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Among fundamental research questions in subterranean biology, the role of 

subterranean microbiomes playing in key elements cycling is a top-priority 

one. Karst caves are widely distributed subsurface ecosystems, and cave 

microbes get more and more attention as they could drive cave evolution 

and biogeochemical cycling. Research have demonstrated the existence 

of diverse microbes and their participance in biogeochemical cycling of 

elements in cave environments. However, there are still gaps in how these 

microbes sustain in caves with limited nutrients and interact with cave 

environment. Cultivation of novel cave bacteria with certain functions is still a 

challenging assignment. This review summarized the role of microbes in cave 

evolution and mineral deposition, and intended to inspire further exploration 

of microbial performances on C/N/S biogeocycles.
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Introduction

Caves are dark, underground hollow spaces with relatively constant temperature, high 
humidity, and limited nutrients. Many caves are associated with karst topography, which is 
formed by the dissolution of soluble bedrock, such as limestone, dolomite and gypsum, in 
areas where groundwaters are undersaturated with respect to the minerals in the host rock. 
Karst landforms spread widely, accounting for approximately 20% of the earth’s dry ice-free 
surface (Ford and Williams, 2007). As a typical feature of subsurface landscape, karst caves 
develop globally, with over 50,000 distributed in the United States (Barton and Jurado, 
2007). China also has a large contiguous karst terrain, and the Yunnan–Guizhou plateau in 
the southwest developed most karst caves, among which the longest cave exceeds 138 km 
(Zhang and Zhu, 2012). Many caves are relatively shallow and form near the water table in 
karst terranes, although some caves develop by deep-seated hypogenic process at substantial 
depths and by process other than dissolution such as lava flows.

Caves are oligotrophic ecosystems with less than 2 mg of total organic carbon per liter, 
yet host flourishing microbial groups (Figure 1A), with an average number of 106 microbial 
cells per gram of cave rock (Barton and Jurado, 2007). The study revealed a high diversity 
within Bacteria domain and Proteobacteria and Actinobacteria were abundant in 
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oligotrophic cave samples of air, rock, sediment and water. 
Chloroflexi, Planctomycetes, Bacteroidetes, Firmicutes, 
Acidobacteria, Nitrospirae, Gemmatimonadetes, and 
Verrucomicrobia also accounted for large proportions of the total 
microbial community in caves (Wu et al., 2015; Zhu et al., 2019). 
In some organic cave samples such as biofilms in sulfur cave, bat 
guanos, spiders’ webs and earthworm castings, Mycobacterium 
was prevalently detected (Modra et al., 2017; Sarbu et al., 2018; 
Hubelova et al., 2021; Pavlik et al., 2021). Over 500 genera of 
fungi, such as Penicillium, Aspergillus and Mortierella have been 
reported in caves (Vanderwolf et al., 2013), and new fungal species 
were identified from cave air, rock, sediment and water samples 
(Zhang et al., 2017, 2021). These microbial communities contain 
novel diversity, and promote important biogeochemical processes. 
With no sunlight, microorganisms in cave environment cannot 
perform photosynthesis, and are intensively involved in the 
biogeochemical cycles of carbon, nitrogen, sulfur, and metals such 
as Fe and Mn to offset the lack of exogenous nutrients and energy.

Early studies of the participance of microbes in cave 
biogeochemical cyclings were carried out using traditional 
culturing techniques, and bacteria isolates participate in limestone 
calcification were obtained from cave deposits and pool waters 
(Danielli and Edington, 1983; Cunningham et al., 1995). Special 
attention was paid to cave Actinobacteria, as Actinobacteria 
members isolated from moonmilk deposits were proved to 
produce various novel antibiotic compounds (Axenovgibanov 
et al., 2016; Adam et al., 2018). The emerging new techniques 
greatly facilitated the investigations of cave microbial community 
structure and functional potential. By adopting metagenomic 
sequencing, chemolithotrophic microbial communities driven by 
nitrification and sulfur oxidation were identified from cave 

biofilms (Jones et  al., 2012; Tetu et  al., 2013). Based on both 
culture-dependent and culture-independent techniques, these 
studies expanded our knowledge of subsurface microbial diversity, 
provided a better understanding of the energy and nutrient 
dynamics of cave ecosystems.

Cave systems are geographically and geochemically 
complicated, and they might be formed from hydraulic (epigenic 
or hypogenic) or lava movements. Physical and chemical 
compositions of caves affect the microbial diversity and 
involvement in cave evolution. Readers who are interested in 
specificities of each cave system may refer to literatures (Palmer, 
2011; Brannen-Donnelly and Engel, 2015; Martin-Pozas et al., 
2020). In this review, we  focus on discussion of the role of 
microbiomes in cave evolution and mineral deposition, and 
present case studies for microbial performance in cave nitrogen 
and sulfur cyclings. In addition, two emerging research topics 
related to cave carbon cycling, atmospheric methane oxidation 
and antibiotics production are explored.

Microbiomes drive cave evolution

Dissolution and deposition of carbonate 
minerals

There are two major mechanisms for the formation of karstic 
caves. Classical epigenic cave systems form as water flows through 
the soil and produces karst networks by seepages, absorbing CO2 
and forming a dilute carbonate solution. In epigenic caves, 
exchanges occur with subaerial processes (such as water 
movement and mixture), enhancing dissolution capacity in the 

A B

FIGURE 1

Illustration of microbial diversity and geobiochemical cycling of elements in a karst cave ecosystem. (A) Major cave microbial groups that are 
abundant and/or actively participate in biogeochemical cyclings; (B) Cave landscape and microbial carbon metabolisms; (C) Microbe-involved 
nitrogen transformation processes in caves; (D) Microbe-associated sulfur metabolisms in cave ecosystems. Microbes involved in goebiocycling 
processes in panels (C,D) are showed, except those genes were documented in cave samples yet no major microbial taxa responsible for the 
process was identified.
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direction of flow (Sendra et al., 2014). In contrast, hypogenic cave 
systems form as water recharges the soluble bedrocks from below. 
The formation of hypogenic caves is fueled by hydrostatic pressure 
or other energy sources rather than recharge from the overlying 
or adjacent surface (Ford, 2006). Due to the deep origin of rising 
water, hypogenic cave systems are not directly influenced by 
seepages. Among explanations for hypogenic cave formation, 
sulfuric acid speleogenesis (the formation process of a cave) is a 
major one, resulting in some of the largest cave systems including 
Carlsbad Caverns and Lechuguilla Cave in New Mexico. Hydrogen 
sulfide leaked upward along with fractures from hydrocarbon 
deposits, and form sulfuric acid upon reaching oxygenated 
meteoric groundwater (Jagnow et  al., 2000). Microbial 
communities dominated by sulfur-oxidizing acidophilic bacteria 
Acidithiobacillus formed dense biofilms in these caves, accelerating 
mineral dissolution and cave enlargement (Jones et al., 2014). 
Geobiochemical differences occur between epigenic and 
hypogenic cave systems, because caves formed from the two 
mechanisms would have different environmental conditions. For 
example, hypogenic caves such as sulfuric acid speleogenetic caves 
are sulfur-rich with relatively low pH, as a result, these caves 
support microbial communities that are acidophilic and actively 
involved in sulfur transformation. On the other hand, epigenic 
caves are pH neutral or slightly alkaline, and the microbial 
communities would be more diverse. Studies concerning snottites 
from sulfuric caves revealed very low biodiversity with Chao1 
index ranged from 1 to 10 (Hose et al., 2000; Vlasceanu et al., 
2000; Macalady et al., 2007), while more than ten thousand OTUs 
were detected from epigenic cave samples with Chao 1 index 
reached more than 1,000 (Zhu et al., 2019). Lava caves are also 
important subterrain environment, although karstic caves 
accounted for a larger proportion (Jones and Macalady, 2016). 
Lava caves formed from the heat volcanic flows and are mainly 
composed of basalt (Gabriel and Northup, 2013). These substantial 
differences from karstic caves granted lava caves unique microbial 
communities, which are mainly affected by geographical location 
and the availability of organic carbon, nitrogen and copper in the 
lava rock (Hathaway et al., 2014).

Multiple studies have suggested direct or indirect microbial 
involvement in the formation of carbonate minerals. Microbial 
calcite precipitation in calcium-rich environments was assumed 
to be the result of a detoxification process, through which growing 
cells actively export the excess calcium ions to maintain cellular 
metal homeostasis (Banks et al., 2010). Microbial biofilms also 
served as the initial crystal nucleation sites that contributed to the 
formation of secondary carbonate deposits within caves (Tisato 
et  al., 2015). Cañaveras et  al. (2006) proposed a model of 
moonmilk formation based on extensive observations in Altamira 
Cave (Spain) that microbial filaments provided a template for the 
precipitation of calcite fiber crystals in the early stages of 
moonmilk deposition. Moreover, the growth of microbes can 
increase the environmental pH, which would in turn increase the 
saturation index of carbonate and drive precipitation. For example, 
nitrogen metabolic pathways including ammonification of amino 

acids, dissimilatory reduction of nitrate and degradation of urea 
or uric acid induced formation of carbonate and bicarbonate ions, 
as the metabolic end product ammonia increased local pH 
(Castanier et  al., 2000). Maciejewska et  al. (2017) proved that 
Streptomyces promoted calcification in moonmilk through 
ammonification and, less importantly, ureolysis.

Biologically induced carbonate deposition was initially 
attributed mainly to fungi, studies reported that nano-fibers 
presented in the crystalline structure of moonmilk were related to 
biomineralized fungal hyphae (Bindschedler et al., 2010, 2014). 
However, recent studies indicated that bacteria played a major role 
in the induction of cave carbonate precipitation (Cañaveras et al., 
2006; Portillo et al., 2009). γ-Proteobacteria and Actinobacteria 
were the major groups detected in white colonizations that were 
able to raise pH through metabolism in Altamira Cave (Portillo 
and Gonzalez, 2011); isolates belonging to α-Proteobacteria, 
β-Proteobacteria, γ-Proteobacteria, Firmicutes and Actinobacteria 
from cave speleothem were also confirmed to perform calcification 
(Banks et al., 2010). The presence of Archaea was identified in 
moonmilk deposits, yet their role in the formation of moonmilk 
remains to be  discovered (Gonzalez et  al., 2006; Reitschuler 
et al., 2016).

Deposition of iron and manganese 
oxides

Fe and Mn oxides were found in karst caves as sedimentary 
fills, walls, ceiling and floor coatings/crusts, and sometimes as 
their own speleothems (Hill and Forti, 1997; Palmer, 2007). The 
importance of biological Fe oxidation in caves has long been 
recognized (Caumartin, 1963). Early studies on the bacterial role 
in Fe and Mn deposits most relied on microscopy: Peck first 
reported the presence of Fe-precipitating Leptothrix and 
Gallionella species in enrichment cultures inoculated with mud 
from cave pools and sumps (Peck, 1986). Later, more and more 
studies hinted the participance of microorganisms in cave Fe 
oxidation. For instance, freshly Fe oxide precipitates in Pautler 
Cave showed consistency with biomineralization structures of the 
microbial genera Gallionella and Leptothrix (Frierdich et  al., 
2011), and the iron mats in Borra caves appeared to be related to 
a community of mostly Leptothrix-like iron-oxidizing bacteria 
(Baskar et  al., 2008, 2012). Abiotic Fe oxidation is rapid and 
prevalent at circumneutral pH yet is inhibited at low pH and 
microoxic/anoxic environments, where biological Fe oxidation 
more often occurs (Jones and Northup, 2021). The formation of 
Fe oxides and the identification of Fe-oxidizing bacteria do not 
necessarily indicate biological Fe oxidation.

Although Fe oxide minerals generate via both biological and 
abiotic processes, the presence of secondary Mn oxides is usually 
related to Mn-oxidizing microbes, because abiotic Mn oxidation is 
kinetically inhibited even at anoxic conditions (Luther, 2010; 
Johnson et  al., 2013). Microbes could increase the rate of Mn 
oxidation by five orders of magnitude (Emerson, 2000; 
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Tebo et al., 2005). Microbes related to Mn oxide production have 
long been reported from cave systems, and bacterial species 
belonging to Proteobacteria, Firmicutes, Actinobacteria and 
Bacteroidetes were reported to oxidize Mn (Carmichael and Bräuer, 
2015). For example, Mn-oxidizing Pseudomonas, Leptothrix, 
Flavobacterium and Janthinobacterium species were isolated from 
cave ferromanganese deposits (Carmichael et al., 2013a); the well-
known Mn-oxidizing Pedomicrobium and Caulobacter species were 
also observed in cave stromatolites (Lozano and Rossi, 2012). Most 
of the Mn oxidizers described to date are heterotrophic, they are 
supposed to oxidize Mn indirectly through producing superoxide 
during growth (Learman et al., 2011). However, Mn oxidation has 
long been regarded to be a potential energy-yielding reaction, and 
chemolithoautotrophic Mn oxidation was recently documented by 
Yu and Leadbetter (2020). A co-culture of two microbial species 
was obtained and the co-culture possibly coupled extracellular 
manganese oxidation to aerobic energy conservation and 
autotrophic carbon fixation (Yu and Leadbetter, 2020). Mn 
oxidation is largely influenced by exogenous carbon input, dilute 
sewage into the cave lead to massive bloom of a microbiome-
driven and Mn-oxidizing biofilm (Carmichael et  al., 2013b). 
Although bacteria attracted more attention in cave biogeochemical 
cycling, Mn-oxidizing fungi are also identified in caves. 
Acremonium nepalense was found responsible for black Mn oxides 
on clayey sediments of Lascaux Cave (Saiz-Jimenez et al., 2012); 
Mn-oxidizing members belonging to Ascomycota were obtained in 
southern Appalachian cave systems, and the results suggested that 
anthropogenic carbon sources stimulated fungi-driven Mn 
oxidation (Carmichael et al., 2015).

The role of microbes in cave N 
cycle

Due to the dark and oligotrophic conditions, cave 
microorganisms use various metabolic pathways to retrieve 
nutrients and energy. In the world’s largest contiguous karst 
system, the Nullarbor Plain, extensive caves have been discovered 
(Webb and James, 2006). These caves are isolated from 
photosynthetically derived carbon, and no organic carbon was 
detected from filtered water flooding deeper portions of the caves 
(James and Rogers, 1994). However, dense biofilms with high 
biomass are widespread in Nullarbor caves, forming “mantles” of 
biological material associated with “snowfields” of microcrystals 
(Contos et al., 2001). Chemical analysis of water samples from 
Nullarbor caves showed relatively high levels of nitrite and 
remarkable sulfate and nitrate, indicating the existence of 
chemoautotrophic bacterial communities (Holmes et al., 2001). 
Holmes et al. (2001) also performed the first microbial community 
assessment of these slime biofilms, and revealed high proportion 
of clones belonging to Nitrospira, of which all characterized 
members carry the potential to oxidize nitrite into nitrate. These 
results suggested that nitrite oxidation could be essential to the 
trophic structure of Nullarbor cave communities. About 10 years 

later, Tetu et al. (2013) performed metagenomic and 16S rRNA 
amplicon sequencing of slime biofilms from one of the Nullarbor 
caves, providing in-deep knowledge of nitrogen transformations 
of these special communities. Their investigation indicated that 
Thaumarchaeota were abundant in the community, and 
Thaumarchaeota predominantly contributed to ammonia 
oxidation. Based on these studies, it was assumed that slime 
biofilms in Nullarbor caves had chemolithotrophic communities 
driven by nitrification. Except for caves with special biofilms like 
those in Nullarbor plain, sediment samples and ferromanganese 
deposits from other karstic caves also supported that 
Thaumarchaeota played an essential role in ammonia oxidation 
(Zhao et al., 2017; Kimble et al., 2018).

Studies with functional gene analysis of various cave samples 
documented other key N cycle pathways in addition to ammonia 
oxidation. For example, Kimble et  al. (2018) found genes 
associated with nitrification, dissimilatory and assimilatory nitrate 
reduction, and denitrification in cave ferromanganese deposits 
with low fixed N; while Jones et al. detected nitrogen assimilation 
genes in cave biofilms where fixed N was available (Jones et al., 
2012). In our previous work, a collection of cave bacterial genomes 
was established based on large-scale isolation and cultivation (Zhu 
et al., 2021). Except for many cave isolates carry genetic potential 
to perform denitrification and dissimilatory nitrate reduction, 
we  also noticed that 11 genomes in the dataset showed the 
potential to fix nitrogen into biologically available ammonia. A 
novel nitrogen-fixing species Azospirillum cavernae was also 
identified from our cultured cave bacterial collections. These 
microbe-involved nitrogen transformation processes are 
summarized in Figure 1C.

The role of microbes in cave S 
cycle

The biogeochemical cycle of sulfur instead of those of carbon 
and nitrogen was assumed being the center stage in sulfuric acid 
speleogenetic (SAS) caves (Hedrich and Schippers, 2021). Italy has 
about 25% of identified SAS cave systems worldwide, among 
which Frasassi cave system is the best documented and still active 
one (Galdenzi and Menichetti, 1995; D'Angeli et  al., 2019). 
Extremely acidic (pH 0–1) microbial biofilms, which are known 
as “snottites,” hang on the walls and ceilings of these hydrogen 
sulfide-rich caves (Hose et al., 2000). Studies based on 16S rRNA 
cataloging showed that the Frasassi snottites were among the 
lowest diversities of natural microbial communities ever known, 
and were constituted mainly of bacteria related to Acidithiobacillus 
species, sometimes with other less abundant bacteria and archaea 
(Macalady et  al., 2007). Jone et  al. investigated the metabolic 
potential and ecological role of snottite Acidithiobacillus using 
metagenomics sequencing, and revealed that the population was 
autotrophic, and oxidizing sulfur via the sulfide-quinone 
reductase and sox pathways, indicating Acidithiobacillus was the 
snottite architect and main primary producer (Jones et al., 2012). 
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Moreover, Acidithiobacillus thiooxidans obtained from the Frasassi 
cave snottites was also reported to carry a high potential to remove 
arsenic from contaminated sediments (Beolchini et al., 2017).

Microbial activity is also crucial for cave sulfide oxidation 
below the water table; the springs and discharge streams in SAS 
caves are colonized by thick, filamentous microbial mats (Engel 
et al., 2004b). Sulfide can be oxidized completely to sulfate with 
sufficient electron acceptors such as oxygen or nitrate; however, 
incomplete sulfide oxidization to sulfur would occur if low oxygen 
and nitrate are available. Due to intracellular or extracellular 
elemental sulfur globules formed by the partial oxidation of 
dissolved sulfide, biofilms in cave water have a milky appearance 
(Jones and Northup, 2021). Based on fluorescence in situ 
hybridization (FISH) and 16S rRNA gene libraries, 
ε-Proteobacteria and γ-Proteobacteria are crucial biofilm-forming 
members, and their distribution is primarily influenced by water 
flow (shear stress) and sulfide to oxygen ratios (Engel et al., 2003, 
2004a). In rock-attached streamers, filamentous ε-Proteobacteria 
dominated at high while Thiothrix belonging to γ-Proteobacteria 
dominated at low sulfide to oxygen ratios; and in sediment–water 
interface, Beggiatoa belonging to γ-Proteobacteria was the 
dominant group regardless of sulfide to oxygen ratio (Macalady 
et  al., 2008). Stream biofilms from Frasassi cave system were 
abundant in filamentous γ-Proteobacteria, among which 
Beggiatoa-like and/or Thiothrix-like cells contain large amount of 
sulfur inclusions (Macalady et al., 2006). Hamilton et al. (2015) 
retrieved Sulfurovum-like ε-Proteobacteria genomes through 
metagenomic sequencing of SAS cave biofilms, and indicated that 
this group is genetically equipped to catalyze sulfur precipitation 
while employing a lithoautotrophic lifestyle. Genes for the 
transformation of other sulfur-containing compounds were also 
reported in caves (Zhu et  al., 2021), and these processes are 
summarized in Figure 1D.

Featuring cave bioprocesses with 
C cycle

Due to limited nutrients, cave microbes have been reported to 
utilize diverse carbon and energy sources (Figure  1B). Our 
previous work noticed that genomes of cave bacterial isolates 
encode the genes for carbon monoxide oxidation (Zhu et  al., 
2021), a process that can either provide supplementary energy 
source without contributing biomass or couple with carbon 
dioxide fixation for biosynthesis under aerobic conditions (King 
and Weber, 2007). Carbon dioxide fixation is also active in cave 
microbial communities, there are six known carbon dioxide 
fixation pathways and the genes for all these pathways were 
detected in the metagenome of Kartchner cave surface (Ortiz 
et al., 2014). Aromatic hydrocarbons can be trapped by stalagmites 
or carried into caves through dripping water; consequently, 
bacteria that are able to degrade these compounds were detected 
in caves (Perrette et  al., 2008; Marques et  al., 2019). 
Microorganisms that are capable to use one-carbon compounds 

were obtained from Movile cave, and these microbes were 
proposed to be  one of the main primary producers of the 
community (Wischer et  al., 2015). In addition to traditional 
methanotrophs, the uncultured atmospheric methane-oxidizing 
bacteria were believed to be abundant in cave environment, which 
will be discussed detailly in the following part.

Atmospheric methane oxidizers

As a potent greenhouse gas, the concentration of atmospheric 
methane is increasing (Nisbet et al., 2016; Prather and Holmes, 
2017). Estimation showed that human activities and natural 
sources produce about 680 Tg year−1 of methane to the 
atmosphere, while reactions with hydroxyl and chlorine radicals 
in the troposphere and stratosphere remove about 600 Tg year−1 of 
methane (Kirschke et al., 2013). Methanotrophic microorganisms 
in forests, grasslands, paddy and other unsaturated soils play an 
essential role in mediating carbon cycle, and are believed to filter 
30 Tg year−1 of methane (Kirschke et al., 2013). However, there is 
still gap in the overall methane budget balances. Recent studies 
suggested that caves and related karst terrains may be an essential 
yet overlooked sink for atmospheric methane.

Fernandez-Cortes et  al. (2015) first monitored the 
concentration of methane and carbon dioxide in seven caves 
located in Spain, and the results proved that subterranean 
environments acted as sinks for atmospheric methane on seasonal 
and daily scales. They also detected methane-oxidizing bacteria in 
some cave sediments where methane concentrations were near to 
the atmospheric background, yet no such microbes were detected 
in sample sites with minimal methane concentrations. Thus, 
Fernandez-Cortes et al. assumed that cave methane oxidation was 
mainly induced by oxidative capacity from high density of ions, 
and was not significantly intervened by methanotrophic bacteria. 
However, through controlled laboratory experiment, Nguyễn-
Thuỳ et  al. (2017) showed that the radiolysis hypothesis is 
kinetically constrained and is unlikely to lead to rapid methane 
loss. Instead, by performing a set of mesocosm experiments with 
rock samples from two Vietnamese caves, they revealed that the 
depleted concentrations of methane in caves were most likely 
associated with microbial activity rather than radiolysis. Following 
these pioneering works, more and more evidence were reported 
from various caves to support microbes involved cave methane 
oxidation. For example, stable carbon and hydrogen isotope 
compositions of methane from 33 epigenic caves in the 
United States and 3 in New Zealand all supported that microbial 
methanotrophy within caves was the main methane consumption 
mechanism (Webster et al., 2018). Ojeda et al. (2019) also noticed 
methanotrophic activity of γ- and α-Proteobacteria in Nerja cave 
in Spain.

Methanotrophs have been reported since early twentieth 
century, and were detected at various habitats such as mud, 
rivers, rice paddies, sediments and sewage sludge (Whittenbury 
et al., 1970; Hanson and Hanson, 1996). Although atmospheric 
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methane oxidation rates can remain steady for more than 
4 months at 1.7 ppmv of methane (Schnell and King, 1995), 
calculations based on the kinetic constants of isolated 
methanotrophic bacteria could not support such extended 
survival (Conrad, 1984). Studies with Methylosinus 
trichosporium and Methylobacter albus revealed that 
atmospheric methane oxidation did not supply sufficient 
cellular maintenance energy and reduced power for the methane 
monooxygenase (Roslev and King, 1994; Schnell and King, 
1995). The organisms responsible for atmospheric methane 
uptake were unknown until Holmes et al. (1999) reported a 
novel group of bacteria belonging to α-Proteobacteria, which is 
distantly related to existing methane-oxidizing strains and is 
believed to consume atmospheric methane. Later, Knief et al. 
(2003) identified another novel atmospheric methane-oxidizing 
group belonging to γ-Proteobacteria through comparative 
sequence analysis of the pmoA gene, and named these two 
groups as “upland soil cluster α” (USC α) and “upland soil 
cluster γ” (USC γ), respectively. Culture-independent studies 
suggested that USC α is adapted to the low concentration of 
methane in neutral and acidic soils (Kolb et al., 2005; Martineau 
et al., 2014) while USC γ prefers neutral to alkalic soils (Kolb, 
2009). Tveit et  al. (2019) reported the first pure culture 
Methylocapsa gorgona MG08 that grows on air at atmospheric 
methane, and proved that the strain is closely related to 
uncultured members of USC α. However, the cultivation of 
members related to USC γ remains challenging.

The investigation of cave methanotrophic bacteria is far 
earlier than the discovery that caves may be important methane 
sink. Hutchens et al. (2004) identified strains of Methylomonas, 
Methylococcus and Methylocystis/Methylosinus as major 
methanotrophs in Movile Cave through DNA-based stable 
isotope probing. However, the air of Movile Cave contains 1–2% 
(10,000–20,000 ppmv) methane (Sarbu and Kane, 1995), which 
is much higher than general 1.86 ppmv atmospheric level. Zhao 
et al. (2018) explored the presence and diversity of methane-
oxidizing bacteria in Heshang Cave, where methane 
concentration decreases from 1.9 ppmv at the entrance to 0.65 
ppmv inside the cave. Their results provided compelling 
evidence that methane-oxidizing bacteria accounted for up to 
20% of the whole microbial communities with the high-affinity 
USC γ being the dominant group. According to sequencing 
analysis of pmoA and 16S rRNA genes of weathered rock 
samples from three karst cave in southwest China, Cheng et al. 
(2021) demonstrated that USC γ group dominated the 
atmospheric methane-oxidizing communities, and was 
identified as a keystone taxon in cooccurrence networks of both 
methane-oxidizing and the total bacterial communities. In 
addition to atmospheric methane-oxidizing groups, anaerobic 
methane-oxidizing bacteria were also detected from some cave 
samples. For example, members of the phylum Rokubacteria 
were found in Pindal Cave, these organisms perform anaerobic 
oxidation of methane coupled to nitrite reduction (Cuezva 
et al., 2020).

Novel antibiotic compound producers 
from cave

Infectious diseases have long been threatening human society, 
while sprouting antibiotic-resistant pathogens are posing heavier 
burdens to human public health. According to the World Health 
Organization (WHO), there is an urgent need for investment of 
new antibiotics to combat antibiotic-resistant infections (World 
Health Organization, 2015). With a combination of unique 
environmental conditions and rare human intervention, more and 
more studies turned to caves for microorganisms producing 
novel antibiotics.

It has been proved that Actinobacteria are prolific producers 
of promising bioactive compounds with wide application. 
Approximately 45% of identified bioactive compounds are 
produced by Actinobacteria, among which 80% are derived from 
the Streptomyces genus (Bérdy, 2005). Sequencing analysis 
revealed the dominance of Actinobacteria in plenty of cave 
samples, such as cave soils (Wiseschart et al., 2019), cave sediments 
(De Mandal et al., 2015a,b), cave rocks (Zhu et al., 2019) and 
colonies on cave Paleolithic paintings (Stomeo et al., 2008). The 
isolates of Streptomyces genus were also obtained from many 
caves, such as Sigangli Cave in China (Fang et al., 2017), Altamira 
Cave and Tito Bustillo Cave in Spain (Groth et al., 1999), and Iron 
Curtain Cave in Canada (Gosse et al., 2019). Caves are not only 
home for various known actinobacterial taxa, but also excellent 
reservoir for new species of Actinobacteria. Forty-seven species 
within 30 genera belonging to Actinobacteria were isolated from 
caves and cave-related habitats from 1999 to 2018, among which 
seven represented novel genera (Rangseekaew and Pathom-aree, 
2019). It is assumed that the extreme conditions within caves 
stimulated the inhabitant microorganisms to mutate their genes, 
making it more likely to evolve new species and novel metabolites 
(Tiwari and Gupta, 2013).

Isolating cave microorganisms and subsequently checking 
their antimicrobial activity against pathogens is one of the main 
approaches to identify novel antibiotics. By adopting such strategy, 
Herold et al. (2005) reported cervimycins, which are highly active 
against some Gram-positive bacteria. These compounds are 
produced by Streptomyces tendae HKI 0179, a strain isolated from 
a rock wall of an ancient cave in Italy. Another example is the 
discovery of Huanglingmycins, which are produced by 
Streptomyces sp. CB09001 from cave soil of China (Jiang et al., 
2018). Noticeably, Huanglongmycin A showed not only weak 
activity against some Gram-negative bacteria, but also moderate 
cytotoxicity against A549 lung cancer cell line. Although certain 
bioactive compounds were not identified, some rare cave 
actinobacterium also showed anticancer potential. For instance, 
Spirillospora albida isolated from Phanangkhoi Cave were active 
against NCI-H1870 (human small lung cancer cell; Nakaew et al., 
2009a); Nonomurea roseola isolated from Phatup Cave showed 
activity against human oral cavity cancer and human small lung 
cancer cells (Nakaew et  al., 2009b). In addition, antifungal 
compounds were also documented from cave environment. 
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Antagonistic Streptomyces, Micromonospora, Streptosporangium, 
and Dactylosporangium isolated from five caves in Korea showed 
biocontrol activities against at least one of the rice pathogenic 
fungi (Nimaichand et al., 2015); Streptomyces sp. from five caves 
in New Mexico and the United States has been suggested to inhibit 
the growth of the causative fungus of white-nose syndrome in bats 
(Hamm et al., 2017).

Perspectives

Cave ecosystems form a huge subsurface reactor for the global 
biogeochemical cycle. The roles of microorganisms in both cave 
formation and subterranean key elements cycling are among the 
50 top priority questions in subterranean biology (Mammola 
et  al., 2020). It is now believed that many substantial mineral 
transformations, originally considered abiotic processes, are 
mediated by microbes: from microbial carbonate precipitation to 
the production of Fe and Mn deposits (Jones and Northup, 2021). 
As extremely starved environments, chemolithotrophic microbial 
communities driven by nitrification and sulfur oxidation have also 
been identified in cave ecosystems, providing valuable information 
on subterranean biogeochemical cycles (Jones et al., 2012; Tetu 
et al., 2013). These processes would not only transform minerals, 
change the air composition or water pH, but also lead to reshaping 
the cave. However, only 10% of all caves on earth have been 
accessed by humans, and even as many as 50% of caves in Europe 
and North America remain unexplored (Lee et al., 2012). As such, 
many more efforts are needed to explore cave microbiology, and 
further developments in caving technology and analytical tools are 
also essential to accomplish this goal.

The investigation about how microorganisms survive in 
nutrient-limited caves expanded our knowledge on controlling 
human impacts and protecting cave environments. For example, 
caves in north Spain contain Paleotic paintings, yet tourist 
activities brought in heterotrophic bacteria, threatening to damage 
the cultural treasures (Cañaveras et al., 2001). Furthermore, cave 
environment created stress for the inhabitant microorganisms at 
genetic level, making it a reservoir of novel microbial species and 
bioactive compounds. Although many cave bacterial isolates 
showed inhibitory properties against pathogens, only a few 
metabolites got identified chemical structure (Rangseekaew and 
Pathom-aree, 2019). The advent of genomics, transcriptomics and 
proteomics will facilitate the research of inter- and intra-
community relationships which previously only be  addressed 

under in vitro conditions. Nonetheless, to successfully isolate 
microorganisms that are adapted to cave environment and actively 
participate in element cycling is of vital importance yet remains 
challenging. Atmospheric methane oxidation in caves emerges as 
a hot research topic, although sequencing analysis proposed that 
USC γ played the major role, members of this group remain yet to 
be cultured (Cheng et al., 2021). On the one hand, a comprehensive 
understanding of factors affecting cave inhabitants is needed to 
discover ideal conditions for microbial growth; on the other hand, 
innovative cultivation techniques such as membrane diffusion-
based cultivation, microfluidics-based cultivation and cell sorting-
based cultivation are also worth applying (Lewis et al., 2020). By 
combining culture-dependent and sequencing-based techniques, 
cave microbiology explorations would lead to more exciting 
discoveries of subterranean environments.
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