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Abstract
Introduction The COVID-19 restrictions have a lot of various peripheral negative and positive effects, like economic shocks 
and decreasing air pollution, respectively. Many studies showed NO2 reduction in most parts of the world.
Methods Iran and its land and maritime neighbors have about 7.4% of the world population and 6.3% and 5.8% of World 
COVID-19 cases and deaths, respectively. The air pollution indices of them such as  CH4 (Methane), CO_1 (CO),  H2O 
(Water), HCHO (Tropospheric Atmospheric Formaldehyde),  NO2 (Nitrogen oxides),  O3 (ozone),  SO2 (Sulfur Dioxide), 
UVAI_AAI [UV Aerosol Index (UVAI)/Absorbing Aerosol Index (AAI)] are studied from the First quarter of 2019 to the 
fourth quarter of 2021 with Copernicus Sentinel 5 Precursor (S5P) satellite data set from Google Earth Engine. The outliers 
are detected based on the depth functions. We use a two-sample t test, Wilcoxon test, and interval-wise testing for functional 
data to control the familywise error rate.
Result The adjusted p value comparison between Q2 of 2019 and Q2 of 2020 in  NO2 for almost all countries is statistically 
significant except Iraq, UAE, Bahrain, Qatar, and Kuwait. But, the CO and HCHO are not statistically significant in any 
country. Although  CH4,  O3, and UVAI_AAI are statistically significant for some countries. In the Q2 comparison for  NO2 
between 2020 and 2021, only Iran, Armenia, Turkey, UAE, and Saudi Arabia are statistically significant. However,  Ch4 is 
statistically significant for all countries except Azerbaijan.
Conclusions The comparison with and without adjusted p values declares the decreases in some air pollution in these 
countries.
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Introduction

The restrictions have been conducted by governments in 
many aspects of everyday life such as transportation, edu-
cation, etc. of citizens of many countries to control and stop 
the spreading of the COVID-19 pandemic since the first 
registered affected cases.(Hale et al. 2021) Therefore, the 
economic indices, income, savings, consumption and pov-
erty have experienced shocks. The unemployment rate has 
increased. The welfare indices have been affected. These 
are only some of the negative impacts of lockdown policies, 
shutdowns, and business interruptions. (Chetty et al. 2020; 

Martin et al. 2020; Couch et al. 2020; Fuchs-Schündeln et al. 
2022). On the other hand, one of its positive impacts on the 
environment is the air pollution reduction in most parts of 
the World. (Venter et al. 2020).

The decline and changes of  NO2,  PM2.5 and  PM10 have 
been observed in many countries from the first to the mid of 
Q2 of 2020 (15-May-2020) (Venter et al. 2020; Xing et al. 
2021; Bonardi et al. 2021) and most countries and regions 
have a lot of lock-down days in this period (Venter et al. 
2020): Pakistan (Mehmood et al. 2021a; Mehmood et al. 
2021b; Khan 2021; Aslam et al. 2021), Afghanistan and 
India (Mishra and Kulshrestha 2021; Gautam et al. 2021), 
Turkmenistan (Zhang 2021), Azerbaijan (Bonardi et al. 
2021), Armenia (Bonardi et al. 2021), Turkey (Ghasem-
pour et al. 2021; Dursun et al. 2022), Iraq (Hashim et al. 
2021; Hashim et al. 2021), Kazakhstan (Kerimray et al. 
2020), Bahrain (Benchrif et al. 2021; Qaid et al. 2022), 
Kuwait (Halos et al. 2021), Oman (Bonardi et al. 2021), 
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Qatar (Mahmoud et al. 2022), Saudi Arabia (Ghanim 2021; 
Habeebullah et al. 2022; Anil and Alagha 2021; Morsy et al. 
2021), UAE (Alqasemi et al. 2021; Teixidó et al. 2021; Ala-
lawi et al. 2022; Shanableh et al. 2022), Asia (Baniasad et al. 
2021) and Iran (Moazeni 2021; Broomandi et al. 2020; Kes-
htkar 2022; Norouzi and Asadi 2022).

These restrictions have also effect on the air pollution 
indices in the highest producer of greenhouse gas regions 
such as China in  PM2.5 and  NO2 (Chen et al. 2020; He et al. 
2020), the United States in  PM2.5 and  NO2 (Wu et al. 2020; 
Berman and Ebisu 2020) and Russia in a meteorological 
parameter that influence the air pollution indices (Shankar 
et al. 2021), Japan in NO,  NO2,  PM2.5, and SPM (Suspended 
Particulate Matter) (Azuma et al. 2020), Germany in  NO2, 
 PM2.5 and  PM10 (Copat et al. 2020), the UK in NOx about 
%50 reductions and increase in  O3 and  SO2 (Higham et al. 
2021), South Korea in  PM2.5,  PM10,  NO2, and CO (Ju et al. 
2021), Canada in  NO2, NOX and  O3 (Adams 2020) and five 
European countries including the United Kingdom, Spain, 
France, Sweden, and the Northern Italy in  NO2,  PM2.5 and 
 PM10 about 20–40% reduced (Skirienė and Stasiškienė 
2021).

In this research, we study the air pollution changes with 
the Google Earth Engine (GEE) and COPERNICUS satel-
lite for Iran and their maritime and land neighbors. In this 
regard, we provide descriptive statistics, a two sample t test, 
Wilcoxon test, and a Functional Data Analysis (FDA)-based 
test that control the familywise error rate in the comparisons 
(Pini and Vantini 2016, 2017). We also study the pattern of 
the air pollution indices with the powerful method called 
Functional Principal Component Analysis (FPCA). There 
are different algorithms to estimate FPCA and we choose 
the principal analysis through the conditional expectation 
(PACE) algorithm. The main reason is its ability to deal 
with sparse functional observations.(Gajardo et al. 2022; 
Yao et al. 2005).

Materials and methods

Data gathering and management

In this research, we consider Iran and its neighboring coun-
tries. Iran has land borders with Pakistan and Afghanistan 
in the East, Turkmenistan in North East, Azerbaijan, Arme-
nia, Turkey in the North West, and Iraq in the West. It has 
also maritime borders around the Caspian Sea in the north 
with Azerbaijan, Turkmenistan, Russia, and Kazakhstan, and 
around the Persian Gulf in the south with United Arab Emir-
ates (UAE), Bahrain, Saudi Arabia, Oman, Qatar, Kuwait, 
and Iraq. We use two data set sources: (1) daily statistics 
for COVID-19 cases and deaths (Dong et al. 2020) and (2) 

air quality indices from Google Earth Engine (GEE) as 
described below.

We query in the GEE all the above countries (the shape 
files of each country are obtained from ArcGIS online ESRI 
(https:// www. arcgis. com/ apps/ mapvi ewer/ index. html)) 
separately from 2018–01-01 to 2022–05-01(based on the 
data availability) and we download these air quality indi-
ces: (1)  CH4 (Averaged Dry Air Mixing Ratio of Methane), 
(2) CO_1 (Vertically integrated CO column density), (3) 
CO_2 (Water vapor column), (4) HCHO (Tropospheric 
Atmospheric Formaldehyde (HCHO) concentrations), (5) 
 NO2 (Nitrogen oxides), (6)  O3 (Ozone Concentrations), (7) 
SO2 (Sulfur Dioxide), (8) UVAI_AAI (UV Aerosol Index 
(UVAI)/Absorbing Aerosol Index (AAI)) and it measures 
the prevalence of aerosols (main types are desert dust, bio-
mass burning and volcanic ash plumes) in the atmosphere 
from COPERNICUS satellite and a weather condition index 
(9) Precipitation (Total Precipitation) from ECMWF satel-
lite. The SO2, HCHO, and  NO2 numbers product to 10,000 
in the analysis. (https:// earth engine. google. com/) (Supple-
mentary 1-Tables A.1 and A.2).

We exclude Russia in this analysis, because its neighbor-
hood with Iran proportion to its area is low and extracting a 
single index from a whole country is not representative of 
its aerial behavior near borders with Iran.

Statistical analysis

The statistical analysis has three parts: (1) comparing air 
pollution indices between countries with the parametric 
method, analysis of variance (ANOVA) and nonparametric 
method, Kruskal–Wallis Rank Sum test p values and we 
draw the boxplots of them to see its variability and distribu-
tions. We also compare the spatial distribution of  NO2, CH4 
and UVAI_AAI from GEE.

(2) Comparing air pollution indices group by countries 
with the parametric method two-sample t test and nonpara-
metric method two-sample Wilcoxon test in three different 
scenarios:(I) Q1 to Q4 between 2019 and 2020, (II) Q1 to 
Q4 between 2020 and 2021, and (III) Q1 to Q4 between 
2019, 2020, and 2021. The most lock-down days in all coun-
tries occurred from mid to the end of Q1 and first to the 
mid of Q2 of 2020. Therefore, comparing the Q1 and Q2 
between 2019, 2020 and 2021 estimate the statistical differ-
ence of lock-down effects on the air pollution indices. We 
also compare Q3 and Q4 of these years for the control group, 
because the lock-downs or restrictions are not very high in 
the Q3 and Q4 of 2020 and we assume they are normal days. 
The result is shown in the shiny app (: https:// moham madfa 
yaz. shiny apps. io/ Shiny_ Code/) that is available with this 
research article. (Supplementary 2) (Sievert 2020).

(3) Functional data analysis: we have noticed from pre-
vious steps that there are some outliers in the data set. On 

https://www.arcgis.com/apps/mapviewer/index.html
https://earthengine.google.com/
https://mohammadfayaz.shinyapps.io/Shiny_Code/
https://mohammadfayaz.shinyapps.io/Shiny_Code/
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the other hand, the data sets are time-series and we do not 
consider their underlying structure of them and the correla-
tions between points in the previous steps Therefore, first, 
we convert them to the functional data analysis (FDA), then 
outlier functional data are omitted. In this regard, we use a 
statistical method based on the depth of data (Cuesta-Alber-
tos and Nieto-Reyes 2008) (the depth of datum increased if 
it moved toward the center of the data cloud and it decreased 
vice versa.) with the fda.usc R packages (Febrero-Bande and 
Fuente 2012). In the last step, we conduct statistical compar-
isons between functional data in the step 2 in three scenarios. 
We use an intervalwise testing (IWT) procedure for testing 
FDA with four aims: (1) consider the functional structure 
of the data, (2) calculate the unadjusted and adjusted P val-
ues, (3) A non-parametric permutation tests, and (4) show 
the significant intervals of the domain. (Pini and Vantini 
2016, 2017) We use fda.test in R to do this analysis. (Pini 
et al. 2015) The results are presented in the heatmaps with 
pheatmap R packages. (Kolde and Kolde 2015) The weekday 
pattern of the air pollution indices group by quarter, year and 
country are calculated with FPCA (PACE algorithm) and 
fdapace package (Gajardo et al. 2022; Yao et al. 2005). With 
this algorithm, we can estimate the FPCA in the missing 
values and sparse observations of functional data situations.

Results

The Iran population is 83,183,741 by the census of 2019 
with 7,222,308 and 141,096 COVID-19 cases and deaths 
since 5/1/2022, respectively. Iran and its neighbors have 
about 7.4% of the world population and 6.3% and 5.8% of 
World COVID-19 cases and deaths, respectively. (Supple-
mentary 1—Table A.3).

The daily air pollution time-series indices group by Coun-
try showed that (1) all indices are not available for all coun-
tries and all-time spans, (2) there are some outliers, and (3) 
the patterns are not the same. (Supplementary 1—Figure 
A.1) And the differences between countries are statistically 
significant for all indices and their variability is different. 
(Supplementary 1—Table A.4, Figure A.2.1 to A.2.8) The 
data set is not very complete. Therefore, we aggregate it 
from daily to quarterly time series to decrease the noise.

The spatial distribution of UVAI_AAI showed some 
changes including decreases in some points in the Q1 and 
Q2 of 2020 against 2019 and 2021 (Fig. 1). The same pattern 
exists for spatial distribution of  NO2 and  CH4, respectively. 
(Supplementary 1—Figure A.3.1 and Figure A.3.2). The 
color range is started from white to yellow, orange and red 
for low to high values of the indices, respectively. In the grey 
regions, the data set is not available.

In the next analysis, we test these assumptions (#1: 
H0 ∶ �Q1_2019 = �Q1_2020 , #2: H0 ∶ �Q1_2020 = �Q1_2021 , #3: 

H0 ∶ �Q1_2019 = �
Q1_2020

= �Q1_2021  ,  # 4 : 
H0 ∶ �Q2_2019 = �Q2_2020 , #5: H0:�Q2_2020 = �Q2_2021 , #6: 
H0 ∶ �Q2_2019 = �

Q2_2020
= �Q2_2021  ,  # 7 : 

H0 ∶ �Q3_2019 = �Q3_2020 , #8: H0:�Q3_2020 = �Q3_2021 , #9: 
H0 ∶ �Q3_2019 = �

Q3_2020
= �Q3_2021  ,  # 1 0 : 

H0 ∶ �Q4_2019 = �Q4_2020 , #11: H0:�Q4_2020 = �Q4_2021  , 
#12: H0 ∶ �Q4_2019 = �

Q4_2020
= �Q4_2021 ) and the alternative 

hypothesis for all of them is that the means are not equal to 
each other.

The statistical comparisons between years of the air qual-
ity indices for all countries are presents in the shiny app and 
supplementary 2. The result and data show some outliers and 
some unexpected results for some countries. Therefore, we 
put this analysis in the supplementary for further analysis.

The result of the final analysis is presented. The outli-
ers are removed using FDA methods and statistical com-
parisons are done with IWT nonparametric method. The 
adjusted p values are plotted in the heat map (Fig. 2 and 
Supplementary 1—Figure A.4.1, A.4.2 and A.4.3). Accord-
ing to the Fig. 1.A, the comparison between Q2 of 2019 and 
Q2 of 2020 in  NO2 for almost all countries are statistically 
significant except Iraq (0.08), UAE (0.19), Bahrain (0.15), 
Qatar (0.70) and Kuwait (0.14). In the opposite side, the CO 
and HCHO are not statistically significant in any countries. 
Although  CH4,  O3 and UVAI_AAI are statistically signifi-
cant for some countries.

The Supplementary 1—Figure A.5.1 and Figure A.5.2 
showed an example for the outlier detection and IWT com-
parisons in Iran for two indices in Q2 of 2019 vs 2020, Q2 
of 2020 vs 2021 and Q2 of 2019 vs 2020 vs 2021. These 
methods are done for all indices and all countries, but they 
are not shown in the supplementary.

Supplementary 1—Fig. 2.A indicates that in comparison 
between Q2 of 2020 and Q2 of 2021 for  NO2, only Iran 
(0.06), Armenia (0.02), Turkey (0.04), UAE (0.02), and 
Saudi Arabia (0.02) are statistically significant. However, 
 CH4 is significant for all countries except Azerbaijan (0.10), 
the others are not available. The CO,  CO2 (except in Afghan-
istan (0.02)), HCHO,  O3, and  SO2 are not significant in any 
country.

Supplementary 1—Fig. 3.A indicates that the compari-
sons between Q2 of 3 years of 2019, 2020, and 2021 are all 
above 0.05, and the statistically significant pattern exists for 
almost countries in  NO2,  CH4, and UVAI_AAI.

With the same methods, the other comparisons for Q1, 
Q3 and Q4 are available in the figures A.4.1, A.4.2 and A.4.3 
in the supplementary 1.

According to the Supplementary 1—Figure A.4.1, the 
comparison of  NO2 in Q2 between 2019 and 2020 have some 
adjusted p values less than 0.05 and the other Q1, Q3 and 
Q4 do not have any p values less than 0.05. It indicates that 
the COVID-19 lock-down effects on the  NO2.
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The week-day pattern of air pollution indices reveals 
that (1) the most of the variations in any quarter of 2019, 
2020 and 2021 are captured with the first eigenfunctions. 
(FVE > 60%), (2) the eigenfunctions are different from each 
other yielding different patterns, and (3) the second eigen-
functions are also provide additional information about 
the remaining variations. All of them are provided in the 
Supplementary-3.

Conclusions

The WHO Public Health and Social Measures (PHSM) 
(Xing et  al. 2021) or Oxford COVID-19 Government 
Response Tracker (OxCGRT) including Stringency Index 
(SI) and Containment and Health Index (CHI) is calculated 
based on eleven metrics such as testing policy for wear face 
coverings, closures of public transport and other indices 

about lock-down in the world. The causal relation between 
air pollution reduction and these government response 
indices is well-studied in many countries (Liu et al. 2021). 
Especially, the mean and standard deviation of CHI for Iran 
and its neighbors and other countries are 55.40 (SD: 19.70) 
and 50.37 (SD: 19.97) from 0 to 100, respectively. There-
fore, the significant reduction in the  NO2 in this analysis 
can be inferred from these lockdowns. (Hale et al. 2021; 
Ritchie et al. xxxx) (Supplementary 1: Table A.5 for further 
analysis.)

We provide three-level analysis from descriptive, simple 
comparison tests, and functional data analysis-based tests 
that can control the familywise error rate (Pini and Van-
tini 2016, 2017) and remove the outliers based on the depth 
function (Febrero-Bande and Fuente 2012). The recent stud-
ies indicate that  NO2,  PM10,  PM2.5, and benzene in the urban 
territory of Chieti-Pescara (Central Italy) is changed due to 
the lock-down with an analysis of variance for functional 

Q1 Q2

2019

2020

2021

Fig. 1  Spatial distribution of UVAI_AAI group by year and Q of the year. (Colors: low to high is from white, yellow, orange and red)
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data (FANOVA) and it is based on the multivariate func-
tional principal component analysis. (Acal 2021).

The limitation of this research is that the air pollution 
indices are not adjusted due to the metrological condi-
tions such as temperature, wind, rain, etc. We also show 
that Precipitation as an important weather condition is 
not the same among countries and time (Rosenfeld et al. 
2007). In addition, the other limitation is about availability 

of statistics for COVID-19 in Turkmenistan (Yaylymova 
2020; Hashim et al. 2022). Finally, we conclude that the 
reduction of air pollution indices such as  NO2 is statisti-
cally significant with unadjusted and adjusted p values 
in this research. One of the direction of the future of this 
research is to develop statistical tests with considering the 
spatial information (Mateu et al. 2021).

(A) Q2 2019 vs Q2 2020 (B) Q2 2019 vs Q2 2020

(C)  Q2 2019 vs Q2 2020 vs Q2 2021

Fig. 2  Heatmap of (functional data analysis method) IWT p values for Q2
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Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40808- 022- 01528-x.
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