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INTRODUCTION

Alzheimer’s disease (AD) and other neurodegenerative disor-

ders are associated with brain atrophy.1 Consistent with histo-
logic findings,2 significant medial temporal lobe or hippocam-
pal atrophy can be detected by structural magnetic resonance 
imaging (MRI).3-5 MRI measurements of brain volumes assess 
regional brain atrophy and quantify neurodegeneration, there-
by enabling the detection of patients with the risk of rapid clini-
cal deterioration.1

Software packages available for volumetric brain analysis in-
clude the FSL,6,7 voxel-based morphometry,8 FreeSurfer (FS),9 
and NeuroQuant (NQ).10 NQ11 was originally designed for the 
quantification of brain atrophy in AD,12 and is a fully-automat-
ed software approved by the United States Federal Drug Ad-
ministration for cross-sectional brain volume measurement. 
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NQ uses high-resolution three-dimensional (3D) T1-weighted 
volumetric images to automatically provide segmentation-
based measurements of cortical and subcortical volumes. NQ 
also provides normative percentiles of regional brain atrophy 
by comparing the measured volumes to a normative database 
adjusted for age, sex, and intracranial volume (ICV). NQ and 
FS use similar segmentation methods; however, NQ utilizes a 
different probabilistic atlas, independent codebase, intensity 
normalization, and gradient distortion correction method to 
accommodate the scanner-specific acquisition-level differenc-
es.13 Although NQ was introduced clinically for brain atrophy 
measurement, FS is still regarded as a reference standard for 
brain volumetry and has been used extensively in research.

In the era of big data, both clinicians and researchers are be-
coming increasingly aware of the reproducibility problems be-
tween different software.14,15 Volumetric results can be affected 
not only by the use of different software,16 but also by image 
acquisition conditions such as slice thickness. Previous studies 
have shown good inter-method reliability of volumetric mea-
surements by NQ and FS for most brain regions, including the 
hippocampus.1,12,17,18 However, the effect of 3D T1 slice thick-
ness on brain volumetry has not yet been investigated.

We hypothesized that different slice thicknesses in T1 vol-
ume imaging sequence might affect the inter-method reliabil-
ities of different software depending on the structure. We rea-
soned that this evaluation would be more appropriately tested 
in participants with clinical mild cognitive impairment (MCI), 
as both normal healthy controls and persons with advanced 
stage of AD are the extremes of the spectrum in the context of 
clinical practice. Accordingly, this study aimed to examine the 
effect of slice thickness in T1 volume imaging sequence on the 
inter-method reliability and volumetry of NQ and FS in patients 
with MCI.

MATERIALS AND METHODS

Study population
The Institutional Review Board approved this study and waived 
the requirement for informed consent (IRB number : 2019-08-
034, IRB institution : Konkuk University Medical Cente) due to 
the retrospective nature of the study. Patients who underwent 
brain MRI and were subsequently diagnosed with MCI 
(n=102) between September 2016 and December 2017 at our 
memory clinic were considered. MCI was diagnosed accord-
ing to the operational criteria of Petersen, et al.19 Patients with 
insufficient MRI or clinical data were excluded. Two groups 
were identified based on the type of MR protocol. The case-
control matching procedure was used to select 40 age-
matched patients from each group. Patients in Group 1 (n=40; 
female:male=26:14; mean age=71.6±7.0 years; age range=57– 
85 years) had 1.2 mm thick sagittal T1-weighted MRI, and 
those in Group 2 (n=40; female:male=25:15; mean age=72.2±6.8 

years; age range=57–81 years) had 1 mm thick sagittal T1-
weighted MRI.

Image acquisition
Routine MRI protocols were obtained with a 3T MR scanner 
(Discovery MR750+; GE Healthcare, Waukesha, WI, USA) for 
the following sequences: axial and sagittal T1-weighted inver-
sion recovery imaging [repetition time (TR)/echo time (TE)= 
2468/12; inversion time=920 ms; section thickness 5 mm; 
matrix 512×224]; axial T2-weighted fast spin-echo imaging 
(TR/effective TE=4000/106; section thickness 5 mm; matrix 
384×384); axial fluid-attenuated inversion recovery imaging 
(TR/TE=11000/105; inversion time=2600 ms; section thick-
ness 5 mm; matrix 384×224); and axial T2-weighted gradient-
recalled echo imaging (TR/TE=550/17; section thickness 5 
mm; matrix 384×224; flip angle 15°). The sagittal T1-weighted 
volumetric fast spoiled gradient-recalled echo was either TR/
TE=5.692/2.36; section thickness 1.2 mm; matrix 192×192; flip 
angle 8°; field of view (FOV) 240×240 mm for Group 1, or TR/
TE=8.224/3.192; section thickness 1 mm; matrix 256×256; flip 
angle 12°; FOV 250×250 mm for Group 2.

Volumetric analyses
The sagittal T1-weighted volumetric images were analyzed 
with automated segmentation methods. The brain MRI data 
of each MCI patient were uploaded to the tool’s server. The steps 
of NQ image processing were as follows: stripping the brain of 
scalp, skull, and meninges; inflating the brain to a spherical 
shape; mapping the spherical brain to a common spherical 
space shared with the Talairach atlas coordinates; identification 
of segmented brain regions; and deflation of the brain back to 
its original shape. The brain volume was corrected for the head 
size difference using division by ICV, and was expressed as a 
percentage. The results were saved in the NQ database. When 
a patient’s brain region fell below the 5th normative percentile, 
it was classified as abnormally small. The automated tool also 
provided an age-related atrophy report, with absolute and rel-
ative volumes as a percentage of the ICV for hippocampi, later-
al ventricles, and inferior lateral ventricles. The total duration for 
NQ image processing ranged from 10 to 15 minutes.

The FreeSurfer 6.0.0 (http://surfer.nmr.mgh.harvard.edu, 
Harvard University, Boston, MA, USA) uses a template-driven 
approach for volumetric- and surface-based segmentation, as 
previously described.9,20 The steps involved in FS image pro-
cessing were as follows: motion correction, removal of non-
brain tissue, automated Talairach transformation, segmentation 
of the subcortical structures, intensity normalization, tessella-
tion of the gray matter (GM) white matter (WM) boundary, au-
tomated topology correction, surface deformation following 
intensity gradients to optimally place the gray/white and gray/
cerebrospinal fluid borders at the location where the greatest 
shift in intensity defines the transition to the other tissue class, 
surface inflation, parcellation of the cerebral cortex into units 
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based on gyrus and sulcus structure, and finally, creation of a 
variety of surface-based data. The variable “Brain Segmenta-
tion Volume Without Ventricles from Surf,” which excludes the 
brainstem, was used as the FS estimate for brain volume. The 
variable “Total Gray Matter Volume” was used as the estimate 
GM volume. The WM volume was obtained by summing “ce-
rebral WM,” “cerebellar WM,” “brainstem,” and “corpus callo-
sum” FS variables. It is notable that FS specifically segments 
WM hypointensities. The brain, GM, and WM volumes were 
divided by the “Estimated Total Intracranial Volume” for nor-
malization.21

Statistical analysis
The inter-method reliability was assessed by calculating the in-
traclass correlation coefficient (ICCs) between NQ volumes and 
FS volumes using MedCalc, version 19.0.5 (MedCalc Software, 
Ostend, Belgium). The ICC model was based on two-way mixed 
effects, absolute agreement, and average measures. The guide-
lines used for ICC interpretation were as follows:22 ICC >0.9 ex-
cellent reliability, 0.75≤ICC≤0.9 good reliability, 0.5≤ICC<0.75 
moderate reliability, and ICC<0.5 poor reliability.

As a secondary approach, Pearson’s r values were also calcu-
lated. Effect size (ESCohen’s d) was used to document the mag-
nitude of differences between the two techniques without any 
implication of causality. The guidelines used to interpret effect 
size (ES) values were as follows: small, d=0.2; medium, d=0.5; 
and large, d=0.8.23 

Ethical approval
All procedures performed in the studies involving human par-
ticipants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 
1964 Helsinki Declaration and its later amendments or com-
parable ethical standards.

Informed consent
The requirement for informed consent was waived due to 

the retrospective nature of this study.

RESULTS

Basic characteristics of the patients
Table 1 shows the clinicodemographic characteristics of the 
study patients. Age, sex ratio, WM hyperintensities, and medi-
al temporal lobar atrophy were not significantly different be-
tween the two groups. Clinical Dementia Rating and Mini-Men-
tal State Examination (MMSE) scores of the available subjects 
were significantly different between the groups (p=0.032, 
<0.001, respectively).

Inter-method reliability
Overall, volume measures by NQ and FS showed a strong posi-

tive correlation (r=0.988; 95% confidence interval: 0.986–0.989; 
p<0.001) (Fig. 1). For both groups, NQ and FS volume mea-
surements showed good-to-excellent inter-method reliability 
for 20 regions (r=0.78 to 0.94; ICC=0.72–0.96; ES=-1.0–0.75) 
with the exception of total ICV (ICC=0.45), putamen (ICC: 
left=0.26, right=0.29), pallidum (ICC: left=-0.02, right=-0.02), 
and thalamus (ICC: left=0.58, right=0.62) (Table 2).

In both groups, the volumes reported by NQ were larger than 
those reported by FS in several locations, including the whole 
brain volume (0.78%), cortical GM (5.34%), and WM (2.68%) 
(Fig. 2). A mean ES difference of +0.40 was determined for 
individually measured regions. The same pattern was evident 
in data using slices with 1.2 and 1 mm thickness. Volume 
measurements using 1 and 1.2 mm thick slices showed good-
to-excellent ICCs (r=0.84–0.96; ICC=0.75–0.97; ES=-1.0–0.73 
vs. r=0.66–0.95, ICC=0.68–0.96; ES=-0.9–0.77, respectively), 
with the exception of the putamen, pallidum, thalamus, and 
total ICV (Table 3). The ICCs of 1 mm thick slices were slightly 
higher than the ICCs of 1.2 mm thick slices in every brain re-
gion, except the putamen and cerebellum.

Table 1. Clinical Characteristics of the Study Patients

Variables Group 1 (n=40) Group 2 (n=40) p value
Sex male 14 (35.0) 15 (37.5) 0.817
Age (yr) 71.6±7.0 72.2±6.8 0.699
MMSE 25.8±3.1 21.8±4.2 <0.0001
CDR 0.46±0.46 0.67±0.34 0.032
WMH 1.7±0.8 1.6±0.7 0.554
MTA 1.5±0.8 1.6±0.9 0.601
CDR, Clinical Dementia Rating; WMH, white matter hyperintensity; MMSE, 
Mini-Mental State Examination; MTA, medial temporal lobe atrophy.
Data are expressed as mean±standard deviation or n (%) for continuous 
variables, unless otherwise specified.

Fig. 1. Scatterplot showing the correlation between NQ and FS. A Pear-
son correlation coefficient was computed to assess the relationship be-
tween volume measurements obtained by NQ and FS. There was a strong 
positive correlation between the two variables; r=0.988, n=80, 95% CI: 
0.986–0.989, p<0.001. NQ, NeuroQuant; FS, Freesurfer.
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DISCUSSION

We found that the volume measurements between NQ and FS 
were excellently correlated, regardless of the slice thickness 
used. Furthermore, our results showed that systematically mea-
sured volumes by NQ were slightly higher than those by FS, and 
the inter-method reliability was slightly higher for 1 mm thick 
slices compared to 1.2 mm thick slices. 

Neurodegenerative disorders are reliably associated with the 
patterns of progressive neural atrophy that can be quantified 
by MRI post-processing techniques. In clinical practice, brain 
volumetry can characterize disease processes, identify the risk 
for rapid clinical deterioration, and predict prognosis by pro-
viding objective and quantitative evidence.1 However, differ-

ent MRI parameters influence the results of volumetric mea-
sures. Therefore, in many clinical trials using volumetry as the 
outcome measure, it is recommended to use the suggested 
MR sequence and to require careful consideration while inter-
preting the data using existing methods.

In this study, the volume measurements by NQ and FS 
showed excellent inter-method reliability for 20 brain regions 
(ICC=0.72–0.96), except for the total ICV, putamen, pallidum, 
and thalamus. Our finding was consistent with the findings of 
Ochs, et al.13 which reported good-to-excellent inter-method 
reliability between NQ and FS in 60 subjects for all brain re-
gions (caudate and thalamus 0.4≤ICC≤ 0.75, others ICC>0.75), 
except the pallidum and cerebellar WM (ICC<0.4). Our ICCs 
between the two volumetric analyses were comparable to the 

Fig. 2. Percentages of volumes measured by NQ and FS, (NQ–FS)/FS×100%. NQ, NeuroQuant; FS, Freesurfer.

Table 2. Correlation of Volume Measurements between NeuroQuant and Freesurfer

Region
Left Right Total

ES r ICC 95% CI ES r ICC 95% CI ES r ICC 95% CI
Total intracranial volume  0.05 0.36 0.45 0.15–0.65
Whole brain volume -0.08 0.90 0.94 0.91–0.96
Cortical gray matter -0.46 0.83 0.86  0.53–0.94 -0.56 0.87 0.86  0.22–0.95 -0.52 0.85 0.86 0.37–0.95
White matter -0.20 0.78 0.86 0.77–0.91
Hippocampus 0.51 0.83 0.84  0.43–0.93 0.53 0.89 0.87  0.25–0.96
Amygdala -0.96 0.82 0.72 -0.20–0.91 0.13 0.84 0.90  0.85–0.94
Caudate 0.75 0.84 0.79 -0.08–0.93 0.71 0.83 0.79  0.02–0.93
Putamen -2.56 0.68 0.26 -0.10–0.63 -2.25 0.72 0.29 -0.16–0.57
Pallidum 6.31 0.19 -0.02 -0.06–0.07 6.35 -0.25 -0.02 -0.06–0.05
Thalamus -1.21 0.71 0.58 -0.22–0.84 -1.30 0.84 0.62 -0.17–0.88
Cerebellum 0.26 0.94 0.96  0.84–0.98 0.28 0.92 0.94  0.81–0.97
ES, effect size; r, Pearson correlation coefficient; ICC, intraclass correlation coefficient; CI, confidence interval.

White matter
Cortical gray matter
Whole brain volume
Rt cerebellum
Lt cerebellum
Rt thalamus
Lt thalamus
RT pallidum
LT pallidum
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Lt amygdala
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Lt hippocampus
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Lt cortical gray matter
Total incracranial volume
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reliability between human raters (0.73 to 0.85). 24

The poor reliability and very large ES by NQ versus FS mea-
surement of the pallidum was notable and could be explained 
by the similar intensities of the pallidum and WM in T1-weight-
ed MRIs.17 This finding also corroborated the previous obser-
vation by Ochs, et al.13 It is known that FS calculates the volume 
by including WM between the pallidum and the neighboring 
putamen; in contrast, NQ uses color mapping images.13 Fur-
thermore, colored segmentation maps of NQ are smoothed and 
overlaid onto the original grayscale image, whereas the col-
ored map of FS is neither smoothed nor overlaid onto a gray-
scale image, which might further exacerbate differences in the 
volume measurements. Fischl, et al.17 reported statistically in-
distinguishable results between automated FS segmentation 
and manual segmentation of deep brain structures, which has 
made FS a status of the gold standard for volumetric measure-
ment. Therefore, we recommend careful interpretation while 
determining the pallidum volumes by NQ.

We also observed larger volumes by NQ compared to FS in 
several brain locations, including the whole brain (0.78%), 
cortical GM (5.34%), and WM (2.68%). A mean ES difference 
of +0.40 was determined for the individually measured re-
gions. These results were similar to the reports of Ochs, et al.,13 
where the whole brain parenchyma volume by NQ was 6.5% 
larger than that reported by FS, with a mean ES difference of 
+0.40 for individually measured regions. However, the whole 
brain volume showed excellent ICC; however, the total ICV 

showed weaker ICC (0.4–0.6), which was not in line with the 
previous study.13 We speculate this may have originated from 
the fundamental errors owned by the software, as ICV is calcu-
lated and estimated based on each calculation formula.

Interestingly, different slice thickness (1.2 mm vs. 1 mm) did 
not affect the final volumetric results, although the ICCs im-
proved slightly with thinner image slices. Furthermore, regard-
less of the slice thickness used, the volume measurements were 
consistently higher with NQ as compared to FS.

We opine that our observation of slightly improved ICCs with 
thinner image slices would have many implications in the near 
future. Currently, many software venders recommend the use 
of rather thick slices (1.2 mm) for clinical practice, instead of 
using 1 mm, which is a norm of research community.25 To clar-
ify these recommendations, we used the ES to compare the 
mean difference between the two groups in a standardized 
manner.26 For instance, while the overall reliability was excel-
lent, the ES of hippocampal measurement with 1.2 mm thick 
slices was larger (ES=0.64) compared to using 1 mm thick slic-
es (ES=0.40–0.45), which means that the use of 1.2 mm slice 
thickness is prone to a bigger difference in volume measure-
ment when a volumetry software is switched to another soft-
ware. Therefore, we recommend careful interpretation of the 
results of volume measurements using a slice thickness of 1.2 
mm, instead of 1.0 mm, in both FS and NQ.

In the context of clinical practice, speed is a major advantage 
of NQ over FS. NQ saves time by abandoning the intensive com-

Table 3. Correlation of Volume Measurements between NeuroQuant and Freesurfer with Different Slice Thickness

Region
With 1 mm slice thickness With 1.2 mm slice thickness

ES r ICC 95% CI ES r ICC 95% CI
Total intracranial volume -0.14 0.43 0.61  0.26–0.79 0.15 0.37 0.41 -0.12–0.69
Whole brain volume -0.19 0.96 0.97  0.91–0.99 0.00 0.84 0.91  0.83–0.95
Lt cortical gray matter -0.37 0.91 0.92  0.64–0.97 -0.57 0.75 0.79  0.33–0.91
Rt cortical gray matter -0.56 0.92 0.89  0.00–0.97 -0.57 0.81 0.82  0.27–0.94
Cortical gray matter -0.47 0.92 0.91  0.27–0.97 -0.57 0.78 0.81  0.30–0.92
White matter -0.51 0.94 0.90  0.10–0.97 -0.02 0.66 0.78  0.59–0.89
Lt hippocampus 0.40 0.88 0.87  0.62–0.95 0.64 0.80 0.80  0.16–0.93
Rt hippocampus 0.45 0.92 0.91  0.38–0.97 0.64 0.84 0.82  0.09–0.94
Lt amygdala -1.00 0.89 0.75 -0.16–0.93 -0.93 0.79 0.68 -0.16–0.88
Rt amygdala 0.04 0.85 0.90  0.82–0.95 0.25 0.85 0.90  0.79–0.95
Lt caudate 0.73 0.84 0.78 -0.18–0.94 0.77 0.85 0.78 -0.11–0.93
Rt caudate 0.64 0.87 0.84  0.03–0.95 0.82 0.75 0.69 -0.06–0.88
Lt putamen -2.34 0.73 0.26 -0.07–0.64 -2.57 0.69 0.27 -0.09–0.65
Rt putamen -2.30 0.79 0.32 -0.10–0.70 -2.27 0.78 0.36 -0.08–0.74
Lt pallidum 7.14 -0.16 -0.01 -0.04–0.04 6.25 -0.31 -0.02 -0.06–0.06
Rt pallidum 7.28 0.06 0.00 -0.02–0.04 6.28 -0.33 -0.02 -0.06–0.07
Lt thalamus -1.05 0.76 0.66 -0.21–0.89 -1.42 0.65 0.47 -0.23–0.78
Rt thalamus -1.34 0.84 0.60 -0.16–0.88 -1.35 0.82 0.59 -0.17–0.87
Lt cerebellum 0.23 0.94 0.96  0.86–0.98 0.27 0.95 0.96  0.78–0.98
Rt cerebellum 0.23 0.90 0.93  0.83–0.97 0.33 0.94 0.93  0.67–0.98
ES, effect size; r, Pearson correlation coefficient; ICC, intraclass correlation coefficient; CI, confidence interval; Lt, left; Rt, right.
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putation process of FS for parcellation of the cerebral cortex. 
As a result, NQ outputs the overall volumes of cerebral GM and 
WM, whereas FS calculates the individual volume and thick-
ness measurements of virtually every cerebral gyrus.13 NQ pro-
cessing takes approximately 10 minutes in a conventional desk-
top computer, and the only input is the study to be segmented. 
NQ can interact directly with a PACS server, or can be config-
ured as a remotely hosted web server. The final report provides 
the volumes of structures in cubic centimeters and the ICVs as 
percentage. A normative range is provided for the hippocam-
pus, lateral ventricle, and temporal horn of the lateral ventricle, 
based on previously segmented healthy subjects aged 50–95 
years.1 In contrast, FS analysis takes approximately 8 hours 
with a 2.4 GHz Macintosh computer, and requires knowledge of 
UNIX programming for analysis.13 In our study, NQ took 5–10 
minutes while FS took 4–6 hours for analysis.

Since the results of the analysis can be affected by the MRI 
scanner setting, MRI software, NQ and FS software, and com-
puter hardware, it is ideal to use the same hardware and soft-
ware for comparison purposes.27 In this study, the effect of hard-
ware or software was controlled by using the same volumetric 
software programs and computer hardware for all patients.

The current study had several limitations. First, as the study 
used a small sample of patient data from a single tertiary re-
ferral hospital, there is potential for selection bias. Second, the 
MMSE results between two groups differ significantly, which 
might affect the difference in volume. Third, the repeatability 
of different MR sequences in the same scanner was not con-
sidered. Moreover, different MR scanning parameters might 
affect the volume measurements in different ways. Lastly, this 
study lacked biomarkers or neuropsychological assessments; 
therefore, patient factors, such as disease severity, could have 
affected the results between groups.

In conclusion, NQ and FS showed excellent inter-method 
reliability in volumetric measurements of all brain regions, 
except pallidum, in patients with MCI. The slice thickness 
might affect the inter-method reliability of volumetric mea-
sures, albeit to a very small degree, with thinner slices provid-
ing better reliability than thicker slices. The study outcomes 
could improve the precise interpretation of automated vol-
ume measurements in clinical practice. Future studies are 
warranted to examine specific measures as biological markers 
in patients with cognitive impairment.
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