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Resistance to kinase inhibition through shortened target engagement
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ABSTRACT
Imatinib, a selective inhibitor of the breakpoint cluster region (BCR)-ABL kinase, is the poster child for 
targeted cancer therapeutics. However, its efficacy is limited by resistance mutations. Using a quantitative 
bioluminescence resonance energy transfer assay in living cells, we identified ABL kinase mutations that 
could cause imatinib resistance by altering drug residence time.
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Protein phosphorylation, catalyzed by protein kinases, is 
a critical signaling process essential to life. Dysregulation of 
this post-translational modification drives the pathogenesis of 
many human diseases including autoimmune, cardiovascular, 
nervous system disorders, and cancer. It was originally thought 
that targeting members of the kinome with adenosine tripho-
sphate (ATP)-competitive small molecules was infeasible due 
to high sequence conservation of the ATP-binding site. The 
discovery of imatinib, an inhibitor of the breakpoint cluster 
region (BCR)-ABL oncoprotein, upended this myth. BCR- 
ABL, a fusion between the breakpoint cluster region and ABL 
kinase, is the major driver of leukemogenesis in chronic mye-
logenous leukemia (CML). Imatinib reduced the mortality rate 
of CML by 80% within a decade of its approval. Consequently, 
imatinib became the poster child for specific kinase inhibition 
and spawned an entire field of kinase-targeted drug discovery. 
Roughly a third of modern drug discovery efforts are focused 
on small-molecule modulators of kinases.

Active kinases adopt strikingly similar poses when catalyz-
ing phosphotransfer with their substrates. However, kinases 
are not just static phosphorylation machines; they are dynamic 
proteins that interconvert between a large ensemble of inactive 
conformations and a more conserved active conformation.1,2 

Imatinib achieves its high specificity in part by binding pre-
ferentially to an inactive conformation of ABL kinase, whereas 
the more promiscuous inhibitor dasatinib binds to the active 
conformation. Furthermore, conformational dynamics affect 
both the drug-binding process3 and dissociation process,4 

thereby providing a vulnerability for therapeutic intervention 
and small-molecule design.

Drug action in the body is tied to dynamic processes such as 
absorption, distribution, metabolism, and excretion (ADME). 
Therefore, dissection of the equilibrium binding constant Kd, 
the standard measure of a lead compound’s efficacy, into the 
rate constants for drug binding to the target (kon) and dissocia-
tion from the target (koff) may be more relevant for non- 

equilibrium in vivo systems. Residence time, the reciprocal of 
the drug dissociation rate constant, describes the lifetime of the 
drug-target complex and has been shown to be a superior 
predictor of in vivo potency in several systems.5 Drug dissocia-
tion rates have been of particular interest to kinase inhibitor 
development since the discovery of BIRB796, a reversible p38α 
mitogen-activated protein kinase inhibitor with an unusually 
long estimated residence time of >1800 hours.6 The analysis of 
270 kinase inhibitors against 40 kinases revealed an increasing 
number of slow-dissociating compounds when transitioning 
from early/preclinical compounds to late stage and FDA- 
approved compounds.7 Kinetic selectivity, where the drug- 
target complex has a longer half-life than off-target-drug com-
plexes, is an emergent strategy to achieve specific kinase inhi-
bition. For example, we modified a series of aminopyrimidines 
to create inhibitors with much longer residence times for focal 
adhesion kinase over the closely related proline-rich tyrosine 
kinase 2.8

This led us to ponder: if chemical modifications to inhibi-
tors can improve their efficacy by prolonging residence time, 
could the reverse be true for mutations in kinases that reduce 
inhibitor efficacy by reducing residence time?

In our recent study, Lyczek et al.,9 we used NanoBRET,10 

a bioluminescence resonance energy-transfer (BRET) tech-
nique that quantitatively assesses target engagement in live 
cells, to test the affinity and dissociation kinetics of imatinib 
and dasatinib against a library of 94 ABL kinase domain 
mutations. These mutations were observed in CML cases 
with resistance to imatinib therapy. Surprisingly, we found 
that two-thirds of mutations significantly reduce drug affi-
nity while one-third of mutations retain similar or tighter 
affinity to wild-type (WT). This posed the question: how 
could 31 mutations that have similar binding affinity to 
imatinib cause imatinib resistance? We found mutations 
at three sites, N368S, V299L, and G251E with significantly 
faster imatinib dissociation rates. These sites are frequently 
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altered in other kinases and cancer types: there are nine 
mutations across eight kinases reported for N368, three 
mutations across three kinases reported for V299, and 13 
mutations across eight kinases reported for G251. We 
further validated the observed effect of the N368S mutation 
in vitro and proposed a mechanism of its increased disso-
ciation rate using molecular dynamics simulations.

In contrast to thermodynamic mutations that decrease the 
imatinib binding affinity, kinetic mutants increase the drug off- 
rate and on-rate while maintaining a similar affinity to WT 
(Figure 1(a)). While thermodynamic mutations never reach 
a threshold for pharmacological effects, kinetic mutants instead 
decrease the lifetime of the imatinib-ABL kinase complex, 
potentially reducing drug efficacy between doses 
(Figure 1(b)). Patients with kinetic mutations are still sensitive 
to drug therapy and could potentially respond by modifying 
the treatment schedule from a single daily dose to multiple 
doses.

This study represents the first comprehensive comparison 
of the effect of disease-relevant mutations on drug affinity and 
binding durability in live cells. Mutations at these sites are 
present ubiquitously throughout the kinome, which suggests 
that kinetic resistance to structurally selective kinase inhibitors 
may be a widespread mechanism. We envision that similar 
investigations of mutations in other drug-target pairs will 
uncover a broader role for binding kinetics in drug resistance 
and impact clinical standards of care.
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Figure 1. Altering drug binding rates may be a partial resistance mechanism to kinase inhibition. (a) Kinetic mutations in breakpoint cluster region (BCR)-ABL cause 
resistance through increased drug binding and dissociation rates, whereas thermodynamic mutations abrogate drug binding. (b) Simulated effect of mutation on 
compound off-rates in a model system of a patient over 24 h. Threshold for pharmacological inhibition is 50% of target fraction bound. Coloring scheme consistent with 
panel A. Alt Text: (a) Three cartoon breakpoint cluster region (BCR)-ABL proteins binding to a spherical cartoon drug with differently sized rate arrows to illustrate wild- 
type versus a kinetic mutant and a thermodynamic mutant. (b) Simulated effect of mutation on residence time. Three curves plotted with a dotted line representing the 
fraction of target protein bound necessary for inhibition. Wild-type stays above the dotted line for the full duration, whereas the kinetic mutant stays above the dotted 
line for only a third of the duration and the thermodynamic mutant never reaches above the line.
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