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Fabrication of slender elastic shells by the coating
of curved surfaces
A. Lee1, P.-T. Brun2, J. Marthelot3, G. Balestra4, F. Gallaire4 & P.M. Reis1,3

Various manufacturing techniques exist to produce double-curvature shells, including

injection, rotational and blow molding, as well as dip coating. However, these industrial

processes are typically geared for mass production and are not directly applicable to

laboratory research settings, where adaptable, inexpensive and predictable prototyping tools

are desirable. Here, we study the rapid fabrication of hemispherical elastic shells by coating a

curved surface with a polymer solution that yields a nearly uniform shell, upon polymerization

of the resulting thin film. We experimentally characterize how the curing of the polymer

affects its drainage dynamics and eventually selects the shell thickness. The coating

process is then rationalized through a theoretical analysis that predicts the final thickness,

in quantitative agreement with experiments and numerical simulations of the lubrication flow

field. This robust fabrication framework should be invaluable for future studies on the

mechanics of thin elastic shells and their intrinsic geometric nonlinearities.
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H
ollow chocolate eggs, rabbits and bonbons have been
fabricated since the 1600s by pouring molten chocolate
into a mold and draining the excess. Solidification upon

cooling ceases the flow and results in a solid shell of nearly
constant thickness1. Beyond chocolatiers, the polymer industry
abounds with needs to fabricate thin shell structures, and a
plethora of manufacturing processes have been developed for this
purpose, including: injection2, rotational1 and blow molding3,
as well as dip coating4. Common to all of the above techniques
are limitations in the thickness of the shells (e.g., B0.5 mm for
injection molding) and its uniformity (typically B20% for
rotational molding5), as well as a striking lack of predictive
theoretical models due to the multi-physics complexity of the
processes. Rotational molding, for example, involves coating the
inner surface of a hollow mold with a polymer melt, which is then
rotated biaxially while applying a decreasing heating profile until
a solid shell is formed1. As another example, injection molding, is
geared for mass-production manufacturing and requires costly
precision-machined molds that are inflexible to variations in the
geometry of the part2. In these processes, the optimization
of the control parameters is largely tuned empirically, with
compromises on versatility, predictability and reproducibility5.
As such, these techniques are not directly applicable to laboratory
settings, where adaptable, inexpensive and predictable rapid-
prototyping tools are more desirable. This is particularly the case
for the fabrication of thin, smooth and flexible three dimensional
structures.

For flat and cylindrical surfaces, a variety of thin film coating
techniques are well established6. A significant advantage for these
geometries is that, when compared to their double-curved
counterparts, they are more amenable to theoretical modeling
to predict how the final film thickness depends on the control
parameters7,8. In these cases, the flow driven by viscous stresses
and held by capillary forces is ‘frozen’ as the media cools, cures or
dries, yielding a defect-free and uniform finish. As a result, these
robust coating techniques have matured to be ubiquitous in
industry. To generate (ultra-) thin sheets, spin-coating is now
widespread (e.g., in microfluidics) to attain constant and tunable
film thicknesses9,10. Similarly, spin-casting exploits centrifugal
forces on a rotating cylindrical surface to evenly distribute a
polymer solution and fabricate nearly constant thickness shells in
a highly controllable manner11. This technique was instrumental
in identifying the role of imperfections on the critical buckling
conditions of cylindrical shells in the 1960s (refs 12,13). For
double-curved surfaces, there is a need for simple and versatile
fabrication methods that are analogous to the coating of fibers,
plates and cylinders and able to yield uniform, controllable and
predictable results.

Here, we introduce a simple and robust mechanism to fabricate
hemispherical thin elastic shells by the coating, drainage and
subsequent curing of polymer solutions on curved molds. Our
process is analogous to spin-coating (itself not applicable on
curved surfaces), albeit with a gravity-driven flow in lieu of
centrifugal forces. Through a systematic series of experiments
using elastomers, we show that drainage can lead to coatings that
are ‘frozen’ in time as the polymer cures, thereby leading to a
nearly uniform thin elastic shell. A theoretical analysis of the
underlying lubrication flow during drainage, which includes the
evolution of the rheological properties of the polymer as it cures,
is able to accurately predict the final thickness of the shell as a
function of the material properties of the polymer and the
geometry of the substrate. Importantly, the final shell thickness is
found to be independent of the initial conditions such as the
height of pouring and the volume of poured fluid, as well as the
initial thickness profile. Moreover, we find that the shell thickness
can be tuned over one order of magnitude by changing the

waiting time between the preparation of the polymer solution and
the moment of pouring onto the mold. Our analysis demonstrates
that the robustness and flexibility of this mechanism are inherent
consequences of the loss of memory in the flow field. Our
approach provides a fast, robust and predictable mechanism to
fabricate thin shells with flexibility in their material and
geometric properties by tuning the control parameters.

Results
Elastic shells of uniform thickness from viscous coating. In
Fig. 1a, we present a series of photographs that illustrate our
coating process. A silicone-based liquid polymer solution is
poured onto a rigid sphere (mold), drains under the effect of
gravity and eventually covers the surface. We used both vinyl-
polysiloxane (VPS) and polydimethylsiloxane (PDMS), at differ-
ent mixing and curing conditions (see Methods for details), to
achieve a variety of rheological properties. With time, cross-
linking of the polymer film that emerges from the drainage
process yields a thin elastic shell that can be readily peeled from
the mold. The final thickness of these elastic shells hf is found to
be uniform (to within 6.6% (VPS) and 8.7% (PDMS) over the
hemisphere).

The above procedure was repeated with molds in a range of
radii (1rR[mm]r375, see Fig. 1b), and we found that hfBR1/2,
as shown in Fig. 1c. This result is robust and independent
of either the details of the polymer or the curing temperature.
The square-root dependence of hf on R can be rationalized by
balancing the characteristic curing time, tc, of the polymer
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Figure 1 | Coating process and resulting thickness of elastic shells.

(a) Liquid VPS-22 (see Methods) is poured onto a sphere (R¼ 38 mm),

then drains under gravity and eventually cures to produce an elastic shell

(see Supplementary Movie 1). The time interval between each frame is 2 s.

(b) Similar procedure to that of (a) for spheres in a range of radii,

1rR[mm]r375. (c) Thickness of the elastic shells, hf, as a function offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0R= rgtcð Þ

p
, for various polymer solutions (VPS and PDMS) and

temperatures (for PDMS). See Methods for details. The solid line

corresponds to equation (1). Inset: An elastic shell is cut along a

meridian for the thickness measurements. Scale bars, 10 mm.
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solution and the characteristic drainage time, m0R= rgh2
f

� �
, that is

obtained when balancing the viscous stresses and gravity in the
lubrication layer, such that

hf �
ffiffiffiffiffiffiffiffiffi
m0R
rgtc

s
; ð1Þ

where m0 is a characteristic viscosity of the polymer (e.g., its initial
value), r its density, and g is the acceleration of gravity. The fact
that all the data in Fig. 1c collapses onto a master curve
(irrespective of the polymer and curing temperature, over a wide
range of R) supports this scaling analysis. Below, we shall develop
a theoretical description that more formally recovers this scaling,
both analytically and numerically.

The dynamics of coating. We proceed by experimentally
characterizing the coating dynamics that, upon curing of the
polymer, results in a thin elastic shell (Fig. 1a). As a representative
case, we focus on VPS Elite 32 (hereafter referred to as VPS-32,
see Methods) poured onto a sphere with R¼ 38 mm. A broader
exploration with other silicone-based polymers is provided in the
Supplementary Table 1, as well as Supplementary Figs 1 and 5,
nonetheless, yielding similar results.

A schematic diagram of our system is presented in Fig. 2a, for a
hemispherical mold, aligned such that gravity is parallel to the
axis that connects its center to the pole; g¼ � g ez. Both the local
thickness, h(f, t), and the free surface velocity, u(f, t), of the
draining film are assumed axisymmetric and vary in both time, t,
and space (i.e., zenith angle, f). At the pole (f¼ 0), the fluid
velocity vanishes due to symmetry. Elsewhere, the velocity is
predominantly in the longitudinal direction, ef. This is supported
by the representative velocity field shown in Fig. 2b, obtained
through PIV (see Methods), at t¼ 60 s in a 1� 1 cm2 region of
the film located at f¼ 60�. Moreover, the instantaneous local
velocity is found to increase with f (Fig. 2c).

In Fig. 2d, we plot the time-series of the free surface velocity at
the specific location u(f¼ 60�, t); the flow progressively slows
down and eventually comes to a halt in finite time. This leaves a
coating of the final thickness, hf, on the mold. The velocity profile
and its arrest are found to correlate directly to the change in the
viscosity, m, as the polymer cures (Fig. 2d), which was determined
through the rheometry at the appropriate shear rate (see
Methods). Note that the initial drainage and subsequent curing
regimes are separated by the characteristic curing time, tc, which
is significantly larger than the initial drainage time,
td¼m0R= rgh2

i

� �
, where hi is the initial average coating thickness.

For example, in the representative case above for VPS-32, we find
td¼5:9 s ’ 0:01 tc (using hi¼ 2 mm, R¼ 38 mm, r¼ 1,160
kg m� 3, m0¼ 7.1 Pa s and tc¼574 s). A direct consequence of
this separation of timescales is that there is loss of memory in the
process, such that hf should be independent of hi. This prediction
will be thoroughly examined in the Discussion, below. Returning
to the time evolution of u and m (Fig. 2d), at early times totdð Þ
there are some disturbances due to initial conditions and we do
not attempt to describe this regime. During intermediates times
td � t � tcð Þ, m is approximately constant, and the velocity is

set by viscous drainage with uB1/t (ref. 14). For t4tc, as the
curing of the polymer accelerates, m increases sharply with time,
and consequently, the flow velocity slows down dramatically.

The separation of the drainage and curing timescales can be
leveraged to further tune the final thickness of the shell. Since hf is
dictated by the interplay between the drainage timescale and
polymerization timescale, tc, the final thickness can be increased
by accelerating the curing process. One strategy to achieve this
would be to alter tc by modifying the kinetics of cross-linking
(e.g., through additives or temperature), which would also modify

the viscosity of the thin film or the elastic modulus of the final
shell. An alternative is to shift the origin of the process by waiting
for a time, tw, between the preparation of the polymer and the
instant when the mixture is poured onto the mold. This waiting
procedure offers an additional lever in tuning the properties of
the fabricated shells.

Having presented our robust and versatile mechanism to
fabricate thin elastic shells by the coating and subsequent curing
of a polymer film, we proceed by rationalizing this process
through a theoretical framework that is able to predict hf.

Nonlinear drainage flow solution. It is well known that the
thickness at the pole of a thin viscous film draining on a spherical
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Figure 2 | Spatial and temporal variation of the flow velocity.

(a) Schematic diagram of the coating problem; h(f, t) is the thickness of

the viscous film and u(f, t) is the flow velocity during drainage. (b–d) All

data is for VPS-32 at 20 �C. (b) Instantaneous velocity field at t¼ 60 s in a

1� 1 cm2 region of the film located at f¼ 60� of a sphere (R¼ 38 mm),

obtained through PIV. (c) Dependence of the instantaneous local velocity

(at t¼ 60 s) on f. (d) Time variation of the velocity, u(f¼60�, t)

orange circles, and the viscosity, m(t) blue triangles, of the polymer.

The characteristic curing time, tc, separates the drainage and curing

regimes for both u(f, t) and m(t). The dash-dot line is the best fit

for the viscosity: equation (5) with m0¼ 7.1±0.2 Pa s, a¼ 5.3±0.7,

b¼ (2.06±0.09)� 10� 3, and tc¼574 � 11 s. The solid and dashed lines

are the predictions from our model for the velocity field using equation (4)

and direct numerical simulations, respectively.
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surface is given by h0 tð Þ ¼ hi 1þ 4t=3tdð Þ� 1=2 (refs 14,15).
We now seek to generalize this solution to account for the
temporal and spatial variation (in f) of the film. We shall first
consider a Newtonian fluid and, once the nonlinear drainage flow
solution is obtained, then include curing effects (i.e., the time
dependence of m(t) shown in Fig. 2d).

Starting with the lubrication equations14 that describe our
axisymmetric flow on a hemispherical substrate and performing a
nonlinear expansion of the form h f; tð Þ ¼ h0 tð Þþf2h2 tð Þ (see
Supplementary Note 4) yields

h f; tð Þ ¼ h0 tð Þ 1þ f2

10
1þ c 1þ 4

3
t
td

� �� 5=2
 !" #

; ð2Þ

where c is a numerical factor that depends on the initial condition
(e.g., c¼ � 1 if the initial thickness profile is uniform). In the
limit of t � td, equation (2) simplifies to

h f; tð Þ �
ffiffiffiffiffiffiffiffiffiffi
3m0R
4rgt

s
1þ f2

10

� �
: ð3Þ

The memory loss of the flow mentioned earlier arising from the
separation of the drainage and curing timescales is well captured
by this description given that hi is absent from equation (3).
Moreover, there is a weak dependence on f (8.7% s.d.); a general
result that has also been observed in the thinning of an air bubble
formed in a fluid bath16, as well as in the thin air layer that
supports a drop bouncing on a fluid interface17.

As an indirect validation of equation (3), we substitute it into
the free surface velocity equation describing the parabolic flow
profile on a sphere, u¼rgh2sinf/(2m0)14, to obtain

u f; tð Þ � 3
8

R
t

1þ f2

10

� �2

sinf: ð4Þ

This prediction for the variation of u on both f (at fixed t) and
t (at fixed f) is in agreement with the experimental velocity
profiles shown in Fig. 2c,d for td � t � tc (i.e., in the regime
after the initial drainage, when the polymer viscosity is
approximately constant, and prior to curing). In particular, u is
found to be almost linear in f as the cubic term of the Taylor
expansion is f3/30 in lieu of the conventional f3/6 of the sine.
Strikingly, the velocity field in this regime is independent of both
gravity and viscosity and is solely set by the geometry of the
problem, so that no material parameters enter the prediction.

Including the effects of curing into the flow solution. The
curing of the polymer has not yet been taken into account in our
model, which, as is, yields a vanishing coating thickness since
equation (3) states that hB1/t1/2. To do so, the above framework
is modified by considering a time-varying viscosity18 using a
piecewise function of the form

m tð Þ ¼ m0 exp btð Þ; if t 	 tc;
m1ta; if t4tc;

�
ð5Þ

with m1 ¼ m0 exp btcð Þt� a
c chosen to ensure continuity at tc and

where b and a are fitting parameters. Equation (5) is fitted to the
experimental data and found to accurately describe the viscosity
evolution (Fig. 2d). Combining this description for the viscosity
with the lubrication equations yields a complete model for our
system (the full details are provided in Supplementary Note 5),
including an expression for the final thickness,

hf �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m0R
4rg

1
K

s
1þ f2

10

� �
ð6Þ

that is consistent with equation (3) but with
K ¼ k� e�btc

� �
=b

� 	
þ tce�btc= a� 1ð Þ
� 	

(instead of K¼ t),
where k¼ 1 when there is no delay between the preparation
and the coating with the polymer solution.

In Fig. 3a, we compare experimental results (circles) for hf of
the shells fabricated with VPS-32 to the prediction (solid line)
from equation (6) and find good agreement between the two. It is
important to note that our model has no adjustable parameters;
all numerical coefficients (a, b and tc) are independently
determined once and for all from the viscosity profile and then
used in the theory. Note that the profiles obtained when coating
either the outside or the underside of complementary spherical
molds are nearly identical (Fig. 3a, inset).

In Fig. 3b, we test the shell thickness profile, hf(f), and find
that the experimental results (circles) are in excellent agreement
with equation (6).

Our theoretical framework is now further validated through
numerical simulations (see Methods, as well as Supplementary
Figs 6 and 7, for details). The fully nonlinear governing equations
(see equation (7) in Methods) were integrated directly, with the
appropriate initial conditions and the desired viscosity profile,
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Figure 3 | Influence of the geometry on the final shell thickness.

(a) Comparison between theory, numerics and experiments for the

dependence of hf on R, for the representative case of VPS-32. The results

are consistent with the power law hfBR1/2 and in agreement with equations

(1) and (6). Inset: Final thickness of shells obtained by pouring VPS-32 on

the outside or the underside of a hemisphere with R¼ 25 mm. The error

bars of the data correspond to the standard deviation of three thickness

measurements performed at three different locations of the shell near the

apex (f¼0�). (b) Final thickness of a shell fabricated by pouring PDMS on

the outside of a hemisphere with R¼ 38 mm compared to equation (6);

solid line. The dashed line is the prediction obtained by refining the

expansion to the next order, O 4ð Þ, which adds 41
4800f

4 to the terms in the

parentheses of equation (6); see Supplementary Note 4 for details. The

error bars of the data for hf (y-axis) correspond to the standard deviation on

multiple measurements. The error bars of the data for f (x-axis)

correspond to the size of the angular range used to bin the data.
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either constant or time-varying according to equation (5). The
results from these numerical simulations are in agreement with
both the experimental data and the theoretical predictions for the
surface velocity over time and final shell thickness (dashed lines
in Fig. 2d and Fig. 3a, respectively). In particular, we have
computed the time evolution for a coating film that has an initial
sinusoidal thickness profile (dashed line in Fig. 4a), which rapidly
converges to the analytically derived equation (2), plotted in
Fig. 4a as solid lines for different times.

Discussion
Our above results establish the basis for the rapid and robust
coating process to fabricate spherical elastic shells of nearly
uniform thickness, and with radii spanning over two orders of
magnitudes (1rR[mm]r375). As the radius of the sphere is
decreased below Ro10 mm, the agreement between our model
and the experiments deteriorates due to the influence of the
meniscus that connects the flow on the hemisphere to the puddle
that forms as the fluid drains. This effect is not accounted for in
our model, but we expect it to be negligible when R� ‘c, where
‘c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g= rgð Þ

p
is the capillary length with surface tension, g, that

prescribes the relative magnitude of capillary and gravitational
forces. Since ‘c ’ 1:3 mm and ‘c ’ 1:4 mm for VPS and PDMS,
respectively, the deviations of the theory from the data for small R
are consistent with the onset of these surface tension effects (see
Figs 1c and 3a).

Our model, e.g., equation (6), uses the physical parameters for
the rheology of the polymer. PDMS was found to behave as a
Newtonian fluid for small shear rates (but the viscosity varies
with time; see Fig. 5b) whereas VPS exhibited shear thinning (see
Supplementary Figs 3 and 4). An estimate of the relevant shear
rate is therefore needed. We used the value _g¼0:1 s� 1, assuming
a uniform shear rate across the sample. In reality, _g varies from
zero at the apex to its peak value at the equator (and also depends
on R). However, our choice for _g is representative of the applied
shear rates over the hemisphere and leads to good agreement
between theory and experiments for most values of R and f. We
have analyzed the sensitivity of the predictions for hf with respect
to _g and found that it is small (see Supplementary Note 1).

The variation of the thickness from the pole to the equator of
the hemispherical shells was found to be, at most, 6.6% (VPS) and
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8.7% (PDMS) from the experiments, 8.7% in the theoretical
model, and 8.4% in the numerical analysis (using s.d.). For
PDMS, the thickness profile follows equation (6) without any
adjustable parameters. This agreement validates our model for the
case of time varying viscosities (Fig. 3b). For VPS, shear thinning
effects lead to an increase of the thickness at the apex (see Fig. 3a);
where the viscosity is largest. These effects are not captured by
our model, yet they do not prevent the shell from being uniform
within 6.6% variations. We argue that these same effects are the
source of the difference between the numerics and the measured
free surface velocity for large times (see Fig. 2c).

When the polymer is poured on the underside of a mold,
curvature can suppress the Rayleigh-Taylor instability and
thereby prevent the formation of dripping droplets15. Therefore,
the uniformity bounds of the shell that were just stated are
ensured, as long as the modified Bond number B¼rgRhi/g
(which characterizes the relative importance of gravity and
surface tension, g) remains smaller than the critical value, Bco8
(ref. 15). On the other hand, when the outside of a mold is used,
fingering instabilities can occur at the advancing front of the flow,
but this can be precluded by pouring a sufficiently large volume of
liquid over the surface14. A critical volume can be derived14 and
we estimated it be of the order of 1 ml for an hemisphere of radius
R¼ 20 mm, in agreement with what was observed experimentally
for the sensitivity analysis in Fig. 4b. Under these conditions,
pouring on the underside or the outside of complementary molds
yields identical shells of the same uniform thickness, hf. Note that
during this process an E90% of the volume drains out of the
hemisphere. Even if this technique is an excellent rapid-prototyping
method, it may not be suitable for large scale industrial applications.
Similar limitations are found for spin-coating.

The physical principles that underlay the dynamics of the
coating process are rationalized by our analytical model above, to
which the separation between the initial drainage and curing
timescales is key. Drainage occurs significantly faster than the
polymer curing, such that the memory of the flow vanishes before
it is arrested by cross-linking to yield the final elastic shell.
Consequently, geometry prevails, and the curvature of the mold
together with the rheology of the polymer set both the dynamics
of the flow and the final thickness of the shell (hfBR1/2). The
robustness of this mechanism and its insensitivity to the initial
conditions are now corroborated by both experiments and
simulations. We measured the thickness of shells obtained for
different values of the height from which the polymer is poured
onto the mold (4rH[cm]r10), as well as the volume poured
(0.9rV[ml]r6.3), and find that hf is constant to within
5.6% across these various conditions (Fig. 4b). Furthermore,
simulations that were initiated with four significantly different
initial fluid distributions—uniform, sinusoidal, as well as tapered
profiles towards the pole and the equator—all converge to the
same final shell thickness, which agrees well with the prediction
from equation (6), as shown in Fig. 4c.

Since the final shell thickness is directly connected to the
curing time, hf can be continuously tuned by waiting a time tw
between the preparation of the polymer mixture and the instant
when it is poured onto the mold. In Fig. 5a, hf is plotted versus tw,
for the representative experiments with both VPS-32 and PDMS.
We find that hf can be increased by as much as 60% for VPS-32
and elevenfold for PDMS. Substituting e� btw for k in equation (6)
allows for a direct comparison to the experimental result, with
favorable agreement in the case of VPS-32 (solid curve in Fig. 5a).
For the PDMS, however, an additional adjustment to our
framework is required since we found that its rheology differs if
the curing occurred in a quiescent state (e.g., when waiting in
bulk for tw before pouring) versus when sheared (e.g., during
coating). Rheometry measurements were performed where the

values of tw were systematically varied (inset of Fig. 5b). If the
time axis for each of these tests is shifted by dtw (the constant
factor d¼ 2.02±0.02 was determined by fitting), all of the data
collapses onto the master curve obtained for tw ¼ 0. We have
therefore concluded empirically that PDMS cures d times faster
when quiescent compared to under shear, but we have not been
able to find this specific result in the literature. We speculate that
the shifting factor required for collapse will likely depend on the
shear rate and the specifics of the polymer. With this additional
information at hand, substituting e� bdtw for k in equation (6)
accounts for the effective waiting time, and yields a prediction for
hf (dashed line in Fig. 5a) that is in agreement with the
experimental data for PDMS. Our model is therefore able to
accurately capture the elevenfold continuous variation of the shell
thickness obtained when pouring partially cured polymer
solutions. As explained in the Supplementary Note 2, we did
not have to consider d for VPS-32 because the entire bulk of this
more viscous polymer solution is experiencing sustained shear
while it was sequentially poured onto a series of identical molds.
It is important to note that our theoretical description is only
applicable if twotc.

In summary, we show that coating hemispherical
molds with a polymer solution yields thin uniform shells whose
thickness can be accurately predicted. Moreover, the final shell
thickness can be tuned by modifying the time between polymer
preparation and the moment of pouring. The resulting shells are a
realization of the drainage dynamics, driven by gravity, slowed
down by viscous stresses and eventually arrested by the curing of
the polymer. The robustness and flexibility of this mechanism are
inherent consequences of the loss of memory in the flow field.
The generality of this framework should open the door for future
studies to fabricate slender solid structures in a variety of other
geometries. A particularly interesting case outside the scope of the
current study is the coating of ellipsoidal molds19, with two
distinct principal curvatures, where the difference between the
pouring direction and the orientation of the surface could also
play a role. Furthermore, our fabrication technique could be
important in the ongoing revival of the mechanics of thin elastic
shells, in particularly since it enables fully elastic structures that
can reversibly explore strong geometric nonlinearities in their
post-buckling regime20–29.

Methods
Experiments. Curing of the PDMS (Sylgard 184, Dow Corning) was performed in
a convection oven at 20, 35 and 40 �C. The base and curing agent were mixed in a
10:1 weight ratio using a centrifugal mixer for 30 s at 2,000 r.p.m. (clockwise),
and then for 30 s at 2,200 r.p.m. (counterclockwise). We sped up the curing
process using a cure accelerator (3–6559 Cure Accelerator, Dow Corning) that
was mixed to the PDMS elastomer in the weight proportion 5:1 (PDMS-base:Cure-
accelerator). VPS (Elite Double 8, 22 and 32, Zhermack, referenced throughout the
text as VPS-8, VPS-22 and VPS-32, respectively) was mixed at room temperature
(20 �C) with a base/cure ratio 1:1 in weight for 10 s at 2,000 r.p.m. (clockwise), and
then 10 s at 2,200 r.p.m. (counterclockwise).

The various polymer solutions (VPS and PDMS) were characterized with a
rheometer (AR-G2, TA Instruments) as a function of time and at a constant
temperature. The shear rate was fixed at _g � u=h � 0:1 s� 1, consistently with the
characteristic drainage velocity and film thickness (see Supplementary Note 1 and
Supplementary Fig. 2). The data for the measured viscosity was then fitted with the
piecewise model m t 	 tcð Þ¼m0exp btð Þ and m t4tcð Þ¼m1ta (see Fig. 2d and
Supplementary Fig. 1).

The velocity field of the draining polymer was measured using an open-source
package for particle imaging velocimetry (PIVlab30). A powder spray (Sparkler,
Body Shop) was sputtered onto the surface of the flow and imaged using a digital
microscope camera (Discovery VMS-004, Veho).

Upon curing, the final thickness, hf, of the hemispherical elastic shells was
measured with an optical microscope after cutting the shell along a meridian using
a scalpel (insets of Figs 1c and 3a).

Model. For the analytical description of the lubrication flow, we consider a
hemisphere of radius R, initially coated with a fluid of initial average thickness

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11155

6 NATURE COMMUNICATIONS | 7:11155 | DOI: 10.1038/ncomms11155 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


hi (h(f, 0) may vary spatially). Taking advantage of the azimuthal symmetry, our
model is derived in a zenith coordinate system (see schematic in Fig. 2a). By
assuming hi � R and considering mass conservation, the flow velocity, u¼ (u, v),
can be regarded to be essentially one-dimensional and predominantly tangential to
the surface of the sphere in the f direction (the velocity normal to the interface
is v� uh=R� u). Under low Reynolds number conditions, the lubrication
equations31 for this flow yield the following nonlinear partial differential
equation (see derivation in Supplementary Note 3):

ht ¼ � 1
3mRsinf h3sinf g

R hfff þ 2hf þ hffcotf
�
�

� hfcsc2f
�
þ rg � hfcosf

R þ sinf
� �io

f
;

ð7Þ

where the subscripts denote differentiation with respect to time and zenith angle,
i.e., q/qt and q/qf, respectively. Further assuming that the thickness of the fluid
film varies slowly along f and that the effects of surface tension are negligible (the
latter is valid except close to the moving front), equation (7) can be simplified to14

ht þ
rg

3mRsinf
h3sin2f
� �

f¼ 0: ð8Þ

Under the above conditions, the flow is primarily governed by viscous forces
and the component of gravity along the flow such that the drainage time, td,
is the relevant time scale of the problem. At the pole (f¼ 0), the thickness
varies according to the well established drainage law, h0 tð Þ¼hi 1þ 4

3 t=td
� �� 1=2

(refs 14,15), which we generalize further in our problem, in the context of
time-varying viscosities.

Numerical simulations. A numerical procedure was developed to solve
equation (7). The zenith angle is discretized uniformly, and we exploit the periodic
domain and employ the Fourier spectral method32 to compute spatial derivatives
with a high degree of accuracy. The effect of numerical diffusion is minimized by
performing the time integration with the second-order Crank-Nicolson MATLAB
routine ode23t.m. The computational time to derive a solution for a set of
geometric and physical parameters is of the order of a few minutes.

To verify the numerics, we compare the numerical solution for an initially
uniform film with the analytical solution obtained in the limit E¼hi=R! 0 and
f¼ 0, namely ~h 0;~tð Þ¼ 1þ 4~t=3ð Þ� 1=2, when using hi and td for
nondimensionalization. Supplementary Fig. 6 shows good agreement between the
analytical and the numerical solutions, using N¼ 256 discretization points.

To complement the comparison between the numerics and the 2nd-order
asymptotic solution shown in Fig. 4a, we have obtained results with both methods
for sinusoidal initial thickness profiles of the form ~h f; 0ð Þ¼1þAcosf with
A¼ � 0:5; 0; 0:5f g. These results are plotted in Supplementary Fig. 7 and confirm
that our asymptotic solution is indeed able to predict the correct dynamics for
moderate non-uniform film distributions.
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