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Historically deemed as the realm of the brave or the foolhardy, glycobiology has grown considerably
as a discipline over the last 50 years. Carbohydrates, which were once considered to be mere
“decorations” on proteins and lipid membranes, are increasingly demonstrated to afford specific
roles in signaling and communication (1).

Although the rate of structures deposited into the Protein Data Bank continues to grow at
an exponential rate, the characterization of new structures of carbohydrate–protein complexes is
growingmoremodestly, still being very challenging and prone to errors (2). Computationalmethods
are increasingly being pursued to provide structural insight into carbohydrate–protein interactions.
The complex structure and high flexibility of carbohydrates, as well as difficulties associated with
accurately computing binding energies for these interactions, present considerable challenges for the
use of thesemethods in both understanding the carbohydrate–protein recognition and the structure-
aided design of carbohydrate-based therapeutics. However, numerous computational approaches
have been developed in recent years that address some of these issues (3–9). The Opinion piece
in this Research Topic further highlights some computational resources that have been developed
specifically for glycobiology (10).

Several carbohydrate classes, most notably gangliosides, Lewis antigens, and Thomsen–
Friedenreich antigen, are of considerable interest for the development of cancer immunotherapeu-
tics. Krengel and Bousquet (11) present a comprehensive review on the importance of gangliosides
not only to cancer therapeutics but also their relevance for signaling and in mediating infection
by pathogens, as well as how their structure and presentation on glycolipids and glycoproteins
influences their function and potential to be exploited in therapeutics. Ahmed et al. (12) describe
the use of molecular modeling to optimize framework regions of an anti-ganglioside antibody,
resulting in the identification of a new construct with enhanced stability, antigen binding, and
cytotoxic properties. Kieber-Emmons et al. (13) discuss the challenges and frontiers associated with
the development of peptides as immunogenic mimics of carbohydrates, particularly focusing on
mimics of tumor-associated carbohydrate antigens.

Despite considerable advances in the understanding of many aspects of glycobiology, several fun-
damental processes remain only partially understood. An excellent example of this is the structural
basis of antibody recognition of the blood group antigens (A, B, H). Makeneni et al. (14) combine
docking with a recently developed carbohydrate-specific scoring function and molecular dynamics
simulation to demonstrate the structural basis of A vs. B specificity of an anti-A antibody. Lee et al.
(15) performed LC-MS/MS-based glycomics and proteomics, combined with structural analyses, of
a wide range of glycosylated proteins in order to understand the differences in the glycosylation of
secreted cell surface and intracellular proteins. The study correlates the presence of specificN-glycan
terminations with their subcellular location, providing insight into pathophysiological conditions
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caused by glycosylation disorders. Brockhausen (16) provides a
comprehensive review detailing known glycosyltransferases with
overlapping activities between bacteria and mammals. In many
cases, similar catalytic mechanisms between bacterial and mam-
malian glycosyltransferases can be identified, despite limited
sequence similarity.

Lectins, particularly C-type lectins, are of considerable impor-
tance for immunity, mediating cell–cell recognition, and rep-
resenting potential targets for the development of therapeutics.
Notable C-type lectins includeDC-SIGN and the selectins, known
for their roles in the progression of HIV and cancer, respec-
tively. Richardson and Williams (17) review the discovery and
characterization of the macrophage C-type lectin (MCL) and

the macrophage-inducible C-type lectin (Mincle), their roles in
initiating the immune response to infection, and the identification
of activating ligands for these receptors. Aretz et al. (18) predict
the druggability of a panel of C-type lectins, as well as perform
fragment-based screening by nuclear magnetic resonance spec-
troscopy against DC-SIGN, langerin, and MCL. Their work high-
lights limitations in the application of computational methods to
predict the druggability of this class of proteins.

The work presented in this Research Topic illustrates a small
selection of the wide ranging research in this area and the con-
siderable challenges associated with both understanding glycan
function and targeting glycan interactions for the development of
therapeutic agents.
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