice. At 19 days post‑transplantation, LLC and 
B16 tumors in KOR knockout mice were significantly larger in 
size and weight than those in control mice and showed greater 
proliferation and tumor angiogenesis. These results suggest 
that KOR activation inhibits tumor angiogenesis (51,151,152). 
Although a number of individual angiogenesis inhibitors have 
demonstrated their ability to inhibit tumor progression and 
metastasis in a variety of cancer models, the effects of tumor 
regression vary by cancer type when the same angiogenesis 
inhibitors are used, suggesting that the future direction of 
anti‑angiogenesis gene therapy is to identify prognostic 
biomarkers to help determine the most effective angiogenesis 
inhibitor genes for each cancer, which will largely depend on 
further understanding of the biological mechanisms of tumor 
angiogenesis. In view of the anti‑angiogenic effects of KOR, the 
possibility of developing novel targeted drugs in combination 
with chemotherapy, targeted therapy and immunomodulatory 
drugs in the treatment of various types of cancer should be 
explored (Fig. 2).

Inflammation. Inflammation is usually associated with the 
development and progression of cancer (153). The cells that 
cause cancer‑related inflammation are genetically stable, so 
drug resistance does not appear quickly; therefore, targeting 
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inflammation is an attractive strategy for cancer prevention 
and treatment (153). Inflammation promotes the occurrence 
and development of certain types of tumor, but inhibits 
others, including bacterial and viral infections, autoimmune 
diseases, obesity, smoking, asbestos exposure and excessive 
alcohol consumption, all of which increase the risk of cancer 
and stimulate malignant progression (153,154). In addition, 
chronic inflammation promotes carcinogenic mutations, as 
well as changes in pro‑inflammatory cytokines that stimulate 
angiogenesis and promote tumor immune evasion (2,53).

Previous studies  (48,62,155) have shown that ORs are 
distributed outside the central nervous system, such as on the 
surface of various types of immune cell, including monocytes, 
macrophages and neutrophils, as well as T and B lymphocytes.

ORs serve an essential role in immune regulation, 
which can lead to neuroinflammation of the central nervous 
system and immune suppression of the peripheral immune 
system (48,62). There is evidence that KOR‑specific activa‑
tors exert different anti‑inflammatory effects. For example, 
KOR‑specific activators inhibit phagocytosis of macrophages, 
aggregation of neutrophils, release of TNF‑α, IL‑10, IL‑1 
and IL‑6, production of inducible nitric oxide synthase, 
nitric oxide release and nuclear translocation of NF‑κB/p65 
induced by lipopolysaccharide (156,157). Morphine affects 
the inflammatory response in the tumor microenviron‑
ment  (158). Immunosuppression has been reported as the 
downregulation of NK cell activity, responses of T and B cells 
to mitogens, antibody formation in vivo and in vitro, reduction 
of phagocytic and microbicidal activity of neutrophils and 
macrophages (154,158), cytokine and chemokine production 
by macrophages (159), microglia and astrocytes, sensitization 
to various infections using animal models, and the enhanced 
replication of human immunodeficiency virus in vitro (158). 
Moreover, MOR and KOR may have opposite effects, with the 
former associated with induction of pro‑inflammatory activity 
and the latter with anti‑inflammatory activity (159). Therefore, 
KOR may indirectly affect the occurrence and development of 
tumors via its effects on inflammation (Fig. 2).

Hypoxia. Hypoxia serves an important role in the tumor 
microenvironment. In solid tumors, cancerous cells adapt to 

a hypoxic environment through a variety of cellular mecha‑
nisms (160). Hypoxic tumor cells secrete VEGF and lactate, 
as well as a number of cytokines that modulate the tumor 
microenvironment, which increases their viability (160,161). 
The expression levels of KOR and hypoxia‑inducible 
factor 1α (HIF‑1α) are significantly increased in live human 
neurons following 24‑h hypoxia (162). HIF‑1α knockdown 
decreases KOR expression (162). Thus, during hypoxia, KOR 
promotes cell viability and its expression may be regulated by 
HIF‑1α (163). In addition, the induction of hypoxia in neuro‑
blastoma cells leads to KOR internalization, which is inhibited 
by selective KOR antagonists or dynein inhibitors and reversed 
by reoxygenation  (162). Thus, regulation of KOR during 
hypoxia is mediated by its activation via a dynein‑dependent 
mechanism Further investigations are required to determine 
whether the mechanism underlying the association between 
hypoxia influences cancer onset (Fig. 2).

6. Effects of opioids on tumors

Archaeologists speculate that as early as the Neolithic period, 
human ancestors found poppies in the mountains of the 
Mediterranean (164). Following the invention of the hypo‑
dermic syringe and hollow needle in the 1850s, morphine 
began to be used in minor surgery, both for postoperative and 
chronic pain and as an adjunct to general anesthetic (164).

The World Health Organization‑based three‑step medica‑
tion principle (165) has been used to treat cancer‑associated 
pain. Pain potentially decreases survival (166), one primary 
mechanism for the potential effects of opioids on survival is 
through immune effects (167), so it remains vital that pain is 
effectively managed. Adequate control of cancer‑associated 
pain using opioids has been shown to improve quality of life, 
compliance with cancer treatment and decrease emotional 
stress, and thus may have a positive impact on patient 
survival  (168,169). Cancer treatment primarily includes 
surgical resection (170,171), postoperative radiotherapy (172), 
chemotherapy and targeted therapy (173,174), although certain 
patients experience recurrence and metastasis following 
treatment. However, several studies have shown that peri‑ 
and postoperative opioid analgesics affect the metastasis 

Figure 2. Interaction between KOR and the tumor microenvironment. Arrows indicate regulation. KOR, κ‑opioid receptor; HIF‑1α, hypoxia‑inducible factor α; 
VEGF, vascular endothelial growth factor.
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and recurrence of cancer, although the reported effects are 
inconsistent (175‑177).

Clinical drugs targeting KOR, such as oxycodone (178) 
and butorphanol  (179), are KOR/MOR mixed agonists. 
Similar to morphine, oxycodone inhibits proliferation and 
migration of human lung adenocarcinoma cells and induces 
apoptosis (180). In addition, oxycodone has different effects on 
the proliferation, migration and apoptosis of cancer cells and 
weakens or enhances the efficacy of chemotherapy, depending 
on the type of cancer cells and the expression levels of EGFR 
in these cells (181).

Transmembrane protein with EGF‑like and two follistatin 
like domains 1 (TMEFF1) serves a vital role in the development 
of various types of tumor, including brain (182), endometrial 
carcinoma (183) and ovarian cancer (184). Butorphanol signifi‑
cantly inhibits the malignant biological behavior of ES‑2 and 
SKOV3 ovarian cancer cells and the expression of TMEFF1 is 
significantly downregulated in ovarian cancer cells (185).

7. Conclusion and future prospects

Opioids are often considered to have a negative impact on 
cancer prognosis (169), the effects of opioid receptors observed 
in patients with cancer are different, so the relationship between 
opioid receptors and cancer has attracted attention  (186). 
Several studies have shown that targeting KOR may be applied 
to treat a variety of diseases (87‑89,94,95,187). Despite the 
availability of several types of treatment, cancer remains a 
significant threat to human health (188). The opioid system 
is associated with cancer progression and cell proliferation 
and tumor prognosis (51,53). ORs affect patients with cancer 
differently (23,27,51); therefore the association between ORs 
and cancer is important. In recent years, KOR has been found 
to be associated with several types of cancer and may influ‑
ence its progression and prognosis (52,127,189). In addition to 
its impact on analgesia and the immune, endocrine, nervous 
and cardiovascular systems (103), KOR also has a significant 
impact on certain types of solid tumors and cancer cells and 
may affect the prognosis of patients with cancer (57,59,60). 
Most OR agonists bind to KOR and inhibit cell prolifera‑
tion (124). Thus, KOR may be a potential therapeutic target 
for cancer therapy. This may facilitate the development of 
novel drugs and a strategic shift in the treatment of intra‑ and 
postoperative, as well as cancer‑associated, pain.

Nevertheless, the notion that KOR can be a potential thera‑
peutic target needs further research. At present, preliminary basic 
studies on the effect of KOR on tumors are not comprehensive, 
and most are in vitro experiments (10,58,59). Most of the available 
clinical studies are retrospective in design and the conclusions 
are not consistent (52,186). Therefore, when treating patients 
with cancer, the dosage and treatment duration of opioids should 
be weighed (186,190). To design opioid analgesics without side 
effects, it is important to understand the molecular mechanisms, 
signaling pathways and effects of KOR in combination with 
chemotherapeutic drugs (191). For example, by decreasing entry 
of opioids into the central nervous system, selective targeting of 
KOR to the peripheral nervous system and inflammatory tissues 
is biased towards activation of analgesia‑associated intracellular 
signaling pathways. Additionally, clinical trials are needed to test 
the efficacy of KOR in cancer therapy and to identify its potential 

benefits in decreasing cancer morbidity and mortality, as well 
as improving quality of life. Further investigation of the roles of 
KOR may facilitate development of novel treatment for cancer 
and other types of disease.
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