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Osteosarcoma is a common malignant bone tumor with a propensity for drug resistance,
recurrence, and metastasis. A growing number of studies have elucidated the dual role of
pyroptosis in the development of cancer, which is a gasdermin-regulated novel
inflammatory programmed cell death. However, the interaction between pyroptosis
and the overall survival (OS) of osteosarcoma patients is poorly understood. This study
aimed to construct a prognostic model based on pyroptosis-related genes to provide new
insights into the prognosis of osteosarcoma patients. We identified 46 differentially
expressed pyroptosis-associated genes between osteosarcoma tissues and normal
control tissues. A total of six risk genes affecting the prognosis of osteosarcoma
patients were screened to form a pyroptosis-related signature by univariate and
LASSO regression analysis and verified using GSE21257 as a validation cohort.
Combined with other clinical characteristics, including age, gender, and metastatic
status, we found that the pyroptosis-related signature score, which we named “PRS-
score,” was an independent prognostic factor for patients with osteosarcoma and that a
low PRS-score indicated better OS and a lower risk of metastasis. The result of ssGSEA
and ESTIMATE algorithms showed that a lower PRS-score indicated higher immune
scores, higher levels of tumor infiltration by immune cells, more active immune function,
and lower tumor purity. In summary, we developed and validated a pyroptosis-related
signature for predicting the prognosis of osteosarcoma, which may contribute to early
diagnosis and immunotherapy of osteosarcoma.
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INTRODUCTION

Osteosarcoma is the most common primary aggressive
malignancies of the skeleton, and it occurs mainly in children
and adolescents, in which distant metastasis still leads to a poor
prognosis (Chow et al., 2020; Rojas et al., 2021). With a
combination of neoadjuvant chemotherapy, surgery,
chemotherapy, and biological therapy in the last few years, the
5-year survival rate for osteosarcoma patients has improved
significantly, from 20% to 65–70% (Yao and Chen, 2020;
Gazouli et al., 2021). However, due to the limited efficacy of
current treatment strategies, nearly 30% of osteosarcoma patients
are prone to metastasis or recurrence, with poor prognosis and
low 5-year survival rates (Fan et al., 2021). Recently,
immunotherapy has undergone a dramatic transformation,
demonstrating superior anticancer efficacy in many tumors
and being recognized as a more potent and antigen-specific
form of antitumor therapy (Constantinidou et al., 2019; Shin
et al., 2021). For example, adoptive cellular immunotherapy is a
promising option for tumors resistant to current conventional
therapy, and chimeric antigen receptor T-cell therapy has been
shown to cure 25–50% of patients with previously incurable B-cell
malignancies, revolutionizing the treatment of drug-resistant
hematologic malignancies (Titov et al., 2021). In addition,
specific immune checkpoint inhibitors are being explored as
new immunotherapeutic strategies for osteosarcoma, such as
CTLA-4, LAG3, TIGIT, and PD-1/L1 (Wang S.-D. et al., 2016;
Hashimoto et al., 2020; Judge et al., 2020; Park and Cheung, 2020;
Ligon et al., 2021). However, cancer immunotherapies, including
checkpoint inhibitors, have varying response rates due tomultiple
primary and acquired resistance mechanisms (Bashash et al.,
2021). In order to improve the early diagnosis and treatment of
osteosarcoma, novel biomarkers and therapeutic targets are
needed.

Pyroptosis is a newly discovered form of programmed cell
death that is morphologically distinct from apoptosis and
necrosis while releasing inflammatory mediators in the process
(Wu et al., 2021). Pyroptosis is mediated by pore-forming
proteins, such as the gasdermin family, of which gasdermin D
(GSDMD) is a primary substrate for the caspase family (Li L.
et al., 2021). After cleavage by activated caspases, the N-terminal
fragment of GSDMD oligomerizes in the membrane to form
pores, leading to pyroptosis (Lu et al., 2021). Pyroptosis acts as a
double-edged sword in cancer. On the one hand, pyroptosis can
create a tumor-promoting environment by releasing
inflammatory factors; on the other hand, pyroptosis can
inhibit tumor occurrence and progression as a form of
programmed death (Xia et al., 2019). As research progresses,
the impact of pyroptosis-related genes on the proliferation,
migration, and invasion of tumor cells becomes increasingly
prominent and is strongly associated with cancer prognosis (Ju
A. et al., 2021; LinW. et al., 2021; Shao et al., 2021; Ye et al., 2021).
For instance, Tang et al. (2020) reported that pyroptosis inhibited
metastasis of colorectal cancer cells through activation of NLRP3-
ASC-Caspase-1 signaling by FL118. In another study by Wang Y.
et al. (2016), it was found that the NLRP3 inflammasome can
promote the proliferation andmigration of A549 lung cancer cells

via the caspase-1-IL-1β/IL-18 signaling pathway. Studies have
shown that GSDMD was notably upregulated in osteosarcoma
compared to normal skeletal tissue as well as associated with drug
resistance and prognosis for patients with osteosarcoma (Lin R.
et al., 2020). Alternatively, GSDMD expression was significantly
downregulated in gastric cancer tissues, which may contribute to
the development of gastric cancer through the regulation of cell
cycle transition (Wang et al., 2018). However, the mechanism of
pyroptosis-related genes in osteosarcoma is still not fully
elucidated.

Recently, high-throughput sequencing technologies and
bioinformatics analysis have enabled the exploration of genetic
alterations in osteosarcoma and provided an effective way to
identify potentially beneficial markers and the most appropriate
treatment strategies for other cancer types (Li M. et al., 2021; Na
et al., 2021; Pan et al., 2021). According to Zhang et al. (Xing et al.,
2021), TIMELESS was the most significantly upregulated gene
within the 16 clock-related genes by analyzing The Cancer
Genome Atlas (TCGA) database and promoted cancer cell
proliferation and migration via increasing macrophage
infiltration in ovarian cancer. An analysis of the relationship
between osteosarcoma development and KIF21B using
bioinformatics analysis showed that knockdown of KIF21B
inhibited cell proliferation and reduced tumor formation in
vivo by modulating the PI3K/AKT pathway and that KIF21B
was an independent prognostic factor in osteosarcoma patients
(Ni et al., 2020). The previous success of projects to identify
prognostic target genes suggests that it may be possible to uncover
more molecular mechanisms in osteosarcoma.

We used microarray data from the Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) and
Genotype-Tissue Expression (GTEx) database for differential
expression analysis and identified 46 differentially expressed
pyroptosis-related genes (DEPRGs) in osteosarcoma and
normal muscle tissues. We then constructed a six-gene
signature (that could determine the PRS-score) based on
DEPRGs to predict osteosarcoma outcomes. We validated the
signature by evaluating the association between the PRS-scores
and clinical characteristics and immune microenvironment
features in osteosarcoma tumors. The differential genes among
the PRS-score-based subgroups are also enriched for
immunological functions and may be involved in regulating
the composition of the immune microenvironment. These
results reveal that the pyroptosis-related prognostic signature
may provide new insights into osteosarcoma diagnosis and
prognosis prediction.

MATERIALS AND METHODS

Data Acquisition
The workflow chart of this study is shown in Figure 1. We
extracted the RNA sequencing (RNA-seq) data and the
corresponding clinical information of 88 osteosarcoma patients
from the TARGET database (https://ocg.cancer.gov/programs/
target). The RNA-seq data of 396 normal human muscle tissue
samples were obtained from the GTEx database (https://
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xenabrowser.net/datapages/). Both data types were HTseq-
FPKM, and all gene expression levels were processed with log2

(FPKM + 1). The independent cohort GSE21257, which
contained 53 osteosarcoma samples, was downloaded from
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc�GSE21257).

Identification of DEPRGs
We obtained 52 pyroptosis-related genes (PRGs) from prior
reviews (Xia et al., 2019; Zhou and Fang, 2019; Li et al., 2020;
Ju X. et al., 2021; Wu et al., 2021; Ye et al., 2021) and MSigDB
database v7.4 (Subramanian et al., 2005) (listed in
Supplementary Table S1). We identified DEPRGs between
tumor and normal tissues using the “limma” package, with a
p-value < 0.05. A protein-protein interaction (PPI) network of all
DEPRGs was obtained by STRING database (http://www.string-
db.org/). We used Molecular Complex Detection (MCODE), a
plugin for Cytoscape, to cluster the genes and find a densely
connected area based on the following criteria: degree cut-off � 2,
haircut on, node score cut-off � 0.2, Max depth � 100, k-score � 2,
score ≥ 5, and node ≥ 10.

Consensus Clustering Analysis
We downloaded all clinical data from the TARGET dataset and
further analyzed a total of 85 patients with survival time and
status. We performed consensus clustering analysis based on the
clinical characteristics of osteosarcoma patients in the TARGET
dataset using the “ConsensusClusterPlus” package. The clustering
index “k” was increased from 2 to 10 to identify the clustering
index with the minor interference and the greatest difference
between clusters.

Construction of a Pyroptosis-Related
Scoring Signature
We conducted univariate Cox analysis with the “survival”
package to screen for prognosis-related DEPRGs and set 0.1 as
the threshold p-value for omission prevention (Ye et al., 2021).
We then conducted the LASSO Cox regression analysis to narrow
the risk of overfitting to develop a prognostic signature using
“glmnet” package. The TARGET osteosarcoma patients were
divided into low and high PRS-score groups based on the
median PRS-score, and the PRS-score formula was as follows:
PRS-score � Σ (βi × Expi) (β: coefficients, Exp: gene expression
level). We created a Kaplan–Meier survival curve using the R
“survival” and “survminer” packages to determine the OS time
between the two subgroups. The principal component analysis
(PCA) based on the signature was performed using the R package
“Rtsne” and “ggplot2”. The specificity and sensitivity of this
prognostic signature were determined by the receiver
operating characteristic (ROC) curve constructed with the
“SurvivalROC” package. In addition, we identified copy-
number alterations and performed mutation analysis of the
risk genes in sarcomas using the cBioportal database (http://
www.cbioportal.org/). Additionally, 53 osteosarcoma patient
samples from the GSE21257 dataset were used to verify the
reliability of the prognostic model.

Independent Prognostic Analysis and
Clinical Correlation Analysis
We extracted clinical information (gender, age, and metastasis
status) of patients in the TARGET cohort. We implemented the
“survival” package to conduct both univariate and multivariate

FIGURE 1 | Flow chart of the study.
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Cox regression analysis to assess the independence of the PRS-
score from other clinical variables. The R “RMS” package was
then used to generate nomograms to predict survival in patients
with osteosarcoma over the course of 1, 3, and 5 years.
Additionally, osteosarcoma patients were divided into two
subgroups according to age (≤ 18 or > 18 years old), gender
(female or male), and metastasis status (M0 and M1). The R
“Beeswarm,” “limma,” and “pheatmap” package was used to
assess the correlation between the PRGs involved in the
prognostic signature and clinical parameters mentioned above.

Functional Enrichment Analyses
We applied the “limma” R package to identify differentially
expressed genes (DEGs) in the PRS-score-classified subgroups,
with a false discovery rate (FDR) < 0.05 and absolute value of the
log2 fold change (|log2FC|) ≥ 1 as a threshold. We implemented
the “clusterProfiler” package to conduct the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
based on the DEGs between different PRS-score subgroups, with
an adjusted p-value (adj. P) < 0.05. Subsequently, the “GSVA”

package was used to conduct the single sample Gene Set
Enrichment Analysis (ssGSEA) to calculate the enrichment
scores of immunological cells and functions.

Analysis of the Immune Microenvironment
Features and Immune Response
Immunoscore and stromal scores for each osteosarcoma patient
were obtained using the “estimate” and “limma” packages and
were used to derive tumor purity. Using the “ggpubr” and
“limma” packages, we assessed the differential expression of
immune checkpoints (CTLA4, PDL1, LAG3, TIGIT, TIM3,
PDCD1, IDO1, and TDO2) between subgroups to estimate the
predictive power of the signature for immunotherapy response.

Statistical Analysis
We executed all statistical analyses with R software (v4.0.5). The
threshold for statistical significance was taken as p < 0.05 if it was
not explicitly stated.

FIGURE 2 | Expression and interconnectedness of the pyroptosis-related genes in osteosarcoma. (A) The heatmap showed the differential expressed PRGs
between human osteosarcoma samples and normal muscle tissues (red: high expression level, blue: low expression level). (B) PPI network of differentially
expressed PRGs (The red nodes indicate upregulated PRGs and the green nodes indicate downregulated PRGs) (C) Critical modules from the PPI network. (D) The
correlation network of the differential expressed PRGs (red lines indicate positive correlation and blue lines indicate negative correlation). PRGs, pyroptosis-
related genes.
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RESULTS

DEPRGs in Human Osteosarcoma and
Normal Tissues
The expression levels of 52 PRGs were compared in the human
osteosarcoma samples and normal muscle tissues, and we
detected 19 DEPRGs that were upregulated and 27 DEPRGs
that were down-regulated using our threshold criteria (p value <
0.05) (Figure 2A). The PPI network of DEPRGs created with the
minimum required interaction score > 0.9 is presented in
Figure 2B. We then screened out the two most crucial

network modules using MCODE (Figure 2C) and drew the
correlation network of the differentially expressed PRGs
(Figure 2D).

Identification of Subgroups Based on PRGs
by Consensus Clustering
Consensus clustering was used to separate all 85 osteosarcoma
patients into subgroups according to the expression of PRGs. By
increasing the clustering index “k” from 2 to 10, we found that k �
2 seems to be the optimal point to identify the smallest

FIGURE 3 | Classification of osteosarcoma patients based on pyroptosis-related regulators. (A) Consensus clustering of osteosarcoma patients for k � 2. (B) The
prognostic analysis between the two pyroptosis-related clusters. (C) Heatmap of the differentially expressed genes and clinical characteristics between the two
pyroptosis-related clusters.
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FIGURE 4 | Construction of the pyroptosis-related prognostic signature for osteosarcoma. (A,B) Cox regression analysis of pyroptosis-related genes. (A)
Univariate Cox regression analysis. (B) LASSO Cox regression analysis. (C) Selection of the optimal penalty parameter for LASSO regression. (D) The PRS-score
distribution of the patients with osteosarcoma in the TARGET cohort (E) The survival status and survival time distribution of the patients with osteosarcoma in the
TARGET cohort. (F) Kaplan–Meier curves of the high and low PRS-score subgroups in the TARGET cohort. (G) PCA plot based on the PRS-scores in the TARGET
cohort. (H) Time-dependent ROC curve for predicting the 1-, 3-, and 5-year overall survival in the TARGET cohort. (I) Genomic alterations of hub genes.
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interferences and the most significant differences between
clusters (Figure 3A). Consequently, patients with
osteosarcoma in the training group were classified into two
clusters. However, a comparison of overall survival between
the two clusters revealed no significant difference (p� 0.253,
Figure 3B). We also plotted a heatmap to express the
differences in gene expression and clinical characteristics,
including age (≤ 18 or > 18 years old), gender (male or
female), and metastasis status (metastatic, non-metastatic)
between the clusters, but we found there are little differences
(Figure 3C).

Construction of the PRG-Based Prognostic
Signature
To construct a pyroptosis-related prognostic model, we further
screened seven-candidate prognostic PRGs by univariate Cox
regression analysis (Figure 4A). Of the seven prognostic PRGs,
CASP5 and CHMP4C were regarded as high-risk genes based on
their HRs, whereas BAK1, CASP6, GPX4, PYCARD, and GZMA
were regarded as low-risk genes. Subsequently, LASSO Cox
regression analysis was performed to construct a 6-gene signature

according to the optimum penalty parameter (λ) value (Figures
4B,C). We then divided the patients in the TARGET cohort into
high and low scoring subgroups based on a composite signature
score termed the “PRS-score” (PRS-score � [BAK1 expression ×
(−0.325)] + [CASP5 expression× (0.132)] + [CHMP4C expression×
(0.191)] + [CASP6 expression × (−0.475)] + [GPX4 expression ×
(−0.185)] + [GZMA expression × (−0.185)]). The PRS-scores,
survival status, and survival time in the two groups of patients
are shown in Figures 4D,E. The results showed that patients with
higher PRS-scores had worse prognoses than patients with lower
PRS-scores. Kaplan-Meier curves showed that the patients in the
high PRS-score group had worse OS than the patients in the low
PRS-score group (p < 0.001; Figure 4F). Analyses of PCA revealed
that high and low PRS-score patients were separated into two
clusters (Figure 4G). To assess the accuracy of the signature, we
then constructed a time-dependent ROC curve. We found the area
under the ROC curve (AUC) was 0.771 for 1-year OS, 0.738 for 3-
year OS, and 0.742 for 5-year OS, providing evidence that this six-
gene prognostic model performed well as a predictor of OS
(Figure 4H). Mutations and copy number alterations of the six
hub genes (BAK1, CASP6, GPX4, PYCARD, GZMA, CASP5, and
CHMP4C) were analyzed together using the cBioportal database.

FIGURE 5 | Validation of the prognostic signature in the GEO cohort. (A) The PRS-score distribution of the patients with osteosarcoma in the GEO cohort. (B) The
survival status and survival time distribution of the patients with osteosarcoma in the GEO cohort. (C) PCA plot based on the PRS-scores in the GEO cohort. (D)
Kaplan–Meier curves of the high and low PRS-score subgroups in the GEO cohort. (E) Time-dependent ROC curve for predicting 1-, 3-, and 5-year overall survival in the
GEO cohort.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7807807

Zhang et al. Pyroptosis-Related Genes in Osteosarcoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


These six hub genes were altered in 99 of 241 samples (41%)
(Figure 4I). Since the frequency of mutations in GPX4 and
BAK1 exceeded 10%, we hypothesized that these two genes
might be key therapeutic targets (Figure 4I).

Validation of the PRG-Based Prognostic
Signature
To reliability of this six-gene prognostic signature, a total of
53 patients from GSE21257 were used as the test set. Based on

the median cut-off of the PRS-score in the TARGET cohort,
patients with osteosarcoma in the GEO cohort were separated
into high (n � 34) and low (n � 19) scoring groups
(Figure 5A). The survival time and survival status
distribution showed that patients in the low PRS-score
subgroup had a higher possibility of surviving (Figure 5B).
The PCA of the two subgroups showed a clear separation
(Figure 5C). Furthermore, Kaplan-Meier analysis revealed
that osteosarcoma patients with high PRS-scores had a
significantly poorer prognosis than those with low PRS-

FIGURE 6 | Independent prognosis analysis and clinical utility. (A,B) Cox regression analysis of pyroptosis-related genes (A) Univariate Cox regression analysis (B)
Multivariate Cox regression analysis (C) Heatmap (blue: low expression level; red: high expression level) of the correlation between clinical features and the risk groups
(*p < 0.05) (D) Relationship between GZMA and metastasis. (E) Relationship between CASP5 and age category. (F) A prognostic nomogram based on the PRG-related
model for prediction of 1-, 3-, and 5-year survival rates.
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scores (Figure 5D), with AUC � 0.673, 0.657, and 0.585 for 1,
3, and 5 years survival, respectively (Figure 5E).

Independent Prognostic Value and Clinical
Utility of the Prognostic Signature
We then utilized univariate and multivariable Cox regression
analyses to evaluate the independent prognostic value of the
model with other clinical features. The univariate Cox
analysis indicated that the PRS-score (HR � 3.541, 95% CI
� 2.097–5.980, p < 0.001) and M-stage (HR � 4.770, 95% CI �
2.285–9.954, p < 0.001) were significantly associated with OS
(Figure 6A). The multivariate Cox analysis confirmed that
the PRS-score (HR � 3.735, 95% CI � 2.069–6.743, p < 0.001)
and M-stage (HR � 4.877, 95% CI � 2.241–10.615, p < 0.001)
were independent factors affecting the prognosis of
osteosarcoma patients (Figure 6B). We then plotted a
clinical information-related heatmap for the TARGET
cohort and found significant differences in M-stage
distribution between low- and high-scoring subgroups
(Figure 6C). The results of clinical correlation analysis
showed that the M stage of osteosarcoma patients
decreased with increasing GZMA expression (Figure 6D,

p < 0.01), while osteosarcoma patients with high CASP5
expression were younger (Figure 6E, p < 0.01), and all
results are shown in Table 1. Additionally, a pyroptosis-
related signature-based nomogram showed that the OS of
patients at 1, 3, and 5 years decreased with increasing PRS-
score (Figure 6F).

Functional Analysis of DEGs Based on
PRS-Score
To further investigate differences in PRS-score-classified
subgroups, we identified 34 genes that were down-
regulated and 14 genes that were up-regulated in the high
PRS-score subgroup compared with the low PRS-score
subgroup in the TARGET group (Supplementary Table
S2). GO analysis revealed that the 48 DEGs were mainly
involved in the cellular response to interferon-gamma, MHC
class II protein complex, peptide binding, and amide binding
(Figure 7A). According to the KEGG pathway analysis, these
DEGs were primarily associated with staphylococcus aureus
infection, systemic lupus erythematosus, hematopoietic cell
lineage, and complement and coagulation cascades
(Figure 7B).

TABLE 1 | The relationship between PRS-scores and clinical characteristics.

Id Gender (female, male) t (p) Age (≤ 18, > 18) t (p) M stage (M0, M1)
t (p)

BAK1 −0.182 (0.856) 1.324 (0.197) 0.091 (0.928)
CASP5 1.257 (0.213) 3.287(0.001) −0.08 (0.936)
CHMP4C 0.84 (0.404) 1.609 (0.115) −0.568 (0.574)
CASP6 −0.724 (0.472) 0.128 (0.899) 1.965 (0.056)
GPX4 0.062 (0.951) 0.32 (0.751) 1.664 (0.107)
GZMA 0.341 (0.734) 1.434 (0.160) 3.293(0.002)
PRS-scores 0.742 (0.461) −0.093 (0.926) −2.58(0.015)

t, t value from Student’s t test; p: p-value from Student’s t test. Bold indicates statistical significance, p < 0.05.

FIGURE 7 | Functional enrichment analysis of DEGs between the two pyroptosis-related subgroups. (A) GO enrichment analysis of DEGs based on PRS-score,
including BP, CC, and MF. (B) KEGG pathway enrichment analysis of DEGs based on PRS-score. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; BP, biological processes; CC, cell component; MF, molecular function.
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FIGURE 8 | Immune characteristics analysis of the prognostic signature. (A) Immune scores between high and lowPRS-score groups. (B)Stromal scores between
high and low PRS-score groups (C) ESTIMATE scores between high and low PRS-score groups. (D) Tumor purity between high and low PRS-score groups (E)
Comparisons of the level of immune cell infiltration between high and low PRS-score groups in the TARGET cohort. (F) Comparisons of immune functions between high
and low PRS-score groups in the TARGET cohort. (G) Comparisons of the level of immune cell infiltration between high and low PRS-score groups in the GEO
cohort. (H) Comparisons of immune functions between high and low PRS-score groups in the GEO cohort.
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Analysis of Immune Microenvironment
Characteristics Between Subgroups
Several studies have shown that the tumor immune
microenvironment correlates strongly with malignant behavior;
thus, we investigated the unique features of the tumor
microenvironment (TME) to distinguish between the two
subgroups of patients. Based on the ESTIMATE algorithm, the
overall level of immune cell infiltration and tumor purity were
examined. As shown in Figures 8A–D, the immune score,

stromal score, and ESTIMATE score were significantly higher
in the low scoring group than in the high scoring group, while the
tumor purity was lower. We then explored the distribution
patterns of infiltrating immune cells in different subgroups
using the ssGSEA algorithm. In the TARGET cohort, the
patients in the high PRS-score group had lower levels of
tumor infiltration by CD8+ T cells, dendritic cells (DCs),
macrophages, neutrophils, natural killer cells, plasmacytoid
dendritic cells (pDCs), Th2 cells, Tfh cells, and tumor-
infiltrating lymphocytes (TILs) compared with the patients in

FIGURE 9 | Immune checkpoint molecules expression analysis. (A–H) The expression levels of Immune checkpoint molecules, including PD-L1 (A), LAG-3 (B),
TIGIT (C), TIM-3 (D), IDO1 (E), CTLA-4 (F), TDO2 (G), and PDCD1 (H) between high and low PRS-score groups in the TARGET cohort. (I–P) The expression levels of
Immune checkpoint molecules, including PD-L1 (I), LAG-3 (J), TIGIT (K), TIM-3 (L), IDO1 (M), CTLA-4 (N), TDO2 (O), and PDCD1 (P) between high and low PRS-score
groups in the GEO cohort.
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the low PRS-score group (Figure 8E). All 13 immune functions
were down-regulated in the patients in the high PRS-score group
in comparison with the patients in the low PRS-score group
(Figure 8F). In the GEO cohort, compared with the patients in
the low PRS-score group, the patients in the high PRS-score
group had lower levels of tumor infiltration by immune cells,
including CD8+ T cells, DCs, macrophages, neutrophils, pDCs,
TILs, T regulatory, Tfh, Th1, and Th2 cells (Figure 8G).
Moreover, in contrast to the type-1 and type-2 interferon
response pathways, the other 11 immune pathways had lower
activity in the high PRS-score group than in the low PRS-score
group (Figure 8H). Our investigation showed that PRS-scores
were associated with immune characteristics and that elevated
immune activity in the low-scoring samples may contribute to the
antitumor effect in osteosarcoma.

In addition, we analyzed the changes in immune checkpoint
expression between the high and low PRS-score groups. Figures
9A–H shows that in the TARGET cohort, LAG3 (p � 1.3e-04),
TIGIT (p � 0.023), TIM3 (p � 0.002), and CTLA4 (p � 0.029)
expressions were down-regulated in the high-scoring group in
comparison to the low-scoring group. On the other hand, as the
PRS-score increased, the expression of LAG3 (p � 0.0035), TIM3
(p � 1.2e-04), IDO1 (p � 0.0082), CTLA4 (p � 0.0028), and
PDCD1 (p � 0.0021) in patients with osteosarcoma also decreased
in the GEO cohort (Figures 9I–P).

DISCUSSION

Pyroptosis, a form of programmed cell death, was found to play a
dual role in both promoting and inhibiting the growth of different
tumor cells (Loveless et al., 2021). Several recent studies have
highlighted the relevance of pyroptosis-related genes as candidate
biomarkers for prognosis and therapeutic response in patients
with different cancer types (Ju A. et al., 2021; Lin W. et al., 2021;
Shao et al., 2021; Ye et al., 2021). In the current study, we
identified the mRNA levels of 52 pyroptosis-related genes in
osteosarcoma and normal tissues based on public databases and
found that most of these genes were differentially expressed.
However, DEPRGs-based consensus clustering analysis produced
two clusters that showed no significant differences in clinical
characteristics. Subsequently, we performed univariate and
LASSO Cox regression analyses to further identify six
prognosis-related RPGs. To further explore their biological
function and clinical significance, we also performed survival
and ROC analyses to develop an accurate pyroptosis-related
prognostic signature in osteosarcoma. Subsequently, ssGSEA
found that the high-scoring group had lower levels of immune
infiltration and fewer immune-related pathways than the low-
scoring group. These results suggest that the novel pyroptosis-
related genes signature has the potential to predict prognosis
accurately and could provide new diagnostic biomarkers and
therapeutic targets for patients with osteosarcoma.

As a result of the present study, we constructed a 6-gene
pyroptosis-related signature, including BAK1, CASP5, CASP6,
GPX4, GZMA, and CHMP4C. Notably, six genes involved in this
signature have been implicated in apoptotic pathways as well (Li

et al., 2015; Skotte et al., 2017; Wu et al., 2019; Zhou et al., 2020;
Darweesh et al., 2021; Ding et al., 2021). Following apoptotic
signals, caspase 8 and caspase 3 initiate pyroptosis by processing
GSDMC and GSDME, respectively (Liu et al., 2021). The close
relationship between pyroptosis and apoptosis may explain the
dual role of these genes. Caspase 5 is an essential player in
canonical or noncanonical inflammasome-induced pyroptosis.
Upon activation, caspase-5 can act on the GSDMD, leading to the
formation of cell membrane pores. Activated caspase-5 can also
interact with caspase-1 to promote its activation, and the latter
cleaves the precursors of IL-1+ and IL-18 to form active IL-1+
and IL-18, which are released through the channels formed by
GSDMD-cNT and lead to pyroptosis (Kayagaki et al., 2015; Xia
et al., 2019). Studies have reported that caspase-5 is associated
with various malignancies, including gastric cancer, cervical
cancer, lung cancer, and human glioblastoma (Babas et al.,
2010; Zhou et al., 2018; Wang et al., 2019). Caspase-6 plays a
vital role in promoting cell death, ZBP1-mediated inflammasome
activation, and host defense during IAV infection (Zheng et al.,
2020; Zheng and Kanneganti, 2020). In addition, caspase-6 can
also be involved in cancer progression by regulating tumor
apoptosis and metastasis (Capo-Chichi et al., 2018). GPX4 was
found to negatively regulate Gasdermin D-mediated pyroptosis
in lethal polymicrobial sepsis by reducing lipid peroxidation; in
contrast, conditional GPX4 knockdown in myeloid cells triggers
macrophage pyroptosis with caspase-1/caspase-11-GSDMD-
phospholipase C gamma 1 axis. (Kang et al., 2018). Chen
et al. (2021a) found that circKIF4A promoted papillary
thyroid tumors by sponging miR-1231 and upregulating GPX4
expression. GPX4 is also a ferroptosis-related factor playing an
essential role in iron-dependent oxidative cell death driven by
lipid peroxidation (Chen X. et al., 2021). Lin H. et al. (2021)
discovered that upregulation of HMOX1 to inhibit GPX4
expression induced ferroptosis in osteosarcoma cells by
increasing reactive oxygen species levels, malondialdehyde
levels, and intracellular ferric ion level. GZMA from cytotoxic
lymphocytes enhances antitumor immunity and promotes tumor
clearance by cleavage of GSDMB triggering pyroptosis (Zhou
et al., 2020). On the other hand, GZMA acts as a pro-
inflammatory cytokine to promote cancer development (van
Daalen et al., 2020); for instance, GZMA deficiency inhibits
colon cancer development and inflammatory response in colon
tissue through the NF-κB-IL-6-pSTAT3 axis (Santiago et al.,
2020). The polymorphism of CHMP4C increased the cancer
susceptibility and was imbalanced in many cancers, including
lung, ovarian, prostate, and cervical cancers (Lin S. L. et al., 2020).
Another study showed that CHMP4C is also an autophagy-
related gene, and its participation in the construction of risk
models could effectively predict the prognosis of cervical cancer
patients and help develop precise treatment strategies (Shi et al.,
2020). Notably, similar to CHMP4C, BAK1 was found to be an
apoptosis and pyroptosis-related gene (Cowan et al., 2020; Deo
et al., 2020). BAK1 is a member of the Bcl-2 family and can induce
mitochondria-mediated apoptosis via regulating the release of
cytochrome c (Vervliet et al., 2016). Recent studies have shown
that miR-125b, miR-410, and miR-103a-3p could all directly
target BAK1 to inhibit apoptosis, and upregulation of BAK1
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may contribute to the treatment of cisplatin-resistant non-small
cell lung cancer (Wen et al., 2018; Wang H. et al., 2021; Zhang
et al., 2021). A prognostic signature based on 14 genes, including
BAK1, was able to predict the survival outcome for patients with
osteosarcoma (Qi et al., 2021). We also found that PYCARD,
although not included in the construction of the model, was also
associated with patient outcomes. PYCARD is an adaptor protein
that helps form inflammasomes, which contribute to
inflammation by promoting the release of the active IL-1β and
IL-18 (Hoffman and Wanderer, 2010; Protti and De Monte,
2020). Inflammation is commonly thought to contribute to
driving tumor growth, metastasis, and immune escape; for
example, IL-1 promotes tumor angiogenesis, recruitment of
myeloid cells and contributes to tumor metastasis by
recognizing endothelial cell adhesion molecules (Mantovani
et al., 2018; Karin and Shalapour, 2021). On the other hand,
PYCARD was found to be silenced by promoter methylation in
various cancer cells, suggesting its anti-tumor role as a pro-
apoptotic factor (Agrawal and Jha, 2020). These studies
further confirmed the potential prognostic value of the
identified pyroptosis-related genes in osteosarcoma. However,
the exact mechanism of their involvement in pyroptosis in
osteosarcoma needs to be verified by further in vivo and
in vitro experiments.

The enrichment analysis results showed that the DEGs between
high and low PRS-score subgroups were mainly enriched in
interferon-gamma mediated signaling pathways, antigen
processing, and peptide antigens presented via MHC class II,
peptide binding. The MHC-II is the critical component of
adaptive anti-tumor immunity, and its upregulation is closely
associated with increased levels of interferon-gamma in tumors
(Dubrot et al., 2014; Cook et al., 2021). During inflammation,
epithelial cells could act as accessory antigen-presenting cells along
with the expression of MHC-II (Ghasemi et al., 2020). Tumor-
specific MHC-II expression is associated with better prognosis,
T-cell infiltration, higher levels of Th1 cytokines, and sensitivity to
anti-PD-1 therapies (Johnson et al., 2020). Lu et al. (2017), used the
adoptive transfer of MHC-II-restricted tumor-reactive T cells in
patients with metastatic cancer (which contained patients with
osteosarcoma) and achieved different degrees of tumor regressions
in these patients. Coincidentally, the ssGSEA results indicated
lower levels of principal anti-tumor infiltrating immune cells in
the high PRS-score group, providing further evidence that these
genes may play a role in anti-tumor immunity. Studies have shown
that chimeric antigen receptor T-cell immunotherapy, a potent
option for drug-resistant tumors, has transformed the treatment of
drug-resistant hematologic malignancies yet remains largely
ineffective against solid tumors, which may be related to the
tumor immune microenvironment, the stromal barrier, and the
lack of surface tumor-specific targets (Titov et al., 2021). Therefore,
we used the ESTIMATE algorithm to examine the distribution of
immune scores, stromal scores, and tumor purity in osteosarcoma
patients in high and low PRS-score groups. We found that the low-
scoring group showed higher immune scores, ESTIMATE scores.
Consistent with these results, the high-scoring group had high
tumor purity. The PRS-score may help assess the immune
microenvironment features of patients and thus predict their

sensitivity to immunotherapy, which will help to guide
individualized anti-tumor treatment strategies. Finally, we
evaluated the differences in immune checkpoint expression
between the two subgroups to determine whether patients
would benefit from immune checkpoint inhibitor therapy.

In previous studies, several prognostic signatures have been
constructed from different perspectives to predict the prognosis
of oeosarcoma. Jiang et al. (2021) created a hypoxia gene-based
signature to predict the survival in childhood osteosarcoma.
Wang et al. developed a new classification system of
osteosarcoma based on immune features and identified
TYROBP as a key immune regulatory gene (Wang X. et al.,
2021). Qi et al. identified a prognostic signature of osteosarcoma
based on 14 autophagy-related genes that can guide clinical
decisions in treating osteosarcoma (Qi et al., 2021).
Nonetheless, no research has so far concentrated on PRGs-
related models, and the current study was designed to fill the
vacancy in PRGs-based models for predicting outcomes. Of
course, there are inevitably some limitations to this study.
Firstly, the verification cohort has a relatively small sample
size due to the inherent property of osteosarcoma. Secondly, it
lacks experimental work, and the molecular mechanisms of its
specific involvement still need further study.

In conclusion, we have developed a novel prognostic model
based on six pyroptosis-related genes through comprehensive
and systematic bioinformatics analysis, providing an essential
foundation for future studies of the association between
pyroptosis-related genes and immunity in osteosarcoma.
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