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Abstract: Phase-selective synthesis is an effective way to expand the ultra-thin transition metal
carbide family and tune its properties. Herein, a chemical vapor deposition route with specially
designed substrate (Ta wire–Cu foil–Mo foil) is carried out to synthesize Mo–Ta–C ternary nanosheets
with tunable phase structure. The Ta atoms diffuse on the surface of liquid copper and Mo atoms
diffuse through the liquid copper to the surface, which react with the carbon atoms decomposed
from the methane and form the Mo–Ta–C ternary nanosheets. By precisely tailoring the Mo/Ta
ratio and growth temperature, ultrathin layered orthorhombic (Mo2/3Ta1/3)2C nanosheets and non-
layered cubic (Mo0.13Ta0.87) C nanosheets with thickness of 21 and 4 nm are selectively synthesized.
The approach could pave the way for the formation of multi-component carbide nanosheets with
controllable phases.

Keywords: phase-selective synthesis; Mo–Ta–C ternary nanosheets; chemical vapor deposition;
Mo/Ta ratio

1. Introduction

2D transition metal carbides (TMCs) have drawn great attention all over the world in
the past few years due to the diverse physical and chemical properties, including supercon-
ductivity [1], valley polarization [2], and high catalytic activity [3,4]. Various binary TMC
nanosheets (V2C [5], Ti2C [6], Mo2C [7,8] Nb4C3 [9], Zr3C2 [10], etc.) synthesized by liquid
exfoliation or chemical vapor deposition (CVD) have been applied in catalysis, solar cells,
and microelectronics, indicating that the synthesis and property research of binary TMCs
tends to be mature.

In order to tune the properties of 2D TMCs further, defects, dangling bonds, and
alloy elements are introduced (Table S1) [11–13]. However, the introduction of defects and
dangling bonds could tune the performance slightly and weaken the intrinsic performance
of binary carbides significantly [14,15]. While the introduction of alloy elements leads to
improving the performance fundamentally [16,17]. For example, the microhardness of
the ternary carbides (Ti0.4Hf0.6)C is almost twice that of HfC [16]. Mo2TiC2 and Mo2Ti2C3
reveal substantially higher electrochemical behavior compared to Mo2C [17]. The synthesis
of binary TMC nanosheets by CVD methods has made some progress in the past few years.
Zhang et al. [18] directly obtained the self-aligned vanadium carbide with face-centered
cubic structure on a unique stacked substrate by a CVD method. Xu et al. [1] achieved the
layered hexagonal α-Mo2C and non-layered face-centered cubic WC on liquid copper by
atmospheric pressure CVD, indicating the possibility of phase-selective synthesis for TMCs.
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However, limited by the synthesis strategies, it remains difficult to synthesize the ternary
2D TMC nanosheets by CVD method so far.

Herein, a sandwich-like substrate consisting of a Ta wire, Cu foil, and Mo foil is
proposed to synthesize ternary 2D Mo–Ta–C (MTC) nanosheets. The Ta atoms diffuse
on the liquid copper from the Ta wire and Mo atoms diffuse through the liquid copper
from the bottom Mo foil. Followed by the introduction of CH4, C, Ta, and Mo atoms are
bonded together and form the 2D MTC nanosheets on liquid copper. Ultrathin layered or-
thorhombic (Mo2/3Ta1/3)2C nanosheets and non-layered cubic (Mo0.13Ta0.87)C nanosheets
were selectively synthesized into triangular and polygonal geometries by adjusting the
molar ratio of Mo/Ta.

2. Materials and Methods
2.1. Synthesis of Single-Crystalline (Mo2/3Ta1/3)2C and (Mo0.13Ta0.87)C

The self-made chemical vapor deposition system is utilized to synthesize carbides.
A molybdenum foil (20 × 20 mm, Innochem, Beijing, China 99.99%) 50 µm in thickness,
Tungsten foil (20 × 20 mm, Innochem, Beijing, China 99.99%) 50 µm in thickness, a copper
foil (20 × 20 mm, Innochem, Beijing, China 99.99%) 50 µm in thickness, and a tantalum wire
(20 mm, Innochem, Beijing, China 99.99%) 0.5 mm in diameter are cleaned with acetone
(Innochem, Beijing, China 95%), ethanol (Innochem, Beijing, China 95%), and deionized
water. The Mo foil, Cu foil, Ta wire, and W foil are stacked from the top in the order of
(a) Mo wire–Cu foil–Ta foil; (b) Mo wire and Ta wire–Cu foil–W foil; (c) Ta wire–Cu foil–Mo
foil. After that, the furnace (Tianjin Zhonghuan Lab Furnace Co., Ltd., Tianjin, China) is
heated to 1090–1170 ◦C within 90 min under the flow of Ar (300 sccm, 99.999%) and H2
(300 sccm, 99.999%) and held there for 30 to 60 min. Finally, with introducing the methane
flow (0.1–2 sccm, 99.999%), graphene, TaC, and single crystalline (Mo2/3Ta1/3)2C and
(Mo0.13Ta0.87)C phases were obtained on the liquid copper substrates under the different
Mo/Ta ratios.

2.2. Transfer Process

A thin layer of poly (methyl methacrylate) (PMMA, weight-averaged molecular mass
MW = 600,000, 6 wt% in anisole) was first spin-coated on samples at 3000 rpm for 1 min
and cured at 120 ◦C for 10 min. The PMMA-coated samples were then immersed in a 0.2 M
(NH4)2SO4 solution for 24 h to etch the Cu substrate. Finally, the PMMA-coated ultrathin
MTC crystals were stamped onto target substrates, such as SiO2/Si and TEM grids, and
warm acetone (55 ◦C) was utilized to dissolve the PMMA layer and obtain clean ultrathin
MTC crystals.

2.3. Characterization

Optical microscopy (OM, MX6RT, Sunny Optical Technology Co., Yuyao, China) is
carried out in a reflection mode. The Bruker Multimode 8 DI (Burker, Billerica, MA, USA)
in contact mode is performed for atomic force microscopy (AFM) imaging. Horiba Lab Ram
HR (Horiba, Kyoto, Japan) 800 eV with 532 nm laser is performed for Raman analysis and
imaging. A JEM-2100 F (JEOL, Akishima, Japan) at 200 kV is performed for high-resolution
transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED).

3. Results

The phase diagrams of Cu-Mo and Cu-Ta are shown in Figure S1, indicating that
the Cu cannot form intermetallic compounds with Ta and Mo [19,20]. Thus, the pure Ta
and Mo wire, foil, or block could diffuse on liquid copper surface without damaging the
atomic-level flat surface. When the temperature rises up to 1090 ◦C, Ta and Mo atoms
would diffuse on or though the liquid copper and bond with carbon atoms decomposed
from CH4. Several different stacking orders have been conducted: (a) Mo wire–Cu foil–Ta
foil (Figure 1a); (b) Mo wire and Ta wire–Cu foil–W foil (Figure 1d); (c) Ta wire–Cu foil–Mo
foil (Figure 1g).
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Figure 1. Several different stacking orders of transition metallic source: (a) Mo wire–Cu foil–Ta foil,
(b) optical image and (c) Raman spectrum of graphene corresponding to (a). (d) Mo wire and Ta
wire–Cu foil–W foil, (e) optical image and (f) Raman spectrum of TaC corresponding to (d). (g) Ta
wire–Cu foil–Mo foil, (h) optical image of polygonal and (i) triangular nanosheet corresponding
to (g).

For the order (a), EDS measurements indicate (Figure S2) no Mo and Ta was identified
in the detection limit, and only graphene was obtained on the liquid copper (Figure 1b,c).
For the order (b), W foil acts as support for liquid copper and triangular tantalum carbide
nanosheets were achieved (Figure 1e,f), indicating that Ta could effectively diffuse on the
surface of liquid copper and Mo was on the opposite. Based on the above results, the order
(c) was carried out. Polygonal (Figure 1h) and triangular (Figure 1i) nanosheets were grown
separately under the diffusion time of 30 and 60 min. The schematic diagram of the growth
process is shown in Figure S3.

4. Discussion

In order to further identify the crystal structure and chemical composition of the two
kinds of nanosheets, HRTEM, SAED, and EDS (Figure 2) are performed. Figure 2b–d are
the EDS mapping of the crystal in Figure 2a, indicating that the crystal is composed of Ta,
Mo, and C. The SAED pattern (Figure 2e) collected from Figure 2a is referred to the simple
orthorhombic form (JCPDS no. 31-0871) with a space group of Pbcn(60), suggesting the
chemical formula is (TaxMo1−x)2C. The atomic resolution image (Figure 2f) is observed
under the [100] zone axis. The two different planes with the lattice spacing of 0.263 and
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0.258 nm is consistent with the (021) and (002) plane. In order to confirm the ratio of Mo to
Ta precisely, EDS point scan is performed at the nine selected points marked in Figure 2a.
The ratio of Mo to Ta collected from the nine points is approximately 2:1, demonstrating
the chemical formula is (Ta1/3Mo2/3)2C. Figure 2i is the atomic model of a unit cell of
(Ta1/3Mo2/3)2C with the lattice parameters of a = 0.4754 nm, b = 0.5241 nm, c = 0.6076 nm,
α = 90◦, β = 90◦, γ = 90◦.
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Figure 2. TEM images of polygonal MTC crystal (a) and corresponding EDS elemental mapping of
Mo (b), Ta (c), and C (d). SAED pattern along [100] zone axis (e) and HRTEM image of a polygonal
crystal (f). Atomic fraction of Mo and Ta in the polygonal crystal of (a). (g) Based on EDS spectrum (h).
(i) Crystallographic structure of orthorhombic (Mo2/3Ta1/3)C.

Figure 3a shows a low-magnification high-angle annular dark-field (HAADF)-STEM
image of a triangular nanosheet crystal. Mo, Ta, and C are uniformly distributed across the
whole sheet (Figure 3b–d), indicating the uniform chemical composition. Figure 3e shows
the SAED pattern along the [1-1-1] zone axis. The two different planes with the lattice
spacing of 0.157 and 0.090 nm are consistent with the (220) and (422) plane. These lattice
parameters are consistent with cubic TaC (JCPDS no. 35-0801). EDS point scan is performed
at the six selected points marked in Figure 3a. The ratio of Mo to Ta collected from the
six points is approximately 13:87, demonstrating the chemical formula is (Ta0.13Mo0.87)C.
Figure 3i is the atomic model of a unit cell of (Ta1/3Mo2/3)2C with the lattice parameters of
a = 0.4455 nm, b = 0.4455 nm, c = 0.4455 nm, α = 90◦, β = 90◦, γ = 90◦.
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Figure 3. TEM images of triangular MTC crystal (a) and corresponding EDS elemental mapping of
Mo (b), Ta (c), and C (d). SAED pattern along [1] zone axis (e) and HRTEM image of a triangular
crystal (f). Atomic fraction of Mo and Ta in the triangular crystal of (a). (g) Based on EDS spectrum (h).
(i) Crystallographic structure of cubic (Mo0.13Ta0.87)C.

As shown in Raman spectra (Figure 4a), the orthorhombic MTC phase has two promi-
nent peaks at the peak positions of 143 and 649 cm−1. The cubic MTC phase has two
characteristic peaks located at 130 and 632 cm−1 in Figure 4e, respectively. The peak po-
sition at 130 cm−1 is attributed to the Ta-C bond, and the 143 cm−1 peak is related to the
typical Mo-C bond of B3g Raman modes [21]. The peak near 632 cm−1 is a typical peak of
TMCs, as seen at NbC [22], TaC [23], and Mo2C [21,24]. Meanwhile, Figure 4c,g depict the
Raman mappings of the orthorhombic and cubic phases, demonstrating the uniformity
of the two phases. The size of polygonal nanosheet is 84 µm (in Figure 1f) in length and
21 nm in thickness (Figure 4d). Another phase is typically triangular with a size of 15 µm
and thickness of 4 nm (Figure 4h).

Figure 5 shows the effect of temperature and Mo/Ta atomic fraction on the growth of
orthorhombic and cubic MTC. The Mo/Ta ratio is controlled by the diffusion time.

Both orthorhombic and cubic MTC nanosheets were synthesized at 1090–1170 ◦C.
Orthorhombic MTC nanosheets were obtained at Mo/Ta atomic fraction of Ta from 10% to
40%. Cubic MTC nanosheets were obtained at Mo/Ta atomic fraction of Ta from 60% to
90%. Mo2C nanosheets were obtained (Figure S4) without the Ta wire. The corresponding
optical images are shown in Figure S5. When the atomic percentage of Ta was low (10–20%),
the orthorhombic MTC nanosheets tended to form larger single nanosheets with lower
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nucleation density (Figure S5a–e). When the atomic percentage of Ta was high (80–90%),
cubic MTC nanosheets tended to aggregate together (Figure S5k–p).
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5. Conclusions

A phase selective CVD method with the special stacked order of Ta wire–Cu foil–Mo
foil was developed to control the synthesis of orthorhombic and cubic MTC nanosheets with
high crystallinity on liquid copper. The maximum size of orthorhombic MTC nanosheets
reached 84 µm grown at Mo/Ta ratio of 9:1. While the cubic MTC nanosheets had the
largest size of 18 µm grown at Mo/Ta ratio of nearly 1:9, demonstrating that the growth of
MTC is deeply influenced by the Mo/Ta molar ratio. This study paves a new way for the
synthesis of multiphase 2D nanosheets with controllable phase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091446/s1, Figure S1: Phase diagrams of Cu-Mo and
Cu-Ta; Figure S2: SEM and EDS of Mo wire and Ta foil after diffusion; Figure S3: The schematic
diagram of orthorhombic and cubic MTC growth processes; Figure S4: Optical image and Raman of
Mo2C; Figure S5: The optical images of orthorhombic and cubic MTC with different Mo/Ta atomic
fraction of Ta and temperature. The scale bar is 20 µm. Table S1: Main characterizations of different
synthetic technologies for TMCs [1,20,25–35].
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