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Abstract

Neurogenesis is a persistent and essential feature of the adult mammalian hippocampus. Granular neurons
generated from resident pools of stem or progenitor cells provide a mechanism for the formation and con-
solidation of new memories. Regulation of hippocampal neurogenesis is complex and multifaceted, and
numerous signaling pathways converge to modulate cell proliferation, apoptosis, and clearance of cellular
debris, as well as synaptic integration of newborn immature neurons. The expression of functional P2X7 re-
ceptors in the central nervous system has attracted much interest and the regulatory role of this purinergic
receptor during adult neurogenesis has only recently begun to be explored. P2X7 receptors are exceptional-
ly versatile: in their canonical role they act as adenosine triphosphate-gated calcium channels and facilitate
calcium-signaling cascades exerting control over the cell via calcium-encoded sensory proteins and
transcription factor activation. P2X7 also mediates transmembrane pore formation to regulate cytokine
release and facilitate extracellular communication, and when persistently stimulated by high extracellular
adenosine triphosphate levels large P2X7 pores form, which induce apoptotic cell death through cytosolic
ion dysregulation. Lastly, as a scavenger receptor P2X7 directly facilitates phagocytosis of the cellular debris
that arises during neurogenesis, as well as during some disease states. Understanding how P2X7 receptors
regulate the physiology of stem and progenitor cells in the adult hippocampus is an important step towards
developing useful therapeutic models for regenerative medicine. This review considers the relevant aspects
of adult hippocampal neurogenesis and explores how P2X7 receptor activity may influence the molecular
physiology of the hippocampus, and neural stem and progenitor cells.
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Adult Neurogenesis

Adult neurogenesis refers to the generation of new nervous
tissue within the adult central nervous system (CNS), and
infers the presence of a population of neural stem and pro-
genitor cells. The term neural stem cells (NSCs) is loosely
applied to a subset of primary progenitor cells that are de-
fined as self-renewing and multipotent, able to give rise to all
three primary cell types of the CNS: neurons, astrocytes, and
oligodendrocytes. Since the discovery of NSCs in the adult
mammalian brain, investigations have continued to uncover
roles that adult NSCs play in a wide range of physiological
events, from memory and olfaction to neurological disorders
and age-related neurodegeneration (Gotz and Huttner, 2005;
Merkle and Alvarez-Buylla, 2006). Regenerative therapies,
such as autologous stem cell transplantation and pharmaco-
logical manipulation of resident progenitor pools, have been
areas of much interest (Trounson and McDonald, 2015)
though the current understanding of molecular mechanisms
involved is lacking. This is in part due to the sophisticated
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and intricate nature of regulatory pathways, many of which
can elicit opposing outcomes depending on a variety of fac-
tors. Nevertheless, it is hoped that NSC therapies may soon
provide treatment for neurological disease and injury.

Under normal physiological conditions, neurogenesis is
primarily restricted to two discrete neurogenic niches: the
subgranular zone (SGZ) of the hippocampal dentate gyrus
and the subventricular zone (SVZ) of the anterior lateral
ventricles (Gotz and Huttner, 2005; Ming and Song, 2005),
though presence of a progenitor population has also been
reported in the basolateral amygdala (Jhaveri et al., 2018).
The SVZ houses resident radial-glial-like NSC capable of
producing transit amplifying cells, which differentiate into
neuroblasts and migrate via the rostral migratory stream to
the olfactory bulb (Ming and Song, 2011) and the striatum
(Ernst et al., 2014). The SGZ of the hippocampus generates
new granule neurons that play a crucial role in synaptic
plasticity and the formation and consolidation of short-term
memories (Kempermann and Gage, 2002; McEown and Tre-
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it, 2013; von Allmen et al., 2013).

Both neurogenic zones follow a similar process of neu-
rogenesis beginning with the asymmetrical division of an
adult NSC to a daughter stem cell (self-renewal) and a highly
proliferative progenitor referred to as a transit amplifying
cell (type C cell) in the SVZ or an intermediate progenitor
cell (IPC, or type 2 cell) in the dentate gyrus (Song et al.,
2002; Kempermann et al., 2004). These neural progenitor
cells (NPCs) symmetrically divide in an expansion phase
before differentiating into more fate-restricted neuroblasts.
Neuroblasts continue to proliferate as they migrate out of
the niche to their target zones, where they differentiate into
postmitotic immature neurons. The immature neurons in-
tegrate into the existing neural network by extending axons
and increasing their connectivity, gradually obtaining the
physiological characteristics of the local mature neurons
(Gotz and Huttner, 2005; Ming and Song, 2011). This pro-
cess is summarised in Figure 1. Amplification of relatively
large numbers of new neural progenitors correlates to the
physiological requirements of the CNS. Of the newly formed
neuroblasts, only a subset will go on to form immature neu-
rons that integrate into the neural circuitry of the target; the
remainder undergo programmed cell death (PCD; South-
well et al., 2012). The nomenclature used to define each cell
type is relative as cells do not progress in discrete stages, but
rather undergo gradual maturation with an ever-increasing
neuronal phenotype. Thus, there is an overlap of some pro-
tein markers used to identify cell type, and the use of these
delineation stages is a convenience utilized primarily for
analytical purposes (Kempermann et al., 2004; Ehninger and
Kempermann, 2008; Li et al., 2009).

During adult neurogenesis, cellular maturation is both
continuous and heterogeneous, unlike the orchestrated
waves of cell proliferation and maturation observed during
embryonic development. Niche derived growth factors, and
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other signaling molecules provide support and maintenance
of ongoing neurogenesis, ensuring the physiological condi-
tions in the niches remain permissible to continued neuron
production. Intrinsic regulation of transcription factors and
cell cycle regulators has been demonstrated to play a major
role in maintaining the homeostatic environment of the
neurogenic niches (Ming and Song, 2005; Goritz and Frisén,
2012). External stimuli, such as physical exercise, environ-
mental enrichment, natural aging, mental illness, chronic
pain and pathological states induced by seizure or stroke are
also strongly correlated with altered rates of neurogenesis,
particularly in the hippocampus (Kempermann et al., 2002;
Steiner et al., 2008; Zheng et al., 2017).

Neurogenesis in the Adult Hippocampus

In humans, neurogenesis within the dentate gyrus continues
throughout adulthood, generating granule cells thought cru-
cial for memory formation. Spalding and colleagues exam-
ined the generation rate of granule cells using '“C concentra-
tions in genomic DNA and estimated that 700 new neurons
are added to the hippocampus each day, with only a modest
decline with age (Spalding et al., 2013). Adult-born neurons
display enhanced synaptic plasticity for a limited period, and
have a key role in pattern separation and cognitive adapt-
ability, allowing a relatively small number of granule cells to
have a significant influence on circuitry and function in the
hippocampus (Ge et al., 2007). These new neurons repre-
sent a minority of the progenitor cells produced in the adult
hippocampus; a large number of the newly generated cells
undergo PCD, and overall there remains a net loss of neuron
numbers within the hippocampus.

Neurogenesis is vital for hippocampal function, in partic-
ular learning and memory formation, and the role of newly
formed granule neurons in pattern separation is thought to
be a key mechanism in this process (Clelland et al., 2009; Sa-
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Figure 1 P2X7 receptors can influence the
hippocampal neurogenic niche.

Hippocampal neurogenesis proceeds in stages, begin-
ning with type 1 NSCs which asymmetrically divide
in the subgranular zone (SGZ), before differentiating
to become proliferative type 2 (intermediate pro-
genitor) cells. In the third stage, type 3 neuroblasts
migrate to the granule cell zone. In the final stages
of neurogenesis, immature neurons extend axons
called mossy fibers to the CA3 before being fully in-
tegrated in existing synaptic transmission pathways.
P2X7 receptors can regulate multiple aspects of this
process, most notably by inducing cell death via pore
formation. Cellular debris may be cleared by neu-
ral progenitors and neuroblasts via P2X7-mediated
phagocytosis, in addition to phagocytosis performed
by resident microglia, which may also utilize P2X7.
The receptor also has potential roles in the regulation
of proliferation, differentiation and axonal extension.
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hay et al., 2011). Pattern separation processes neural inputs
into distinct outputs, allowing memories to be stored with-
out overlap or interference. Neurogenesis also modulates
fear learning and supports the association between events
and predictive cues (Seo et al., 2015). Newly generated
granule neurons have differing characteristics from mature
neurons; they possess increased intrinsic excitability with
higher potentiation amplitude and a lower induction thresh-
old (Schmidt-Hieber et al., 2004; Ge et al., 2007). This results
in enhanced synaptic plasticity and preferential activation of
new granule neurons and suggests they are major mediators
of hippocampal synaptic plasticity (Yau et al., 2015).

While basal neurogenesis rates are thought to be genetic,
the process is heavily regulated by both physiological and
pathological stimuli. Mental disorders, such as stress, de-
pression, schizophrenia and substance addiction have all
been correlated with a decrease in hippocampal size and
structural integrity, possibly due to decreased neurogenesis
(Eisch et al., 2000; Videbech and Ravnkilde, 2004; Kang et
al., 2016; Schoenfeld et al., 2017). Alternatively, exercise,
environmental enrichment and use of antidepressants have
shown to promote hippocampal neurogenesis (Santarelli et
al., 2003; van Praag, 2008; Ruitenberg et al., 2017; Sun et al,,
2017). Mice and rats provided with an enriched environment
and/or voluntary exercise consistently show increased rates
of neurogenesis (Nokia et al., 2016; Zang et al., 2017) and
display improved performance in learning and short term
memory when assessed by the water maze task (Bruel-Jun-
german et al., 2005; Iso et al., 2007). In human studies, a me-
ta-analysis of over 700 participants in 14 studies did not find
a significant change in overall hippocampal volume. Howev-
er, aerobic exercise significantly increased left hippocampal
volume (Firth et al., 2018). The ability of the hippocampus to
modulate neurogenesis in response to stimuli highlights the
potential of therapies, including exercise and diet modula-
tion, for the treatment of disorders ranging from stress and
depression to complex neurological diseases and cognitive
decline (Hueston et al., 2017; Ma et al., 2017).

Regulation of Hippocampal Neurogenesis
Adult hippocampal neurogenesis is a complex and multi-fac-
eted process, and many mechanisms are involved in regulat-
ing NPCs and the changes they undergo during neurogen-
esis. Growth factors and neurotrophins are key regulators
of adult neurogenesis and facilitate proliferation, migration,
transcription factor regulation and maturation processes
(Oliveira et al., 2013). These pathways converge with cell
death mechanisms to tightly regulate cell numbers. Calcium
and purinergic signaling also contribute significantly to cell
communication, proliferation, differentiation, migration and
PCD in adult progenitor populations in the hippocampus,
and indeed in the entire CNS (Abbracchio et al., 2009; Ul-
rich et al., 2012; Burnstock, 2016).

Calcium signaling
There are few signaling molecules as versatile as the calcium
ion, and through specific modulation of internal stores and
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membrane channels, fluctuations in cytoplasmic calcium
concentrations form complex signaling events. In this way,
a single ion can exert a wide influence over a large number
of biological processes occurring in adult NSCs and NPCs,
including excitability, synaptic transmission, gene expres-
sion, proliferation, differentiation and apoptosis (Tonelli et
al,, 2012). The regulation of internal concentrations is crucial
and as cytosolic calcium concentrations are significantly
lower than those in the extracellular fluid, cells expend a
large amount of energy to tightly control cytosolic concen-
trations through numerous adenosine triphosphate (ATP)
driven pumps, binding buffer proteins and channels. The cell
is able to control cytosolic calcium in a manner that gener-
ates distinct downstream signaling events that are eventually
translated into biological changes through decoder proteins
(Berridge et al., 2003; Tonelli et al., 2012).

Calcium holds influence over such a large number of
mechanisms due to the diversity of its signaling events in
terms of frequency, amplitude and spatiotemporal pattern-
ing. These are initiated by either global waves or localised
spikes in cytosolic calcium concentration and are controlled
by finely-tuned co-ordination between channels and com-
partmentalization mechanisms, such as the endoplasmic
reticulum (Berridge, 1997). Receiver proteins decode the
calcium signals and alter the biological activity accordingly,
through activation of transcription factors or other second-
ary signaling proteins (Smedler and Uhlen, 2014).

Purinergic signaling
Purinergic signaling is mediated by purine and pyrimidine
nucleotides, such as ATP, adenosine diphosphate, uridine
triphosphate and uridine diphosphate, and is an important
modulator of cellular activity, having roles in signal trans-
duction and cell-cell communications. The capacity of ATP
to act as a neurotransmitter was identified in the 1970s, and
since then the role of purinergic receptors in neural tissue
has attracted much interest (Burnstock, 1972). Purinergic
receptors mediate the effects of purines via three distinct
receptor classes; P1, P2Y and P2X receptors. P1 receptors are
metabotropic G protein-coupled receptors activated by ade-
nosine. P2 receptors respond to the binding of extracellular
purinergic molecules, and are divided into P2X and P2Y
subfamilies. P2X receptors 1 through 7 are ionotropic cation
channels activated by extracellular ATP and allow for the
passage of Ca’", K" and Na' ions (Ulrich et al., 2012). P2Y
receptors, on the other hand, are G protein-coupled recep-
tors and may be activated by ATP, as well as its derivatives
adenosine diphosphate, uridine triphosphate and uridine
diphosphate. Most P2Y receptors appear to signal via PLC,
leading to an increase in IP3 concentrations and the release
of calcium from the endoplasmic reticulum (Grimm et al.,
2010). Thus both P2X and P2Y signaling can cause influx of
calcium ions to the cytosol and initiate downstream signal-
ing cascades to regulate transcription factor activation, cell
cycle events, differentiation, migration and cell death in ner-
vous tissues (Abbracchio et al., 2009).

In neurotransmission, purinergic signaling is involved in
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neuron-glial interactions, and P2X receptors can regulate
rapid synaptic signal transmission and synaptic plasticity.
Purines are also involved in control of learning, memory,
tfeeding and sleep behaviour, as well as pathophysiologies,
neurodegenerative and neuropsychiatric disorders (Burn-
stock, 2013). P2X receptors are known to play a critical role
in pathological processes, such as thrombosis, inflammation
and neuropathic pain (North, 2002; Kaczmarek-Hajek et al.,
2012). P2X7 in particular has been heavily implicated in in-
flammatory responses, thereby providing possible therapeu-
tic applications for endogenous tissue repair and stimulation
of neurogenesis in cases of neurodegenerative diseases (Gla-
ser et al., 2012; Ulrich et al., 2012).

P2X7 Receptors

P2X7 receptors share the least homology (35-40%) with
other P2X receptors and have a number of important phys-
iological functions that distinguish it from the others in its
family (North, 2002; Sperlagh et al., 2006). They contain two
hydrophobic regions that transverse the plasma membrane,
with both the N- and C-terminus located intracellularly. The
P2X7 receptor forms a homo-trimeric structure, with the
bulk of the protein on the external membrane surface (Jiang
et al., 2013), and appears to be the only P2X subunit unable
to form a heteromeric complex (North, 2002). Endogenous
ATP has a relatively low potency against P2X7 receptors,
generally requiring concentrations 100 pM and above, com-
pared to other P2X receptors, which are activated by ATP in
the low micromolar range (Virginio et al., 1999). As an ago-
nist, 2',3'-0-(4-benzoyl-benzoyl) adenosine 5'-triphosphate
(BzATP) is approximately 10 to 30 times more potent than
ATP, and although it is not specific to P2X7 receptors, its
higher affinity to P2X7 makes it a useful tool for examining
the pharmacological activity of P2X7 receptors (Bianchi et
al.,, 1999).

The P2X7 receptor was first described as the P2Z receptor,
or the ‘cell death’ receptor, as its activation with high concen-
trations of ATP results in the opening of a pore that allows
macromolecule exchange leading to cell death (Surprenant et
al,, 1996). They were first detected in the immune system on
antigen presenting immune cells, where they are rapidly ac-
tivated in response to inflammatory stimuli in immune cells,
releasing pro-inflammatory mediators, including cytokines,
such as interleukin (IL)-1p and tumour necrosis factor, from
the cytosol as part of the host defence reactions (North,
2002; Tsukimoto et al., 2006). Activation of transcription
factors is thought to be one method utilised by P2X7 recep-
tors to affect downstream responses. In macrophages, stim-
ulation of P2X7 with ATP resulted in activation of nuclear
factor of activated T cells 1 and 2 (Ferrari et al., 1999), as well
as nuclear factor kB (NFxB) (Ferrari et al., 1997). In neurons
of the hippocampus, purinergic activation of NF«B through
P2X7 receptors have been of interest due to its implications
in the pathophysiology of neurological damage or trauma
(Kim et al., 2013).

P2X7 receptors have since been identified in an ever-in-
creasing number of cell types, from bone and muscle to

neural and stem cell lineages, and have a number of non-im-
mune functions, with distinct responses depending on ex-
posure time and concentration. Brief activation results in
cation influx for the purposes of neurotransmitter and signal
transduction (Papp et al., 2004), while prolonged activation
results in the formation of a large transmembrane pore per-
meable to molecules up to 900 Da. This leads to cytoskeletal
rearrangement, transmembrane pore formation, and po-
tentially apoptosis and/or necrosis (Delarasse et al., 2009).
The latter has significant implications in pathophysiological
events, where P2X7 receptors are rapidly activated in re-
sponse to inflammatory stimuli, releasing pro-inflammatory
mediators, such as IL-1p and tumour necrosis factor (Sper-
lagh and Illes, 2014). In the absence of ATP, P2X7 receptors
have been demonstrated to facilitate phagocytosis in both
the immune system and the nervous system (Wiley and Gu,
2012; Lovelace et al., 2015; Leeson et al., 2018). The diverse
functions of P2X7 receptors and how they may regulate
hippocampal neurogenesis are the focus of this review, and
are summarised in Figure 1 and depicted in greater detail in
Figure 2.

P2X7 Receptors in the Adult Hippocampus

An early report based on in situ hybridization studies in
the adult brain suggested that P2X7 receptor mRNA was
restricted to the ependymal layer of the third ventricle and
in activated microglia (Collo et al., 1997). P2X7 receptors
were thus believed to be absent from neurons until later
studies indicated their presence. Using in situ hybridization
and electron microscopy, P2X7 receptors were localised to
the excitatory terminals in the CAl, CA3 and the dentate
gyrus, and implicated in the regulation of y-aminobutyric
acid (GABA) and glutamatergic signaling (Sperlagh et al.,
2002). P2X7 receptor involvement in modulating GABA
and glutamate release in the hippocampus has been further
confirmed by immunohistochemistry and located mostly
to pre-synaptic nerve terminals (Atkinson et al., 2004) and
by glutamate and GABA release and uptake experiments in
mice lacking the P2X7 receptor (Papp et al., 2004). Further,
application of P2X7 agonists decreased GABA and glutamate
uptake in nerve terminals by disrupting sodium gradients,
and this was rescuable by P2X7 inhibition (Barros-Barbosa
et al., 2015). Despite this evidence, some disagreement re-
garding neuronal expression of P2X7 receptors persists as is
addressed in detail in recent dual perspective publications in
the Journal of Neuroscience (Illes et al., 2017; Miras-Portu-
gal et al., 2017).

Unfortunately, the abundance of literature dedicated to
P2X7 receptor functions in the hippocampus does not cur-
rently extend to research involving P2X7 receptors in NPCs.
So far, P2X7 has been reported at embryonic stages in the
SVZ (embryo (E)15.5), and the SGZ (E18.5 and postnatal
(P)4), with P2X7 receptor mRNA expressed in terminally
differentiated neural cells (Tsao et al., 2013). The receptor has
also been identified in embryonic progenitor cells derived
from the striatum (Delarasse et al., 2009) and the developing
human telencephalon (Lovelace et al., 2015) and in adult
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neural progenitors of the SVZ (Messemer et al., 2013). We
recently reported the presence of P2X7 in adult hippocam-
pal NPCs derived from mice and demonstrated that these
receptors were functional as calcium channels, were capable
of pore formation and in the absence of agonist stimulation
could facilitate phagocytosis (Leeson et al., 2018). These
findings confirm those by Hogg et al. (2004), who reported
the application of ATP and BzATP evoked inward current
and depolarisation, as well as transient cytosolic calcium
increases in NPCs derived from the hippocampus of adult
rats. Further, the authors demonstrate positive P2X7 immu-
nochemistry in undifferentiated and differentiated NPCs
(Hogg et al., 2004). In juvenile mouse hippocampal slice
preparations, ATP and BzATP induced membrane currents
in NPCs, granule cells, and astrocytes, but not GABAergic or
glutamatergic interneurons of the hilus. These NPC currents
were inhibited by the presence of P2X7 inhibitor A438079,
and were not observed in slice preparations from P2X7 defi-
cient mice (Rozmer et al., 2017).

P2X7 Regulation of Proliferation and

Differentiation

P2X7 receptor activity has been shown to regulate prolifera-
tion and differentiation pathways, by promoting cell survival
and proliferation, while inhibition may result in differen-
tiation and axon growth. As P2X7 receptors are generally
associated with cell death pathways, this presents an inter-
esting and somewhat conflicting role for the receptor (Tang

1688

calcium dependent
signalling cascades

modulation of
calcium oscillations

baseline Ca®* oscillations

C U

frequency decoder

receptors.

P2X7 receptors have at least three distinct roles in
adult hippocampal neural progenitor cells, these being
phagocytosis, transmembrane pore formation, and cat-
ion signaling. In the absence of adenosine triphosphate
(ATP), the C terminus of P2X7 receptors interacts with
the heavy chain of non-muscle myosin IIa (NMM Ila),
and can facilitate phagocytosis by actin rearrangement.

low ATP

~'v Yer This interaction with NMM Ila dissociates in the pres-
ence of ATP. When extracellular ATP concentrations
Ca%* are high (in the millimolar range) P2X7 receptors form

a large transmembrane pore which causes cell death
‘ by macromolecule flux and cytosolic calcium over-

load. In the presence of lower concentrations of ATP,
a cation channel opens, allowing calcium into the cell.
‘ Calcium is a powerful and versatile signaling molecule

and influx via P2X7 can lead to release of pro-inflam-
matory molecules (interleukin (IL)-1p and IL-6), as
well as regulation of cell cycle events. Calcium induced
calcium release from the endoplasmic reticulum may
contribute to cytoplasmic calcium oscillations, which
are translated by decoder proteins to effect biological
changes. One mechanism of regulation is by calcium
dependent transcription factors, such as nuclear fac-
tor kB (NFkB) and nuclear factor of activated T cells
(NFATs), which can become activated following P2X7
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and Illes, 2017). Using mouse embryonic stem cells, Ulrich
and colleagues recently observed accelerated cell cycle entry
following BzATP application, and that inhibition of P2X7
by pharmacological antagonists increased differentiation,
measured by the number of cells expressing markers of early
neuronal phenotypes (Glaser et al., 2014). They also demon-
strated that levels of P2X7 receptor mRNA and protein
decrease with increasing differentiation, and suggest P2X7
receptors have a role in proliferation and differentiation.
Contrary to this data, another study found P2X7 receptor
activation caused a decrease in proliferation and enhanced
the expression of neural markers in embryonic NPCs; this
neuronal differentiation was regulated by the protein kinase
C extracellular signal-regulated kinases 1/2 signaling path-
way (Tsao et al., 2013). Our recent findings also support this
conclusion; in adult hippocampal NPCs application of ATP
and BzATP was found to reduce proliferation rates via P2X7
without inducing cell death, and this coincided with a small
yet significant increase in the percentage of doublecortin
positive cells (Leeson et al., 2018). This followed P2X7 re-
ceptor facilitated calcium influx, and subsequent cytosolic
calcium oscillations contributed to by calcium-induced cal-
cium release from the endoplasmic reticulum (unpublished
findings). These observations lend themselves to the theory
that activation of P2X7 receptors following an ischemic or
cell death event may result in a decrease in proliferation of
NPCs as they are pushed further towards a state of matura-
tion, potentially assisting in the replacement of lost neurons.
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One of the most important aspects of neurogenesis is the
migration of the axon’s growth cone towards its target. By
responding to positive and negative stimuli, the growth cone
is able to establish correct neuronal circuits. Exposure of cul-
tured hippocampal neurons to ATP inhibited axonal growth
via P2X7 receptor-mediated calcium transients. In this
study, inhibition or silencing of P2X7 receptors generated
growth cone extension and longer and more branched axons
(Diaz-Hernandez et al., 2008). This effect was also observed
when the neuron culture was treated with alkaline phospha-
tase (Diez-Zaera et al., 2011). Neurite outgrowth was also re-
ported in neuroblastoma cells in response to P2X7 inhibition
(Wu et al., 2009). Together, these studies demonstrate the
ambiguous roles P2X7 receptors can play, and further inves-
tigation of P2X7 receptor involvement in cell cycle control,
proliferation and differentiation are required.

Cell Death and Phagocytosis During Adult

Neurogenesis

Neurogenesis is marked by an overproduction of progenitor
cells, which are selected for differentiation and integration
into neuronal networks depending on the requirements of
the brain. PCD is essential for controlling cell numbers in
proliferative stages and for synaptic pruning and removal
of immature neurons that fail to correctly integrate into the
existing cytoarchitecture (Ryu et al., 2016). In the SGZ of
the adult rat dentate gyrus, an estimated 9000 progenitor
cells are produced each day (Cameron and McKay, 2001).
Of these newly generated progenitor cells, around 50% will
undergo PCD at a steady rate during the first four weeks
(Dayer et al., 2003). Young neurons surviving 4 weeks make
up about 6% of the total population of granule neurons in
the hippocampus (West et al., 1991; Kempermann et al.,
1998; Cameron and McKay, 2001). By five months most of
these neurons have matured and become incorporated into
existing circuitry where they function together with the rest
of the granule cells formed during development (Dayer et al.,
2003).

Sierra and colleagues observed that the majority of adult
hippocampal neuroblasts underwent apoptosis one to four
days after their initial division and that microglia rapidly
phagocytosed the dead cells (Sierra et al., 2010). Apoptotic
bodies are cleared in just a few hours, meaning the total
amount of cell death is difficult to estimate, and not nec-
essarily reflected by the number of pyknotic or TUNEL
positive nuclei observed (Chung and Yu, 2013). In these
situations, the apoptotic cells are progenitor cells still in the
proliferation stages and have not yet matured into neurons
capable of producing an axon to connect with a target, sug-
gesting this cell death is target independent and is regulated
by cell autonomous signals or region-specific signals.

Clearance of cell corpses following PCD is essential for
maintaining homeostasis in the neurogenic niche, and dys-
regulation in phagocytosis results in the build-up of cellular
debris leading to brain dysfunction (Fuchs and Steller, 2011).
Microglia appear in the cerebrum during the second trimes-

ter of human gestation and once present act as the principal
phagocyte of the CNS, playing a vital role in the maintenance
of the adult hippocampus (Rezaie and Male, 1999; Sierra et
al., 2010). Microglia play an important role in the removal
of apoptotic neurons and also aid in the pruning of synapses
during development (Kettenmann et al., 2011). The role of
microglia goes beyond the phagocytosis of debris; they also
have crucial roles in the reorganisation and repair of neural
structures (Neumann et al., 2009). Resting microglia moni-
tor their environment for changes in homeostasis caused by
infection, injury or altered neuronal activity, which result in
the release of microglial-activating and pro-inflammatory
signals from the affected cells, including chemo-attractants,
ATP, chemokines and growth factors. These ‘find me’ and ‘eat
me’ signals are recognised by receptors on the surface of the
microglia. In response, microglia are activated and migrate
to the affected area, producing further pro-inflammatory
mediators as they migrate (Wake et al., 2009; Kettenmann
et al,, 2011). Scavenger receptors on the surface of microglia
play an important role in the initiation of phagocytosis. For
example, P2X7 receptors can act as scavenger receptors in
monocytes and macrophages in the absence of ATP (Wiley
and Gu, 2012), and in primary microglial cultures, phago-
cytosis was also facilitated by P2X7 receptors (Fang et al,,
2009).

Until recently, microglia were assumed to be solely re-
sponsible for clearance of apoptotic debris, though it has
now been revealed that adult NPCs are capable of phagocy-
tosing fluorescent beads (Leeson et al., 2018), as well as other
apoptotic progenitors (Lu et al., 2011). During early-stage
embryonic neurogenesis when microglia have not yet arisen
from the developing parenchyma, the principal phagocyte
appears to be the neuroepithelial cells themselves (Gu et
al., 2015). It is reasonable to suspect these mechanisms of
cell removal are retained into adulthood. Observations in
both the SVZ and SGZ demonstrate that NPCs are capable
of phagocytosing other apoptotic neural progenitors, and
this mechanism, seen in doublecortin positive cells, was
reliant on intracellular engulfment protein ELMO1, which
promotes Racl activation and cytoskeletal rearrangements
required for engulfment of apoptotic bodies (Lu et al., 2011).
It was also recently demonstrated that human embryonic
NPCs express P2X7 receptors and that these progenitors are
able to phagocytose via a P2X7 mediated pathway (Lovelace
et al., 2015). Resting astrocytes were likewise demonstrated
to phagocytose via P2X7 receptors (Yamamoto et al., 2013).
These data suggest microglial phagocytosis is not the only
method used in the clearance of apoptotic NPCs, and that
other mechanisms play important roles in the maintenance
of the neurogenic niches.

P2X7 Receptors in Phagocytosis

In the absence of ATP, P2X7 receptors have been not only
demonstrated to facilitate phagocytosis but can confer the
ability to phagocytose. The phagocytic function of P2X7
receptors is mechanistically distinct from its canonical pore
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function; in addition to agonist presence inhibiting P2X7
phagocytic potential, polymorphic variants conveying chang-
es in pore function do not necessarily alter phagocytic ca-
pability, nor is altered by P2X7 antagonists (Ou et al., 2018).
P2X7 receptors expressed on the surface of macrophages are
involved in the engulfment of latex beads, as well as both live
and heat-killed bacteria in the absence of ATP and serum,
while transfection of P2X7 receptors into HEK293 cells con-
ferred the ability of HEK293 cells to phagocytose (Wiley and
Gu, 2012). Within the CNS, the P2X7 membrane complex
is thought to play an important role in innate immunity, as
it can mediate the phagocytosis of non-opsonised particles
including beads, bacteria and apoptotic neuronal cells (Wiley
and Gu, 2012; Lovelace et al., 2015; Leeson et al., 2018).

P2X7 receptors have been shown to tightly associate with
heavy chain ITA of the non-muscle myosin complex, a ma-
jor cytoskeletal component and essential for internalising
particles during phagocytosis (Gu et al., 2009). It was later
discovered that an intact P2X7-nonmuscle myosin complex
was required for phagocytosis, and that extracellular ATP
causes the dissociation of the P2X7 complex from myosin
ITA, resulting in inhibition of particle uptake (Gu et al,,
2010). This suggests that in the absence of ATP and serum
proteins, P2X7 receptors may have a function distinct to the
inflammatory response, and can act as a scavenger receptor
for bacteria, debris and apoptotic cells in the CNS.

It was recently demonstrated that during human embryon-
ic development, NPCs express P2X7 receptors and that these
neural progenitors and neuroblasts are able to phagocytose
apoptotic ReNcells and apoptotic neuroblasts, as well as latex
beads via a P2X7 mediated pathway (Lovelace et al., 2015).
Presence of ATP, P2X7 antagonists or siRNA knockdown
inhibited this phenomenon, suggesting that P2X7 can act as
a scavenger receptor on neural progenitors within the devel-
oping human CNS (Lovelace et al., 2015). We have recently
expanded on this discovery to show the P2X7 receptor can
also facilitate phagocytosis in NPCs derived from the adult
hippocampus (Leeson et al., 2018). This alternate function
may allow P2X7 to act as a scavenger receptor in the nervous
system, where the balance between proliferation and PCD
plays a fundamental role in the maintenance of the adult
brain.

Dysregulation of Hippocampal Neurogenesis

Adult hippocampal neurogenesis appears to play a role in
the brain’s ability to recover from some types of physiolog-
ical trauma (Jin et al., 2010). Following stroke, there is an
increase in progenitor cell proliferation, and these new cells
become functionally integrated into the existing hippocam-
pus (Geibig et al., 2012). There is also substantial evidence
that psychosocial stress, anxiety, and depression reduces
neurogenesis in rodents via the release of stress-related hor-
mones (Dranovsky and Hen, 2006). As an area of the adult
brain that constantly remodels its synaptic connectivity in
response to sense-data, it is not surprising that these events
can also modulate neurogenesis. Chronic corticosterone
treatment has been used as a model for anxiety and depres-
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sion in mice, and inhibits hippocampal neurogenesis, while
treatment with antidepressants, such as fluoxetine, reverses
this effect (David et al., 2009). Epileptic seizures have been
shown to cause abnormal hippocampal neurogenesis, with
increased progenitor proliferation but aberrant integration,
neuronal hypertrophy, and altered excitability. This may pre-
vent the hippocampus from properly regulating excitatory
activity and may prompt further seizures (Danzer, 2012).
Inhibition of hippocampal neurogenesis prior to inducing
acute seizures with pilocarpine reduced the cognitive im-
pairment associated with epilepsy, and this led to reduced
seizure frequency and long term suppression of spontaneous
recurrent seizures. The authors concluded that abnormal
neurogenesis not only results from but contributes to epilep-
tic episodes (Cho et al., 2015). Whether or not epilepsy can
be caused by altered or aberrant neurogenesis as the brain
attempts repair following an initial injury remains a debated
topic (Jessberger and Parent, 2015).

P2X7 Receptor Signaling in Inflammation and

Disease

The canonical function of P2X7 receptors is to initiate
pro-inflammatory responses, and in recent years the evi-
dence implicating extracellular ATP and P2X7 receptors
in pathophysiological mechanisms in the brain has rap-
idly expanded (Ulrich et al., 2012; Di Virgilio et al., 2017;
Miras-Portugal et al., 2017). Cytosolic ATP has a relatively
high concentration compared to the extracellular milieu and
is released in large quantities when membrane integrity is
compromised. High ATP concentrations induce the release
of plasminogen, tumour necrosis factor-a (TNF-a), and IL-
1B via P2X7 receptor-mediated pathways, a process that is
regulated by mitogen-activated protein kinases, extracellular
signal-regulated kinases and calcium-dependent signaling
(Inoue, 2008; Fang et al., 2009). These cytokines and chemo-
kines can act to exacerbate the inflammatory response. In
high concentrations, extracellular ATP is neurotoxic and el-
evated levels strongly correlate with neurological conditions,
such as acute spinal cord injury and ischemia, and degener-
ative diseases, such as Parkinson’s and Alzheimer’s disease
(Parvathenani et al., 2003; Wang et al., 2004; Virgilio et al,,
2009).

Excessive inflammation caused by high concentrations
of ATP may be counterproductive to attempts to repair the
acute damage, as the cytotoxic effects of these modulators
impact on healthy tissue and exacerbate the initial injury
(Fiebich et al., 2014). Higher than normal amounts of ATP
released from necrotic cells following an ischemic event
activates P2X7 receptors on the surface of both neurons
and glial cells, allowing inward current and an overload of
cytosolic calcium levels, leading to mitochondrial depolar-
isation, oxidative stress and cell death. In embryonic NPCs,
prolonged ATP exposure resulted in membrane disruption
and cell death via activation of the P2X7 receptor (Delarasse
et al,, 2009). Neuronal vulnerability to high concentrations
of extracellular ATP was found to depend on P2X7 expres-
sion levels (Ohishi et al., 2016). These studies highlighted the



Leeson HC, Chan-Ling T, Lovelace MD, Brownlie JC, Gu BJ, Weible II MW (2019) P2X7 receptor signaling during adult hippocampal
neurogenesis. Neural Regen Res 14(10):1684-1694. doi:10.4103/1673-5374.257510

effects of P2X7 receptor activation in cognitive dysfunction
and traumatic or ischemic events, and their roles in the neu-
rogenic niches is currently the focus of much interest (Engel
etal.,, 2012; Yu et al., 2013; Liu et al.,, 2017Db).

Subsequently, a number of recent studies demonstrating
conferral of neuroprotection by modulation of P2X7 recep-
tor activity have highlighted the therapeutic potential of tar-
geting P2X7 receptors in cerebrovascular diseases (Sperlagh
and Illes, 2014). These studies generally focus on ischemic
and traumatic brain injury (Nadal-Nicolas et al., 2016; Liu et
al., 2017a), epilepsy (Huang et al., 2017) and stroke (reviewed
in Zhao et al,, 2018), and consistently report that inhibition
or blockade of P2X7 receptors decreases the cellular damage,
provides neuro-protective qualities and improves functional
recovery. Further, in a nerve crush model, pharmacological
inhibitors of the P2X7 receptor improved the morphology of
regenerating nerves (Ribeiro et al., 2017). Supporting these
observations, Choi et al. (2007) showed inhibition of P2X7
receptors to decrease both pro-inflammatory mediators and
NFkB activation, subsequently increasing neuronal survival
rates in the striatum following lipopolysaccharide injection.
These effects are often contributed to a maintained control
of membrane potential and integrity, a reduced release of
pro-inflammatory mediators such as IL-1p and IL-6 (Savio
et al,, 2017), and a reduced gliosis (Jimenez-Pacheco et al.,
2016).

In mice with pilocarpine and kainic acid induced seizures,
an increase in P2X7 receptor immunoreactivity and sensi-
tivity was observed in hippocampal NPCs (Rozmer et al.,
2017). Blocking the P2X7 receptor in this study prevented
the neuronal degradation of CA3 pyramidal cells, though
also caused an increase in the number and severity of sub-
sequent spontaneous seizures. Status epilepticus (prolonged
seizures) has also been found to increase levels of P2X7 in
the granule neurons of the dentate gyrus, and that antago-
nising P2X7 receptors reduced both seizure duration and
subsequent neuronal death (Engel et al., 2012). Similar ob-
servations were made in the CAl area of the hippocampus,
where P2X7 receptor inhibition reduced the amount of de-
layed neuronal death in ischemic injury (Yu et al., 2013). An
increase in receptor expression was also observed.

Contrary to these findings, Kim et al. (2011) reported that
activation of P2X7 receptors with BzZATP decreased neuron
damage following status epilepticus, while inhibition with
oxATP or A438079 resulted in increased neuronal death in
the CA3 region of the hippocampus. This effect was medi-
ated by release of TNF-a and subsequent NF«B phosphory-
lation. A possible explanation for this ambiguity is different
expression patterns of splice variants, most of which are
truncated at the C-terminus and no longer have the ability
to form transmembrane pores (Cheewatrakoolpong et al.,
2005).

Glial cells are also heavily impacted by P2X7 receptor sig-
naling during inflammatory events (Verkhratsky et al., 2012).
Following an acute event, such as ischemia or trauma, as well
as chronic neuropathies, such as multiple sclerosis, Parkin-

son’s and Alzheimer’s disease, expression of P2X7 receptors
on the surface of microglia are often upregulated (Franke et
al., 2004). This upregulation is also observed in oligodendro-
cytes, where ischemic damage is partly caused by glutamate
toxicity and compounded by increases in extracellular ATP
concentrations. The irreversible increase in cytosolic calcium
concentrations severely damaged oligodendrocytes and my-
elin, and the ATP degrading enzyme apyrase and P2X7 re-
ceptor antagonists alleviated the damage caused by ischemia,
as well as improving action potential recovery (Domercq et
al,, 2010). Together, these studies heavily implicate P2X7 re-
ceptor activity in processes of inflammatory cell death.
Recently P2X7 receptors have also emerged as a new tar-
get for depression and cognitive dysfunction studies (Liu
et al., 2017b). Inflammation is a key pathophysiological
mechanism contributing to neuropsychiatric disorders, and
pro-inflammatory cytokines IL-6, IL-1p and TNF-a can
mediate many of the psychological changes associated with
depression. Chrysophanol, a traditional Chinese medicine
with anti-inflammatory properties, was demonstrated to im-
part anti-depressant effects in lipopolysaccharide depression
models, and reduced the expression of P2X7 receptors, as
well as serum levels of IL-6, IL-1p and TNF-a (Zhang et al.,
2016). The authors speculated that the antidepressant effect
of Chrysophanol was mediated by a P2X7/NF«B signaling
pathway. This hypothesis is supported by P2X7 receptor
knock out mice that display antidepressant-like profiles in
forced swim and tail suspension tests (Basso et al., 2009).

Conclusion

There are at least three distinct functions P2X7 receptors
may play in the adult hippocampus, depending on the con-
ditions present in the extracellular environment. The first is
the initiation of cell death in the presence of inflammation
and extracellular ATP. The second is calcium-mediated sig-
nal transduction in response to ATP signaling, which may,
in turn, regulate biological functions, such as proliferation
and differentiation. The third and non-canonical function of
P2X7 receptors is to promote phagocytosis in the absence of
extracellular ATP. These alternate facets of P2X7 signaling
have somewhat juxtaposed outcomes in terms of function.
Understanding these mechanisms is essential to addressing
important questions that remain regarding neurogenesis and
regeneration in the adult brain.
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