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Abstract

Purpose: End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS),
especially where platelets accumulate (e.g. spleen and lung). We previously reported an acute sepsis-induced cytotoxic
platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s) of and mechanism(s) by which
platelet granzyme B induces end-organ apoptosis in sepsis.

Methods: End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis) was analyzed by immunohistochemistry.
Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine
splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score.

Measurements and Main Results: There was evident apoptosis in spleen, lung, and kidney sections from septic wild type
mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice
survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of
septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable
from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by
66.6610.6% (p = 0.008). Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle
control mice.

Conclusions: In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B
slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the
platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be
protective in sepsis.
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Introduction

Despite several decades worth of advances in antimicrobials,

critical care, and organ support modalities, mortality rates from

septic shock/severe sepsis have remained at about 30–40% [1]. In

fact, sepsis is responsible for 215,000 U.S. deaths annually, which

is akin to mortality from acute myocardial infarction [1], making it

the 10th leading cause of death [2]. The frequent precursor to

mortality from sepsis is Multiple Organ Dysfunction Syndrome

(MODS), with increased numbers of failing organs associated with

higher mortality [3–5]. Many of these failing organs – in particular

lung, intestine, vascular endothelium, and lymphoid tissue – show

marked apoptotic cell death during sepsis [6–9]. We recently

identified a potential etiologic factor for sepsis-related end-organ

apoptosis: Acute sepsis-induced alterations in the megakaryocyte-

platelet transcriptional axis result in strongly cytotoxic platelets

expressing the potent serine protease granzyme B in mice and

humans [10].
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It is notable that platelets accumulate in the microvasculature of

many of these commonly failing apoptotic end organs in sepsis

(e.g. lung, liver, intestine, and spleen) [11–14], and platelet derived

microparticles are cytotoxic to a variety of cell types including

vascular endothelium [15–17] and smooth muscle [17]. Therefore,

we hypothesized that septic platelet-induced apoptosis occurs in

both non-lymphoid and lymphoid organs and that this cytotoxicity

is independent of direct platelet-target cell contact (i.e. micropar-

ticle-mediated).

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

Children’s National Medical Center Institutional Animal Care

and Use Committee approved all experiments (IACUC approval

# 207-07-08 and # 280-11-08). All surgery was performed under

isoflurane and nitric oxide anesthesia, and all efforts were made to

minimize suffering.

Animals
Wild type (i.e. C57BL6), perforin null (i.e. C57BL/6-Pfptm1Sdz),

and granzyme B null mice (i.e. B6.129S2-GzmBtm1Ley) (Jackson

Laboratories, Bar Harbor, ME) were housed and bred in a

conventional animal facility.

Experimental Sepsis and Sample Collection
For most experiments, polymicrobial peritonitis and experi-

mental sepsis was induced via a moderate-severity cecal ligation

and puncture (CLP) in 7 to 10-week-old male mice as we and

others have previously described [10,18,19]. For natural history

mortality studies, we used a severe CLP model for rapid time to

death to minimize animal discomfort [19]. For the in vivo trial of

eptifibatide, polymicrobial sepsis was induced in mice using the

cecal slurry (CS) method, as described by Wynn et al [20]. Briefly,

for CS preparation a mouse was euthanized and a midline incision

was made to isolate the cecum. The cecal contents were

homogenized and suspended in 5% dextrose at a final concentra-

tion of 80 mg/mL. The resulting slurry was frozen at -80uC and

thawed within one week for intraperitoneal (IP) administration to

recipient mice (7 to 10-week-old males) at a dose of 2 mg of cecal

content per gram of mouse weight. Sham mice received an IP

injection of 5% dextrose.

Mice were scored post-CLP or post-CS injection at 2-hour

intervals, starting at either 12 or 16 hours, using a 15-point

validated murine sepsis severity measure [21,22]. Mice were

sacrificed when a score of 10 (associated with .90% imminent

mortality) was reached or at 72 hours. For non-mortality

experiments, mice were sacrificed 18 hours post-surgery. At

the time of sacrifice, intra-cardiac blood was drawn into sodium

citrate (Becton-Dickinson, Franklin Lakes, NJ) and centrifuged

for platelet-rich plasma at 770 rpm for 20 minutes at 25uC.

Platelets were isolated by centrifugation and filtered through a

10 mL sepharose 2B gel column [23]. Platelet concentrations

were measured and standardized using a manual hemocytom-

eter. We confirmed platelet isolates to be pure and not platelet-

leukocyte aggregates based upon size by flow cytometry and

lack of staining for CD45 (BD Pharmingen, San Diego, CA).

Endotoxin levels were measured in plasma using ToxinSen-

sorTM Chromogenic LAL Endotoxin Assay Kit (GenScript,

Piscataway, NJ).

Administration of Eptifibatide
Mice received intravenous injections of eptifibatide (15 mg/g of

mouse weight) or PBS vehicle via tail vein injection at 12, 16, and

20 hours post-injection of cecal slurry. This dosing regimen was

chosen based on the kinetics of platelet granzyme B expression we

previously published [10] (i.e. expression peak after 12 hours) and

the pharmacology of eptifibatide (i.e. plasma elimination half-life

of approximately 2.5 hours). In addition, we planned for a

maximum of three tail vein injections considering the vascular

compromise of the septic animals and resulting difficulty with

injections.

Ex Vivo Platelet-Splenocyte Co-Incubation
Non-septic wild type spleens were firmly pressed between two

glass slides to express splenocytes, which were isolated by

centrifugation through Ficoll-PaqueTM Plus (GE Healthcare Bio-

Sciences Corporation, Piscataway, NJ). Splenocyte concentrations

were measured and standardized using a manual hemocytometer

and co-incubated ex vivo with platelets (from septic or healthy

control mice) for 90 minutes at 37uC and 5% CO2 in complete

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen/

GIBCO, Carlsbad, CA). For some experiments, a 0.4 mm semi-

permeable membrane (Corning Inc., Corning, NY) was used to

physically separate platelets from splenocytes. In other experi-

ments, platelet-splenocyte contact was pharmacologically inhibited

using anti-aggregatory pretreatment with GPIIb/IIIa inhibitor,

eptifibatide (4 mg/mL; Bachem, Torrance, CA), or anti-CD62p

antibody (3 mg/mL; clone RB40.34; BD Biosciences, San Jose,

CA) for 15 minutes.

Detection of Apoptosis
Splenocyte apoptosis in each experimental condition was

quantified in cell suspensions by flow cytometry on a FACSCa-

liburTM (Becton, Dickinson and Company, San Jose, CA) and in

tissue sections by immunohistochemistry on a Nikon Eclipse E 800

Microscope (Nikon Instruments Inc., Melville, NY) with a Spot

RT Slider Camera (Diagnostic Instruments Inc., Sterling Heights,

MI). Splenocyte suspension apoptosis was identified using

FlowTACSTM (Trevigen, Gaithersburg, MD), a TUNEL-based

assay for detection of DNA fragmentation. Positive controls were

generated with staurosporine (Sigma Life Sciences, St Louis, MO).

CD4+ fractions were identified by fluorophore-labeled antibody

staining (clone L3T4; eBiosciences, San Diego, CA). We used a

Sulforhodamine FLICA-Apoptosis Detection Kit Pan-Caspase

Assay (Immunochemistry Technologies, Bloomington, MN) to

measure activated caspases in apoptotic cells. Immunohistochem-

istry was performed on frozen heart, lung, kidney, spleen, and liver

sections (4–7 mm) stained with the TUNEL-based TACSH 2 TdT

In Situ Apoptosis Detection Kit (Trevigen, Gaithersburg, MD)

according to the manufacturer’s instructions. Lung, spleen, and

kidney sections were additionally stained with anti-CD41 (Rat

anti-mouse CD41 antibody, Clone MWReg30, BD Pharmingen,

San Diego, CA) to identify platelet accumulation. Apoptotic index

was calculated for each tissue sample as described in Dmowski

et al [24].

Statistical Analyses
Flow cytometry data were analyzed using FlowJo 7.5 (Tree Star,

Inc., Ashland, OR). Data were maintained in Microsoft Excel

2010 (Microsoft, Redmond, WA). Statistical significance was

tested using paired and unpaired t-tests, Kaplan-Meier survival

analyses, and Cox Proportional Hazard Regression in SPSS 20

(SPSS, Chicago, IL).

Platelet Granzyme B in Sepsis
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Results

Sepsis-Related Mortality is Reduced in the Absence of
Granzyme B

Following CLP-induced polymicrobial sepsis (severe model),

granzyme B null mice (n = 5) had lower sepsis scores than wild

type mice (n = 4) at every time point. (Figure 1A) For example,

at 22 hours, the mean 6 SEM wild type score was 9.060.8

while the granzyme B null score was 6.860.7 (p = 0.04). At

24 hours post-CLP, the mortality rate of the granzyme B null

mice was 0% while the mortality rate of the wild type mice was

100%. Kaplan-Meier survival analysis showed that granzyme B

null mice survived longer following severe CLP than wild type

mice (p = 0.0019 by Cox Proportional Hazard Regression).

(Figure 1B) Granzyme B null and wild type mice did not differ

according to plasma endotoxin concentrations (EU/mL).

(Figure 1C).

Sepsis-Induced Spleen and Lung Apoptosis Is Granzyme
B-Dependent

Spleen, lung, and kidney sections from wild type mice at

18 hours following CLP-induced polymicrobial sepsis (moderate

model) were markedly TUNEL positive. (Figure 2) In contrast,

spleens and lungs from septic granzyme B null mice lacked

TUNEL staining. (Apoptotic index WT vs. Granzyme B null for

lung = 3,7766139 vs. 6786181 (p,0.001) and for

spleen = 2,6826191 vs. 6226120 (p,0.001)). Kidneys stained

positive for TUNEL in both wild type and granzyme B null

animals while heart and liver did not stain in either strain.

Adjacent sections stained for platelet antigen CD41 revealed

Figure 1. Sepsis survival and severity in wild type and granzyme B null mice in a rapidly fatal (severe) CLP model. A. Granzyme B null
(2/2) mice had lower sepsis scores than wild type mice at every time point. For example, at 22 hours, the mean6SEM wild type score was 9.060.8
while the granzyme B null score was 6.860.7 (*p = 0.04) B. Kaplan-Meier survival curve for wild type and granzyme B null (2/2) mice in hours after
CLP. Granzyme B null (2/2) mice survived longer following severe CLP than wild type mice (p = 0.0019 by Cox Proportional Hazard Regression). C.
Endotoxin concentrations (EU/mL) were measured in granzyme B null and wild type mouse plasma. Differences between the two mouse strains were
not statistically significant. D. Representative photomicrographs of lung and spleen in sepsis are shown. Platelet infiltration, assayed by CD41 (brown)
staining, was visibly widespread and similar between wild type and granzyme B null mice in both organs. Photomicrographs were taken at 10X
magnification.
doi:10.1371/journal.pone.0041549.g001
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similar abundant platelet accumulation in both lung and spleen of

septic wild type and granzyme B null mice. (Figure 1D).

Septic Platelets Induce Apoptosis in a Caspase-Mediated,
Perforin-Independent Manner

Granzyme B is known to target caspases in mice and humans [25]

and Bid-induced mitochondrial cell death pathways in humans only

[26–28]. To confirm septic platelets induce apoptosis via a

mechanism consistent with granzyme B action in mice, we used

platelet-splenocyte co-incubations as an ex vivo model for this

interaction. At 18 hours post-CLP, platelets from septic wild type

mice induced more splenocyte apoptosis ex vivo than platelets from

healthy wild type mice (25.161.4% vs. 4.862.9%; p = 0.0004).

(Figure 3A) The apoptotic splenocytes were almost entirely caspase

positive (i.e. .98%).

When formed in cytotoxic lymphocytes and natural killer cells,

granzyme B typically enters target cells through a channel of co-

released perforin [25] but can also enter independently [29].

Therefore, we repeated the co-incubation experiments above with

platelets from septic perforin null mice. In this condition, there was

no change in percent-splenocyte apoptosis by septic perforin null

Figure 2. Platelet granzyme B apoptosis surveyed by TUNEL in spleen, lung, and kidney. Representative frozen sections of end organs
(i.e. spleen (top), lung (middle), and kidney (bottom)) from wild type (left) and granzyme B null mice (right) were stained for apoptosis with a TUNEL-
based assay (TACSH 2 TdT In Situ Apoptosis Detection Kits, Trevigen, Gaithersburg, MD). Increased dark brown staining, evident of apoptosis, is seen
in wild type spleens, lungs and kidneys. While the granzyme B null kidneys show apoptosis, there is no staining in the granzyme B null spleens and
lungs. No apoptosis was noted in either set of heart and liver sections and is therefore not shown here. Photomicrographs were taken at 10X and 20X
magnification. Apoptotic indexes, defined as the number of apoptotic cells per mm2, are shown for quantification of tissue apoptosis.
doi:10.1371/journal.pone.0041549.g002
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platelets (24.065.2%) compared to septic wild type platelets.

(Figure 3A).

Platelets Require Direct Physical Contact with
Splenocytes to Induce Apoptosis

To determine if platelets can induce end-organ apoptosis in the

absence of direct contact with the target cells (implying a

microparticle-mediated as opposed to directly-mediated process),

septic platelets and healthy splenocytes were incubated as before,

in suspension, or separated by a semi-permeable membrane.

Incubation across a dividing semi-permeable (0.4 mm) membrane

reduced splenocyte apoptosis (10.363.0 vs. 5.662.6; p,0.01) to a

rate indistinguishable from non-platelet treated controls

(5.662.5%; p = NS). (Figure 3B) As before, apoptotic splenocytes

were almost entirely caspase positive (i.e. .98%).

Platelet-Induced Splenocyte Apoptosis Is Blocked By
GPIIb/IIIa Inhibition

The finding that physical separation of septic platelets from

splenocytes eliminated apoptosis raised the question whether

pharmacologic separation would have the same effect. To that

end, platelet aggregation was inhibited ex vivo with either a weak

(anti-CD62P neutralizing antibody) or strong (eptifibatide) platelet

aggregation inhibitor. Co-incubation of eptifibatide-exposed septic

wild type platelets with healthy splenocytes significantly decreased

splenocyte apoptosis overall and in the CD4+ fraction as compared

to co-incubation with non-exposed septic platelets (over-

all = 66.5610.6% reduction, p = 0.008; CD4+ = 85.0620.7% re-

duction, p = 0.026). (Figure 4) No difference in apoptosis was

observed for septic platelets pretreated with the anti-CD62P

antibody.

In vivo Eptifibatide Treatment Decreases Progression of
Murine Sepsis

To assess the in vivo efficacy of GPIIb/IIIa blockade in sepsis, we

treated septic mice (cecal slurry-induced) with an intravenous

bolus of eptifibatide vs. PBS vehicle. Septic wild type mice treated

with eptifibatide had lower sepsis scores during the period of

anticipated treatment effect (i.e. 4 hours after each drug admin-

istration) than those treated with vehicle. (Figure 5A) In addition,

Kaplan-Meier survival analysis showed that eptifibatide-treated

mice survived longer than vehicle treated mice (p = 0.019 by Cox

Proportional Hazard Regression) (Figure 5B).

Discussion

Using experimental murine models of sepsis, we defined the

site(s) of and mechanism(s) by which platelets induce end-organ

apoptosis in sepsis. Platelet induced-apoptosis occurs in the spleen

and at least one non-lymphoid organ, the lung. This granzyme B-

mediated cytotoxicity requires direct contact between platelets and

end-organ cells but is perforin independent. Further, we exploited

the therapeutic potential of the contact-dependent nature of

platelet-induced splenocyte apoptosis by markedly reducing ex vivo

apoptosis with eptifibatide, a GPIIb/IIIa receptor inhibitor of

platelet aggregation. In vivo, eptifibatide treatment improved

clinical indicators and mortality in experimental sepsis. Collec-

tively, these findings extend our previous work identifying platelet

granzyme B-based cytotoxicity in septic humans and mice [10]

and raise interesting questions regarding the role of GPIIb/IIIa

blockade in sepsis.

Platelets are known to accumulate in both immune (spleen) [11]

and non-immune (liver, lung, intestine) organs during sepsis [11–

14]. Meanwhile, sepsis leads to apoptosis of both immune

(lymphocytes) and non-immune (epithelial, endothelial, lung and

intestine) cells [6–9,30]. Lymphocyte apoptosis in sepsis is

widespread, occurring in thymus, spleen, and gut-associated

lymphoid tissues and has been shown to be associated with worse

outcomes [31–33]. Increased levels of splenocyte apoptosis in

particular reduce survival in animals after CLP [34], demonstrat-

ing the importance of our finding that absence of granzyme B

leads to diminished splenocyte apoptosis. Herein we showed that

sites of platelet aggregation (i.e. lung and spleen) also show

increased levels of apoptosis in granzyme B containing, but not

granzyme B null, mice. Prior to this, the coincident accumulation

of platelets in failing organs in sepsis [12–14,35] raised cause-and-

effect questions. Our findings suggest platelets are causative in this

relationship.

Figure 3. Platelet induced splenocyte apoptosis is perforin independent and contact dependent. A. Platelets harvested from septic mice
induce apoptosis in control CD4+ splenocytes in the absence of perforin. Percent apoptosis was significantly higher in splenocytes co-incubated with
platelets harvested from septic wild type (i.e. C57BL6) mice (n = 5) than with platelets from healthy wild type mice (n = 5) and splenocytes without
platelets. Repeat experiments with platelets from septic perforin null mice showed no reduction in induced splenocyte apoptosis. B. Direct platelet
contact is necessary for granzyme B-mediated apoptosis. Incubation across a dividing semi-permeable membrane reduced splenocyte apoptosis to a
rate indistinguishable from non-platelet treated controls.
doi:10.1371/journal.pone.0041549.g003
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In addition to determining sites of platelet granzyme B-induced

apoptosis in sepsis, we also determined vital mechanistic aspects of

this process. In its typical role, in cytotoxic lymphocytes, granzyme

B is stored and then released from secretory granules (also

frequently containing perforin) upon synapse formation with virus

infected or transformed target cells, leading to induction of

apoptotic cell death pathways [36]. Whether platelet granzyme B-

mediated apoptosis proceeds in a similar fashion was unknown.

We showed that platelet granzyme B-mediated apoptosis is

perforin independent and required direct contact between platelets

and target cells. The requirement for direct contact between

platelets and lymphocytes suggests that platelet-derived micropar-

ticles (which alone can be cytotoxic [15–17]) are not the primary

initiator of this apoptosis.

The contact-dependent nature of platelet-induced splenocyte

apoptosis led us to hypothesize that inhibitors of platelet

aggregation could potentially decrease target cell apoptosis during

sepsis. In fact, we demonstrated that septic platelet exposure to the

anti-platelet compound, eptifibatide, reduces splenocyte apoptosis

ex vivo. Eptifibatide functions as a reversible antagonist to the

plasma membrane glycoprotein GPIIb/IIIa, which is found solely

on platelets and platelet progenitor cells. GPIIb/IIIa belongs to a

large class of cell surface receptors known as integrins, which take

part in cell adhesion [37–40]. When platelets become activated,

fibrinogen binds to multiple GPIIb/IIIa receptors, thereby

bridging platelets and facilitating platelet aggregation. Eptifibatide,

in particular, is an extremely effective inhibitor of platelet

aggregation and is distinctive in the fact that it binds specifically

to GPIIb/IIIa, with low affinity for other integrins [41].

With regard to sepsis, other GPIIb/IIIa antagonists and

additional anti-platelet compounds have been studied in animal

models and in certain cases have been shown to decrease

coagulation activation and subsequent endothelial dysfunction

and tissue injury during septic shock [42–45]. Our findings that

pretreatment and subsequent co-incubation in the presence of

eptifibatide decreases splenocyte apoptosis in vitro and in vivo

treatment improves sepsis mortality have potentially important

clinical implications. In fact, two human studies, both retrospective

evaluations, have shown decreased mortality and decreased levels

of MODS in examined adults admitted to the ICU who were

already incidentally receiving anti-platelet compounds (either

aspirin, clopidogrel or a combination of the two) [46,47].

Figure 4. Eptifibatide reduces septic platelet-induced splenocyte apoptosis ex vivo. A. Representative flow cytometry staining of CD4+

splenocytes for pan-caspase FLICA (Y axis) vs. TUNEL (X axis) in presence of (left-to-right) no platelets, septic platelets, septic platelets with anti-62P
antibody, or septic platelets with eptifibatide. B. Shown is the mean6SEM percent of septic platelet-induced splenocyte and CD4+ splenocyte
apoptosis (i.e. TUNEL+ and pan-Caspase+) compared between pretreatment conditions (i.e. eptifibatide and anti-CD62P). These results were
normalized to the level of apoptosis in splenocytes incubated with untreated septic platelets (solid line). Both splenocytes overall and CD4+

splenocytes showed a significant reduction (p,0.05) in apoptosis when platelets were pre-treated with eptifibatide. Pretreatment with an anti-CD62P
monoclonal antibody did not significantly alter platelet-induced splenocyte apoptosis.
doi:10.1371/journal.pone.0041549.g004
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Additionally, clopidogrel, an ADP receptor antagonist, when given

pre-hospitalization, is associated with a reduced incidence of acute

lung injury in patients admitted to an intensive care unit [48].

Notable also was the fact that anti-platelet medications did not

increase rates of bleeding. Collectively, these findings are in

concordance with the decreased progression of sepsis we

demonstrated in eptifibatide-treated mice with polymicrobial

sepsis.

Anti-aggregation of platelets and splenocytes (i.e. reduced

platelet-splenocyte contact) is only one possible mechanism by

which eptifibatide may act in this scenario. Another possible

mechanism is outside-in signaling, a mechanism by which

extracellular binding to integrins activates intracellular signaling

pathways [49], resulting in cytoskeletal rearrangements, and

increased platelet granule release [50]. It is possible that

eptifibatide inhibits the activation of intracellular signaling

pathways, leading to a decrease in the release of granules, which

may contain apoptosis promoting proteins such as granzyme B.

This pathway’s ability to participate in sepsis and MODS warrants

further investigation.

We acknowledge several limitations to our study. First, while we

previously demonstrated that granzyme B is increased in human

pediatric sepsis patients [10] and although CLP and cecal slurry

are validated animal models, whether apoptosis progresses the

same in mice as in humans is not clear. Second, in most cases our

mice were sacrificed at 18 hours status post-CLP, thus we could be

underappreciating changes that occur both before and after this

time point. Additionally, our mice did not receive the intensive

care interventions (antibiotics, mechanical ventilation, inotropes/

vasopressors) that are standards of care in human patients. This

reduces confounding variables in the model but limits our ability to

generalize our data to a human sepsis population.

In summary, during sepsis, platelet granzyme B-mediated

apoptosis occurs in spleen and lung tissue. This process proceeds

in a perforin-independent, caspase-mediated, and contact-depen-

dent manner, which can be inhibited by the GPIIb/IIIa inhibitor

eptifibatide. In our preclinical experiments, the absence of

granzyme B or treatment with eptifibatide resulted in less severe

sepsis and extended survival. This builds on prior work

demonstrating that granzyme B is upregulated in septic shock

non-survivors [51] and further solidifies the important role played

by this enzyme in platelets during sepsis. We have shown that

inhibition of platelet aggregation via GPIIb/IIIa blockade slows

progression of murine sepsis. The mechanism(s) by which this

proceeds is unknown, but evaluating whether granzyme B-

dependent end organ apoptosis contributes is a possibility that

warrants further study.
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