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Summary

Enteroviruses are members of Pichornaviridae family consisting of human enterovirus

group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth

disease (HFMD) is a serious disease which is usually seen in the Asia‐Pacific region

in children. Enterovirus 71 and coxsackievirus A16 are two important viruses

responsible for HFMD which are members of group A enterovirus. IFN α and β are

two cytokines, which have a major activity in the innate immune system against viral

infections. Most of the viruses have some weapons against these cytokines. EV71 has

two main proteases called 2A and 3C, which are important for polyprotein processing

and virus maturation. Several studies have indicated that they have a significant effect

on different cellular pathways such as interferon production and signaling pathway.

The aim of this study was to investigate the latest findings about the interaction of

2A and 3C protease of EV71 and IFN production/signaling pathway and their

inhibitory effects on this pathway.
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1 | INTRODUCTION

Enteroviruses are members of Pichornaviridae family, which include

human enterovirus group A, B, C, and D as well as nonhuman entero-

viruses.1 Hand, foot, and mouth disease (HFMD) is a serious disease

which is usually seen in Asia‐Pacific region in children. Enterovirus

71 and coxsackievirus A16 are two important viruses responsible for

HFMD which are members of group A enterovirus.2,3 After poliovirus

eradication, EV71 was recognized as an important norotropic virus.

Enterovirus 71 was first detected in 1969 in California and isolated

from a child's feces suffering from encephalitis.4 Enterovirus 71

infection is usually seen as children exanthema, yet it can cause

neurologic diseases such as aseptic meningitis, encephalitis, and flaccid

paralysis.5 EV71 is divided to three subgenotypes including group A

containing prototype strain BrCr, group B, and group C with each
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categorized as B1 to B5 and C1 to C5 subgroup responsible for

several outbreaks in southeast Asia, Europe, and Australia.3,5-12 These

viruses have a positive sense single‐stranded RNA with an approxi-

mate length of 7400 nucleotides, consisting of four structural viral

proteins 1 to 4 (VP1‐VP4) and seven nonstructural proteins (2A‐2C

and 3A‐3D).13,14 This genome has one large open reading frame

(ORF) which translates to a large polyprotein and flanks with an

untranslated region (UTR) on the 5′ side (750 nucleotide) and another

untranslated region on the 3′ side (75‐100 nucleotide).15 HFMD is

mostly a mild and self‐limiting disease, but it can progress to create

serious neurologic diseases specially in acute infection, which in rare

cases can be seen in coxsakievirus A16.5,16 Yet, there is not any

vaccine or drug for HFMD.17 The infection cycle of enteroviruses

consists of different stages: After entering the cell and uncoating, pos-

itive sense single‐stranded RNA, which has one ORF, acts as an mRNA

and translates to one large polyprotein, which will be processed by

viral proteases and lead to release of different structural and nonstruc-

tural viral proteins. Viral RNA is replicated through synthesis of a

complement negative strand in the cytoplasm by viral 3D protein as
© 2018 John Wiley & Sons, Ltd.rnal/rmv 1 of 8
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an RNA‐dependent RNA polymerase (RDRP). RNA synthesis occurs in

the replication complex on the outer surface of membrane vesicles

which have been induced by virus.18 The new synthesis RNA, which

is released from the replication complex, may enter another round of

translation and replication or package through capsid proteins to

produce progeny virus. Initiation of new genome strand polymeriza-

tion depends on RDRP position. In this regard, for negative strand

synthesis, RDRP should be close to 3′ end of the positive strand,

and for positive strand synthesis, RDRP should be close to 3′ end of

the negative strand. Because of difference in 3′ end in complement

strands, the replication machine recognizes two different origins of

replication for initiation of positive and negative strand synthesis

called OriL and OriR, respectively.1 Numerous studies have indicated

that 5′ and 3′ UTR of enteroviruses have an important effect on tissue

tropism and pathogenesis.19,20 Some studies indicate that VP1 BC

loop of EV71 (L97R) has an important role in viral tropism.21

After EV71 infection, different organs are attacked by the virus

causing gastrointestinal, cardiac, pulmonary, and neurologic disease.

Recently, hscARB2 and PSGL‐1 have been recognized as a receptor

for EV71.22,23 EV71 also uses SA‐linked glycans as a receptor

for infection.24
2 | INTERFERON PATHWAYS, THE FIRST
DAM AGAINST VIRAL INFECTIONS

Interferon family is divided into three class of cytokines, including

types I, II, and III, among which type I is expressed in nearly all mam-

malian cells,25 which consists of α, β, ω, ԑ, and к. On the other hand,

only one type has been observed in the IFN II family called IFN‐γ

which has an immunomodulatory effect on the immune system and

antiviral activity. This kind of interferon is produced only by activating

T cells or NK cells.25 Type III interferon has three subtypes including

λ1, λ2, and λ3 which are induced by viral infection and show antiviral

activities.26 Among these molecules, IFN α and β are two cytokines

with a major activity in the innate immune system against viral infec-

tion.27 After a viral infection, IFN response is induced in two stages:

IFN production pathway is induced followed by IFN signaling pathway

(Figure 1). Viral genomes such as DNA and RNA or intermediate rep-

licative double‐stranded RNA (dsRNA) recognized as pathogen‐

associated molecular patterns (PAMP) are essential for inducing

IFN α and β production through pattern recognition receptors (PRR)

including toll‐like receptors (TLR)28 and RIG1‐like receptors

(RLR).29,30 Single‐stranded viral RNA and dsRNA are recognized by

TLR7/8 and TLR3 in endosome or by melanoma differentiation‐

associated protein 5 (MDA5) and retinoic acid‐inducible gene 1

(RIG1) in the cytosol. Endosomal TLRs recognize viral nucleic acids

with an outer source which enter the cell through endocytosis, where

MDA5 and RIG1 detect viral nucleic acids present in the cytosol.31

After recognition of dsRNA by TLR in the endosome, toll interlukin‐1

receptor (TIR) is recruited, causing activation of another adaptor called

TIR domain‐containing adapter‐inducing interferon‐β (TRIF). TRIF with

another protein called TNF receptor‐associated factor 3 (TRAF3) leads

to activation of two IKK‐related kinases including TANK‐binding

kinase 1 (TBK1) and “I kappa B kinase I” (IKKi). These two adaptors
mediate phosphorylation of interferon regulatory factor 3/7 (IRF3/7)

and induce IFN type I expression.32-35 Viral ssRNA in endosomes is

recognized by TLR7 and TLR8 and recruiting other adaptors such as

myeloid differentiation primary response 88 (MYD88) and TRAF6,36

resulting in the activation of interleukin 1 receptor‐associated kinase

1 (IRAK1) kinase followed by phosphorylation of IRF7, where IRF7

transports to the nucleus and induces IFN type I expression.37 Mean-

while, there are other alternative mechanisms for cytosolic nucleic

acids. Two RNA helicase RIG1 and MDA5 recognize viral RNA in the

cytoplasm, after which IFN promoter‐stimulating factor 1 (IPS1, Cardif,

MAVS, or VISA) is recruited. Then, the interaction between IPS1,

TRAF3, and TBK1/IKKi leads to activation of IRF3/IRF7 and induction

of IFN type I expression.38 The IFN production pathway has been

demonstrated in Figure 1. It is observed that MDA5 recognizes long

dsRNA such as the replicative form of picornavirus genome and other

virus families including coronavirus and calcivirus. On the other hand,

RIG I is sensitive to double‐stranded RNA (dsRNA) with 5′ triposphate

(5′ppp) and some double‐stranded sequences within ssRNA molecules

formed by RNAs of negative strand RNA viruses. However, some

other reports suggest that RIG1 recognizes 5′ppp single‐stranded

RNA with poly A/U motif and short dsRNAs.38-43 After a burst of

IFN type I in infected cells, it is released from cells and attached to

an interferon receptor on the adjacent cells. After attachment of IFN

to interferon receptor 1 (IFNR1) and interferon receptor 2 (IFNR2),

two protein kinases including Janus kinase1 (JAK1) and tyrosine

kinase 2 (TYK2) are activated via phosphorylation resulting in activa-

tion and phosphorylation of signal transducer and activator of tran-

scription 1 (STAT1) as well as signal transducer and activator of

transcription 2 (STAT2) proteins. These two proteins create a hetero-

dimer and interact with IRF9 to produce interferon‐stimulated gene

factor 3 (ISGF3) complex. The phosphorylated STAT1 interacts with

karyopherin subunit alpha 1 (KPNA 1) which acts as a nuclear localiza-

tion signal (NLS) receptor and recognizes STAT1 NLS which facilitates

ISGF3 translocation to the nucleus and induces interferon‐stimulated

gene (ISG) expression.44
3 | 2A AND 3C PROTEASES

2A protease is translated firstly during the translation of the nonstruc-

tural region (P2) of enterovirus polyprotein. It then separates itself

from P2 and P1 regions through self‐cleavage. This process then con-

tinues with the P3 region, which contains the second protease called

3C, responsible for 8 out of 10 cleavages of the viral polyprotein.

Finally, these cleavages lead to production of 11 structural and non-

structural proteins including VP1, VP2, VP3, VP4, 2A, 2B, 2C, 3A,

3B, 3C, and 3D.45 2A and 3C are cysteine proteases, belonging to

the chymotrypsin‐related endopeptidase protease family.46 The pro-

tein sequence alignments of 2A and 3C show only ~20% similarity,

but they have similar tertiary structures. Different enterovirus geno-

types have shown approximately 50% to 75% sequence similarity in

2A and 3C. The tertiary structures of 2Apro reveals a six‐stranded

antiparallel β‐sheet barrel and a β‐sheet pile packed on its side. 3Cpro

has a tertiary structure consisting of the twisted ß‐barrels packed per-

pendicular to each other. These domains help to create a catalytic site,



FIGURE 1 IFN production pathway and different ways that the virus disrupts this pathway. Downregulation: long line with a small line at the
end; scissor shape: cleavage by protease; IF production pathway activation was indicated in two ways. Left: Activation of pathway was
indicated when ssRNA or dsRNA are in the cytoplasm, in which case two adaptors (RIG1 and MDA5) recognize them, resulting in activation of

IPS1 (MAVS, VISA, or cardif). IPS activates two other adaptors (IKK and TBK1) leading to phosphorylation of IRF3 and IRF7. Translocation of these
adaptors to the nucleus causes ISRE promoter activation and IFN production. 2A protease has inhibitory effects in this pathway with cleavage of
MDA5 and IPS1, but 3C protease downregulates RIG1 through interaction. Right: Activation of pathway is observed when ssRNA or dsRNA are in
the endosome. In this situation, TLR3 and TLR7/8 are responsible for RNA recognition, resulting in the activation of two adaptors (TRIF and
MYD88). TRIF activates other adaptors such as TRAF3, IKK, and TBK1 giving rise to the activation of IRF7 and IRF3, where translocation of these
proteins to the nucleus causes IFN production. MYD88 also activates some other adaptors including IRAK1, IRAK4, and TRAF6 leading to
phosphorylation and activation of IRF7 and translocation to the nucleus. As can be seen, 3C protease affects this pathway by cleaving IRF7 and
preventing its translocation to the nucleus
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which consists of histidine, aspartic acid, and cysteine in 2Apro, as well

as histidine, glutamic acid, and cysteine in 3Cpro. 3C protease can

attach to RNA thanks to the cysteine in the catalytic site which has

nucleophile features.46,47 The amino acid compositions P4, P2, P1,

P1′, and P2′ are important for specific protease cleavage.46,48 For

2A protease, the P1′ position is very important, which is mostly

glycine. After P1′, P2 position is very important which is usually

recognized by threonine and asparagine. It is followed by P2′ which

can be proline, alanine, and phenylalanine, and P4, which is mostly a

position for leucine or threonine. For 3Cpro, P1 and P1′ positions

indicate the highest conservation in the substrate sequence. The

current amino acid in these positions is glutamine or glutamate for

P1, as well as glycine, asparagine, or serine for P1′. In addition, the

most common amino acid in positions P4 and P2′ is alanin and prolin,
respectively. In both 2Apro and 3Cpro, the glycine amino acid in

position P1′ is highly conserved, but 3C is mostly identified by

cleavage in the Gln/Gly amino acid pair.48,49 3Cpro has been consid-

ered as a good target for antiviral drugs as the enteroviral polyprotein

has several cleavage sites specifically for this protease, and it has a

vital role in virus maturation. Many of the inhibitors are small mole-

cules occupying the active site of the proteases.50 One example is

pyrazole compounds which inhibit 3Cpro from different enteroviruses

and coronavirus protease which is similar to 3Cpro.51 Another exam-

ple is microcyclic inhibitors against enterovirus 3Cpro, norovirus, and

SARS‐coronavirus protease.52 To date, rupintrivir (AG7088) and

AG7404 as its analog have entered clinical trials.53-55 Recently,

researchers have been mostly focusing on rupintrivir as it proved to

be potentially effective against EV71, CAV16, and EV68.56-59
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4 | VIRAL PROTEASES AGAINST CELLULAR
PROTEINS

Type I interferon is a common cytokine expressed in response to viral

infections. This cytokine is the first defense line against viral

infections in cells.60 On the other hand, several viruses including

influenza A, hepatitis C, dengue virus, and respiratory syncytial virus

have different strategies against the host defense system resulting

in infection.61 PCR microarray indicates that there is a different

response to EV71 and CA16 infection in IFN signaling pathway genes.

Only a few genes after EV71 infection have overexpression, and most

of the genes such as ISGs show downregulation in their expression.

However, in CA16 infection, most of the genes show increased

expression under the IFN induction. This evidence demonstrates that

EV71 shows greater resistance to the negative effects of IFN com-

pared to CA16.62 Enterovirus 71 does not induce expression of IFNI,

ISG54, ISG56, and tumor necrosis factor α (TNFα) following infec-

tion.38 Viral proteases (2A and 3C) are responsible for the cleavage

of viral polyprotein and virus maturation. Yet, several reports have

revealed that some cellular proteins are also cleaved. For example, it

was reported that 2A protease cleaves eIF4GI and poly A binding pro-

tein (PABP).63-65 3C can also cleave some cellular transcription factors

or modulators such asTATA box binding protein, P53, histone H3, and

DNA polymerase III,66-71 where with cleavage of this transcriptional

protein, DNA‐dependent transcription is impaired.72 It was reported

that 3C can enter the nucleus through its precursor 3CD which con-

tains nuclear localization site.73,74 Hence, it can target the nuclear

called named CstF‐64, an essential factor for polyadenylation of

mRNA in the nucleus, which is crucial in the maturation of mRNA.75

Further, 3C of EV71 can cause apoptosis in epithelial, neuronal, and

lymphocyte cells10,76-78 and can interact with PIN2/TERF1‐interacting

telomerase inhibitor 1 (Pinx‐1) which is an inhibitor of telomerase and

tumor suppressor factor and induces apoptosis.79 EV71 infection can

prompt degradation of Trim 38 and also induce autophagy in host cells.

In this regard, Song et al reported that EV71 infection suppressesTLR7

signaling pathway by inducing autophagy in infected cells, where

autophagy will promote endosomal degradation and inhibit TLR7

signaling pathway.80,81 EV71 proteases 2A and 3C are also responsible

for inhibition of the cellular endoplasmic reticulum‐associated

degradation (ERAD) pathway.82 Inhibition of NFkB activation by

EV71 infection was reported through target transforming growth fac-

tor beta‐activated kinase 1 (TAK1) and TGF‐beta‐activated kinase 1

(TAB) complex as TAK1/TAB1/TAB2/TAB3, cleaved by 3Cpro.83
5 | VIRAL PROTEASES DISRUPT
INTERFERON PATHWAYS

Viruses have different evolutionary strategies to fight the host antivi-

ral defense, which can be categorized in two groups. Firstly, they sup-

press IFN production through inactivation of the transcription factor

by target adaptors such as IRF3/IRF7, nuclear factor kappa‐light‐

chain‐enhancer of activated B cells (NFkB) or ATF‐2/C‐Jun. Secondly,

they suppress IFN signaling pathway activation and ISGs activation by

blocking JAK‐STAT signaling pathway.84,85 Reports indicate that
unlike other viruses, EV71 does not induce expression of antiviral

genes in mammalian cells. EV71 suppresses IFN signaling pathway

by interrupting the RIG1‐IPSI formation, and with translocation of

IRF3 to the nucleus using 3C protease.38 RIG1, MDA5, and TLR3 have

a crucial role in the defense against picornavirus infection.37 EV71

infection indicates more resistance to IFN compared to CA16. Almost

all of the ISGs activated by IFN will diminish in the cells that are

infected by EV71, but in CA16 infection, these ISGs remain high.

EV71 also decreases STAT1 and 2 phosphorylation, which has been

observed less in CA16 infection.62 Interestingly, the members of

picornaviridae affect RIG1 or MDA5 by different methods, where

poliovirus and encephalomyocarditis virus target both RIG1 and

MDA5, but rhinovirus and echovirus only inhibit RIG1.86-88 RIG1 is

mostly seen in an inactive form with a caspase activation and recruit-

ment domain (CARD) region, which is subject to the interaction with

downstream adaptors.38 Probably, 3C attaches to RIG1 and locks this

protein in inactive form or interact with CARD region and inhibit

RIG1‐IPS1 interaction.38 Chen et al also reported that EV71 infection

causes ubiquitination inhibition of RIG1, resulting in induction of IFN

and ISG expression.89 Some studies have report that 3C can degrade

RIG1 by its protease activity,87,88 but others have not confirmed it.38

EV71 3C can overcome IFN production through cleavage of IRF7 in

TLR3 pathway. This cleavage is not sensitive to caspases, proteases,

endocytosis, and autophagy, but sensitive to 3C inhibitors. Also,

IRF7 has a cleavage site for 3C. These pieces of evidence approve

the role of 3C in IRF7 cleavage.37 A study has reported 3C cleave

adaptor TRIF as a key factor in the IFN signaling pathway in rhabdo-

myosarcoma (RD) cell but not in HT‐29 cell.27 This study demon-

strates that the cell type has an important role in protein‐protein

interactions between the virus and host. 2Apro can also target mito-

chondrial antiviral‐signaling protein (MAVS) and inhibit IFN production

in Hela cells.90 It can also cleave MDA5 which suppresses activation of

IRF3.90,91 It was reported that MDA5, which is responsible for recog-

nizing picornaviral RNA, degraded during polivirus infection86 and

EV71 infection,91 but in a different way. This degradation is mediated

by caspase and proteasome in poliovirus infection, but in EV71 infec-

tion, this degradation occurs through 2A protease.86,90 Other entero-

viruses such as human rhinovirus 16 and echovirus 1 do not degrade

MDA5.86 RIG1 has also been a target for other enteroviruses such

as poliovirus, echovirus, and HRV16 mostly through 3Cpro.87 As men-

tioned earlier, downstream adaptors such as MAVS are targeted by

different enteroviruses including human rhinovirus 1A (HRV1A),92

coxsackivirus B3 (by 3C protease),93 and EV71 (by 2A protease).85 In

HRV1A, both proteases are responsible for cleavage in collaboration

with caspase 3.92 Disruption of IFN production by EV71 infection

has been indicated in Figure 1. 2A protease can disrupt IFN signaling

pathway by targeting one subunit of the interferon receptor called

IFNR1. It cannot directly cleave IFNR1, but downregulation occurs

via indirect interaction between 2A, IFNR1, and other unknown mole-

cules.94 Experiments suggest that this fall in IFNR1 level is related to

protease activity of 2A, since by creating a mutation in cys110 and

changing it to Ala110 at the catalytic site, this process will be

inactivated.94 Some viruses inhibit activation of the Jak‐stat pathway

by suppressing phosphorylation of STAT1 and STAT2. Also, EV71

decreases the phosphorylation level of STAT1 and STAT2 during
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12 hours after infection.95 Liu et al indicated that infection by EV71

also blocks JAK1 and TYK2 phosphorylation, yet this report did not

prove changes in IFNR expression level.95 This study suggests that

2A and 3C protease do not have an important role in the inhibition

of STAT phosphorylation. Possibly, interaction of two or more viral

proteins inhibits IFN signaling pathway. Furthermore, EV71 could

downregulate JAK1 by inhibiting nucleocytoplasmic translocation or

translation of its mRNA or by other independent proteases or via lyso-

somal outophagy. The reason is that JAK1 mRNA does not show a

reduction after EV71 infection, but its protein is reduced.95 3C prote-

ase of EV71 can also suppress IFN signaling pathway through cleavage

of IRF9 and inhibiting IFN signaling cascade.96 Disruption of the IFN

signaling pathway by EV71 infection has been illustrated in Figure 2.
6 | NEW MECHANISM FOR IFN SIGNALING
PATHWAY SUPPRESSION

Wang et al suggested a new mechanism for IFN signaling pathway sup-

pression. It showed that EV71 does not block phosphorylation of STAT1
FIGURE 2 IFN signaling pathway and different ways that the virus
interferes with this pathway. Downregulation: the long line with a
small line at the end; inhibition of phosphorylation: the long line with a
black circle at the end; scissor shape: cleavage by protease; EV71:
enterovirus 71 infection. Attachment of IFN type 1 to IFNR1 and
IFNR2 results in phosphorylation and activation of two adaptors called
JNK1 and TYK2. The phosphorylation of these two proteins causes
activation of STAT1 and STAT2 adaptors which form a complex with
IRF9 and KPNA1, with the complex being called ISGF3. As can be seen
in this image, STAT1 has a residue (a nuclear localization signal) which
is recognized by KPNA1. This attachment induces translocation of
ISGF3 to the nucleus and induces ISG's promoter. 2A protease can
suppress the pathway by interacting with IFNR1, and 3C protease can
cleave IRF9 and inhibit formation of ISGF3. EV71 infection can also
inhibit phosphorylation of JNK1, TYK2, STAT1, and STAT2 which has
been suggested in some studies. One of the latest reports found new
mechanisms through which EV71 infection causes downregulation of
KPNA1 in a caspase 3‐dependent manner and inhibits translocation of
ISGF3 to nucleus
and 2; rather, it inhibits the translocation of phosphorylated STAT to the

nucleus, and decreases the formation of STAT1/KPNA1. It also

downregulates KPNA 1 expression as a receptor for nuclear localization

signal of P‐STAT1. Usage of caspase inhibitors and siRNA for caspase 3

suggested that KPNA1 downregulation occurs in a caspase 3‐dependent

way, which results in decreased ISGs expression. 2A and 3C proteases do

not cause KPNA1 degradation, interferon‐sensitive response element

(ISRE) activation inhibition, or ISG transcription suppression induced by

IFN‐β.97 KPNA1 is one of themembers of KPNA family, consisting of five

types including 1α, 2α, 3α, 4α, and 5α. The role of KPNA1 in IFN signaling

pathway has been investigated in some studies. This protein is effective in

nuclear/cytoplasmic trafficking, directly interacts with phosphorylated

STAT1, and facilitates its translocation into the nucleus.98,99 Different

viruses such as foot and mouth disease virus (FMDV) by 3C protease

and Ebola virus by VP24 proteins interact with KPNA and suppress

it.100,101 VP24 has been recognized as a receptor site for nuclear localiza-

tion signal on KPNA,which is crucial for translocation of P‐STAT1 into the

nucleus, with VP24 competingwith P‐STAT1 for attachment toKPNA.102

Other viruses such as SARSCov and porcine reproductive and respiratory

syndrome virus (PRRSV) also interact with KPNA and suppress its func-

tion.103,104 Interestingly, KPNA degradation was seen in RD, Hela, and

Vero cells, but not in human gastrointestinal epithelial cells.97
7 | SUMMARY

Enterovirus 71 is a major cause of HFMD and is an important concern

following polio eradication, as it can cause flaccid paralysis. EV71 out-

break has been reported from different countries especially in Asia.38

As with other viruses, EV71 has some weapons to fight against the

innate immune system. Some studies have reported that EV71 poorly

induces IFN in infected cells, and pretreatment of cells with IFN

should be performed by a high dose to protect cells from infec-

tion.27,38 In contrast, EV71 infection in HT‐29 cells can induce IFN

well comparable to RD and Hella cells. TLR3 in infected RD cells

remain unchanged, but in human colorectal adenocarcinoma cell

(HT‐29 cells), 2‐to‐6 fold increase was seen in TLR3 transcription

36 hours after infection.27 This increment is probably a result of IFN

induction in these cells. Possibly because of this reason, mild gastroin-

testinal symptoms are seen in patients infected with EV71. These

pieces of evidence revealed that different cells and tissues have

different responses to EV71 infection. For example, TRIF in IFN

production pathway significantly declines during the first 12 hours

after infection in RD cells and is rarely seen in 36 hours after infection.

However, TRIF levels remain constant after infection in HT‐29 cells.27

Also, IRF7 significantly diminished after first 24 hours of infection in

RD cells and was not seen 36 hours after infection. However, in HT‐

29 cells, IRF7 reduction is very marginal at 36 hours following

infection, but 24 hours after infection, there is no change in IRF7

levels.27 EV71 can also reduce IFN production by targeting some PRRs

such as RIG1. The 3C of virus interacts with RIG1 and blocks the

pathway, yet this event is not related to protease activity of 3C.

However, the 3C of some enteroviruses such as poliovirus, echovirus,

and rhinovirus degrade RIG1 via cleavage.38,105 3C can cleave IRF7

and TRIF thus causing inhibition of IFN production. This cleavage
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happens at Q189‐S190 and Q312‐S313 positions, respectively.37,105

2A protease can also target MAVS and MDA5 and degrade them in

Hella cells, culminating in inhibition of IFN production.27 Nevertheless,

some studies have reported that a number of enteroviruses including

HRV1A cleave MAVS in a caspase‐dependent manner.90 As a second

strategy, EV71 acts against the host innate immune system by affect-

ing IFN signaling pathway. Lu et al reported that 2A protease causes

decrement in IFNR1 level and suppresses IFN signaling pathway

6 hours following infection.94 Nevertheless, Liu et al indicated that

there is no change in the level of IFNR after EV71 infection. They also

found that EV71 infection blocks JAK1 and TYK2 phosphorylation

through downregulation of JAK1. There was no change in JAK1

mRNA levels, but reduction in the protein level was observable.95 This

study hypothesized that possibly the interaction of two or more viral

proteins is responsible for that not only 2A or 3C. 3C protease of

EV71 is also responsible for cleavage of IRF9, an important adaptor

in the IFN signaling pathway which inhibits activation of ISRE pro-

moter.96 However, Wang et al suggested a new mechanism for the

IFN signaling pathway suppression and rejected all of the previous

mechanisms. This study suggests that EV71 does not suppress phos-

phorylation of STAT1 or downregulate IFNR1 and JAK1 significantly,

but inhibit its translocation to the nucleus by disrupting the interaction

between P‐STAT1 and KPNA1 through degradation of KPNA1.44 As

mentioned earlier, IFN production happened in the HT‐29 cell rather

than occurring in other cells such as RD and Hella, which is in accor-

dance with the fact that the IFN signaling pathway is active in gastric

epithelial cells despite EV71 infection. Possibly, due to this event,

patients do not have gastric signs or at least have mild signs. Wang

et al revealed that KPNA1 degradation does not happen in gastric epi-

thelial cells. This study proves that neither 2A nor 3C degraded

KPNA1. This degradation happened through a caspase 3‐dependent

manner as with some other enteroviruses such as poliovirus.44 These

findings suggest that the viral protein and host protein interaction is

a complex concept which is mediated by different factors such as

the cell and tissue type, host immune system, and different hosts. Fur-

ther evaluation of different cell types may result in new findings about

the interaction between EV71 proteases and IFN signaling and pro-

duction pathway. It will also be valuable to focus on the role of other

viral proteins in IFN inhibition pathways. These studies suggest that

viral‐host protein interaction is a multifactorial concept and need

further work and research to understand it more comprehensively.
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