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Introduction: Treating severely injured patients requires numerous critical
decisions within short intervals in a highly complex situation. The
coordination of a trauma team in this setting has been shown to be
associated with multiple procedural errors, even of experienced care teams.
Machine learning (ML) is an approach that estimates outcomes based on
past experiences and data patterns using a computer-generated algorithm.
This systematic review aimed to summarize the existing literature on the
value of ML for the initial management of severely injured patients.
Methods: We conducted a systematic review of the literature with the goal of
finding all articles describing the use of ML systems in the context of acute
management of severely injured patients. MESH search of Pubmed/Medline
and Web of Science was conducted. Studies including fewer than 10 patients
were excluded. Studies were divided into the following main prediction
groups: (1) injury pattern, (2) hemorrhage/need for transfusion, (3)
emergency intervention, (4) ICU/length of hospital stay, and (5) mortality.
Results: Thirty-six articles met the inclusion criteria; among these were two
prospective and thirty-four retrospective case series. Publication dates
ranged from 2000 to 2020 and included 32 different first authors. A total of
18,586,929 patients were included in the prediction models. Mortality was
the most represented main prediction group (n= 19). ML models used were
artificial neural network ( n= 15), singular vector machine (n= 3), Bayesian
network (n= 7), random forest (n= 6), natural language processing (n= 2),
stacked ensemble classifier [SuperLearner (SL), n= 3], k-nearest neighbor
(n= 1), belief system (n= 1), and sequential minimal optimization (n= 2)
models. Thirty articles assessed results as positive, five showed moderate
results, and one article described negative results to their implementation of
the respective prediction model.
Conclusions: While the majority of articles show a generally positive result with
high accuracy and precision, there are several requirements that need to be
met to make the implementation of such models in daily clinical work
possible. Furthermore, experience in dealing with on-site implementation
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and more clinical trials are necessary before the implementation of ML techniques in
clinical care can become a reality.

KEYWORDS

trauma, polytrauma, decision support, machine learning, deep learning, artificial intelligence,

neural networks, prediction
Introduction

Time is considered one of the significant factors for

patient outcomes after major trauma. Depending on

injury severity, a rapid medical assessment, life-saving on-

site treatment, and transportation to an appropriate

trauma center are essential to improve survival rates.

Therefore, constant improvement in prehospital settings

in resuscitation, rapid transit, and adequate initial

treatment in hospitals have a substantial impact on

survival rates (1).

The introduction of standardized training and education

programs has improved the quality of care for severely injured

trauma patients—both in the preclinical field and in the

emergency trauma room. An example is Advanced Trauma

Life Support. Altogether, educational training and standards

have led to improvements in the factor of time and treatment

quality (2).

Although emergency care and surgical care improvement

led to a better outcome, up to 8.0% of all trauma patients’

death are considered preventable or potentially preventable

(3). Management errors arise because of time pressure,

inexperience, reliance on memory, multitasking,

information flow analysis, and failures in trauma team

coordination, particularly during the initial minutes of

patient reception and resuscitation in emergency rooms.

Even in established trauma centers with experienced trauma

care professionals, despite guidelines, protocols, and

continuous performance improvement, protocol compliance

was only 53% (4).

In the age of digitalization, connecting computer-generated

prompts through visual and auditory displays within the

resuscitation may enhance trauma care professionals’

interaction and reduce errors of omission and

miscommunication. In addition, the past decade led to the

excitement for the potential to apply deep-learning algorithms

to healthcare. This subtype of artificial intelligence (AI) has

the ability to improve the accuracy and speed of interpreting

large datasets, such as images, speech, and text (5). Machine

learning (ML) deals with the estimation of outcomes based on

past experiences and data patterns using a computer-

generated algorithm (6).

This systematic review aims to evaluate the existing

literature on how ML can change the decision support of

acute management in severely injured patients.
02
Materials and methods

Study design

A systematic review of the literature according to the

PRISMA (Preferred Reporting Items for Systematic Reviews

and Meta-analyses) checklist and algorithm was conducted,

with the goal of finding all articles describing the value of

machine learning systems in the context of acute management

of severely injured patients (7).
Study characteristics

Investigations between 2000 and January 2021 were

included. For analysis, prospective and retrospective

observational investigations including database studies were

considered.
Information source

The authors performed a systematic search of the PubMed/

Medline and Web of Science (Core Collection) databases for

eligible investigations.
Search

The search terms were (trauma) AND ((decision) OR

(predict*) OR (assist*)) AND ((artificial intelligence) OR

(neural network) OR (machine learning) OR (deep

learning)).
Study selection

The authors limited the research to observational studies,

while systematic reviews, meta-analyses, case series, and case

reports were excluded. Titles and abstracts were reviewed after

the removal of duplicates. The remaining full texts were

checked for suitability by all authors, and disagreement was

resolved by consensus. In cases of doubt, articles were

included in the next stage. A flowchart of the filtering stages

(titles, abstracts, full-length texts) is shown in Figure 1.
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FIGURE 1

Selection process for the systematic review - flow chart.

Baur et al. 10.3389/fsurg.2022.924810
Data items

Studies were selected according to the following inclusion

criteria: (a) case series, cohort studies, clinical trials, or registry

data studies regarding decision support by self-learning systems

for the acute management of adult civilian trauma patients, (b)

studies that used parameters available during initial assessment
Frontiers in Surgery 03
and resuscitation in the trauma bay, (c) studies that used at

least one physiologic parameter (e.g., heart rate), (d) models

that predicted patient-related outcome (e.g., mortality,

hemorrhage, need for emergency intervention), and (e) articles

published in English or German language.

Exclusion criteria are as follows: (a) case reports or case

series with fewer than 10 patients, (b) review articles, (c)
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animal studies, (d) cadaver studies, (e) studies including only

patients with isolated non-life-threatening injuries, (f) studies

including only patients with isolated traumatic brain injury,

(g) models relying on imaging data, and (h) studies that

predicted an effect that would become immanent after more

than 30 days (e.g., 1-year survival).
Synthesis of results

We extracted data concerning study characteristics

including author names, title, year of publication, journal of

publication, number of patients, time of follow-up, and type

of study. For the description of the study population, the

number of patients and age were collected. Outcome

parameters were analyzed according to the inclusion criteria

and were assigned to five predicted outcomes: (1) injury

pattern, (2) hemorrhage/need for transfusion, (3) emergency

intervention, (4) ICU/length of hospital stay, and (5) mortality.

For all included studies, we used the Oxford Centre for

Evidence-Based Medicine 2011 to define the level of evidence

(OCEBM Levels of Evidence Working Group 2011).
Results

Thirty-six articles met the inclusion criteria; among these

were 2 prospective and 34 retrospective case series. Publication

dates ranged from 2000 to 2020 and included 32 different first

authors. A total of 18,586,929 patients were included in the

prediction models. Machine learning models used were artificial

neural network (ANN; n = 15), singular vector machine (n = 3),

Bayesian network (n = 7), random forest (n = 6), natural

language processing (n = 2), stacked ensemble classifier (SL, n =

3), k-nearest neighbor (KNN, n = 1), belief system (n = 1), and

sequential minimal optimization (n = 2) models. Thirty articles

assessed results as positive, five showed moderate results, and

only one article described negative results to their

implementation of the prediction model (Table 1). The quality

of included articles showed OCEBM Levels of Evidence of 3,

correlating with the retrospective character of model training.
Predicting injury patterns

Over the past 20 years, various research groups have been

working with computer-assisted systems to partially automate

the analysis of patient data in the resuscitation room to assess

injury patterns. Depending on the study, prehospital and

hospital-acquired parameters were used for predicting

patients’ injury patterns.

In 2002, Ogunyemi et al. explored the possibility of using

probabilistic graphic models in combination with 3D
Frontiers in Surgery 04
reconstruction to analyze penetrating chest and abdominal trauma

with the aim of predicting outcomes based on the location of

penetration. The TraumaScan tool developed for this purpose used

a combination of the location of the entry wound and the patient’s

symptoms and parameters. The use of such software in the

treatment of penetrating injury is an effective tool to make the

treatment of injured people more time effective and safe (8).

Metzger et al. tested the possibility of using various artificial

intelligence (AI) algorithms to detect vascular injury based on

the initially collected patients’ parameters to aid in treatment

decisions and the identification of critical patients. For this

purpose, 2,643 patients were selected and parameters were

extracted. The parameters were tested for outcomes on

different classifiers and combinations of multiple classifiers.

The use of multiple classifiers deployed on these parameters

produced the best results (9).

The work of Gu et al. follows a new approach to classifying the

individual phases of a trauma resuscitation (pre-arrival, patient

arrival, primary survey, secondary survey, and postsecondary

survey) and uses the spoken words in the resuscitation room.

For this purpose, microphones were installed and the recorded

words were converted into individual path-finding phrases. This

was tested on 24 recorded trauma resuscitations and converted

into an algorithm by deep learning processes. Subsequently, this

process was performed on six recorded cases with a matching

accuracy of almost 80%. In summary, audio analysis during

resuscitation room management shows a novel implementation

of data collection and options for phase classification (10).

In the most recent study on classifying injury patterns in

polytrauma patients, Paydar et al. showed that early

classification of the injury pattern and decision-making

support are relevant when the patient prognosis is poor.

Using data from 1,107 trauma patients and using various

analytics algorithms, they aimed to investigate the benefits of

AI-aided decision-making for the treatment of polytrauma

patients. For this purpose, paraclinical and clinical data were

extracted. Diastolic blood pressure, GCS, and BE after

resuscitation crystallized as the most impactful parameters; the

outcome was predicted with high accuracy of 0.99 (11).

Kulshrestha et al. retrospectively evaluated data from 6,891

trauma patients and analyzed 450,000 corresponding

documents. Using natural language processing, ANN was

trained for automated analysis. The authors were able to show

that the implementation of natural language processing can

aid in the adequate classification of thoracic trauma (12).
Predicting hemorrhage/need for
transfusion

Walczak trained ANN for the prediction of the need for

blood transfusions (fresh frozen plasma, packed red blood

cells, and platelets) using data from 508 retrospective patients
frontiersin.org
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who were transferred to their trauma center between January

1996 and December 1997 using the back-propagation method

(13). The input variables for the ANN were easily accessible

patient characteristics obtained on admission to the ER, such

as sex, age, blood pressure, Glasgow coma scale, and so on.

Trauma patients with no transfusions but with similar

epidemiological data were added to the data set, which

resulted in a total of 1,016 data sets (training set with 538

patients and hold-out-sample with 478 patients). The main

finding was that the proposed ANN was able to predict blood

transfusions with a mean absolute error (MAE) of 7.02 units

for patients who received 0–174 units in total (all types of

transfusions within the first 24 h after admission), but the

ANN showed better MAE (5.49 units) for specific blood

transfusion types in shorter time periods (13).

Chen et al. introduced a classifier as a decision assist tool for

identifying hypovolemia in trauma patients being transported

from the scene via a helicopter when reliable vital parameters

are hard to assess (14). The working group used data from

898 trauma patients and included 627 subjects with 71 cases

of major bleeding. The ensemble classifier, which was fed with

five easily assessable vital parameters every second (RR, RR,

DBP, SBP, and SaO2) showed an area under the curve (AUC)

of almost 0.8 after 14 min of transport for the prediction of

life-threatening hemorrhage and was able to tolerate missing

variables better than linear classifiers (14).

In the comparison of standard stepwise logistic regression

analysis to new SL techniques, the SL showed a superior

prediction of mortality in this complex dynamic multivariate

data set at several time intervals.

Hodgman et al. utilized the PROMMT database in 2018 for

validation of a smartphone app model for predicting the

activation of mass transfusion protocol or MT delivery for five

different mass transfusion definitions: 10 units of packed red

blood cells (PRBCs) within 24 h (1), resuscitation intensity

score ≥4 (2), critical administration threshold (3), 4 units of

PRBCs within 4 h (4), and 6 units of PRBCs within 6 h (5).

Examining 1,245 patients, the smartphone app showed

consistent prediction for the need for MT, MTP activation,

and MT delivery with AUC ranging from 0.694 to 0.711

regardless of the MT definition (15).

Christie et al. assessed 1,494 severely injured patients with

2,397 variables in the time period from February 2005 to

April 2015 for several outcomes including the need for

transfusion and need for mass transfusion (>10 L in 24 h)

several times after trauma (2–120 h) (16).

SL technique was applied to the data sets, and early blood

transfusion was sufficiently predicted with an AUC of 0.82

and 0.84–0.88 for interval prediction throughout the first 72 h

after admission (16).

Recently, Bath et al. introduced the hemorrhage intensive

severity and survivability score (HISS) using five biomarkers:

glucose, lactate, pH, potassium, and oxygen tension. The
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working group created 100 sensible fictitious rationalized

patients (SFRPs) and let five trauma experts rate their HISS

score for triage (0 = low, 1 = guarded, 2 = elevated, 3 = high,

4 = severe). Afterward, linear support vector machine,

ensemble bagged decision tree, ANN with Bayesian

regularization algorithm, and possibility rule-based using

function approximation (PRBF) were evaluated for their

ability to accurately classify the 100 entries of the SFRP data

set with an identified adequate training set of 75, and it was

felt that these classification algorithms can be used as an

adjunct to the HISS due to an accuracy higher than 91% in

the clinical setting (17).
Predicting the need for emergency
intervention

One of the earlier publications covering the use of an AI-

based technology was a study by Clarke et al. with the

TraumAID computer program in 2002. Here, a retrospective

analysis of 97 cases showed a significantly higher evaluation

of three raters for TraumAID’s protocols over actual care in

64 cases. TraumaAID was used by residents in 40 cases in the

emergency department, and in 5 of these, this resulted in a

change of evaluation, diagnosis, or treatment, while none of

these changes was judged to be an error by the majority of

the raters (18).

In the same year, Hirshberg et al. reported on the creation of

an ANN (ANN) for the prediction of damage control operations

in patients with a single abdominal gunshot injury. After

training the ANN on data of 312 patients, the authors tested

it on 34 cases. A sensitivity of 88% and a specificity of 96%

were achieved. Variables like systolic pressure, bullet path, or

trajectory were determined as strong inputs (19).

Prediction of performing a damage control laparotomy in

trauma patients was also the focus of a study by Harvin et al.

2019. In a single center, a quality improvement intervention

had been introduced in advance, successfully reducing the rate

of damage control laparotomies (DCLs) without increasing

morbidity or mortality. A random forest computer learning

algorithm, based upon decorrelated decision trees for

prediction, was used to analyze 72 variables for their

predictive value for a DCL, identifying some significant

correlations. The authors concluded that ML could be used to

point out the effects of interventions on surgeons’ decision-

making (20).

Wolfe et al. created three prediction models for outcomes

following nonpenetrating trauma using a data set of 4,014

patients, of which a first subgroup was used for training the

model and a second one for external validation. Models based

on data from the scene of injury were developed for an

intensive care unit (ICU) stay (complete data sets 1,324; 33%)

or later death (complete data sets: 2,059; 51.3%). Statistical
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models used were logistic regression, classification trees, and

ANN. None of the models was seen as optimal and met the

self-given performance criteria, therefore being the only article

in this systematic review showing negative results (21).

Liu et al. published two papers in 2014. In the first one, they

described the development and validation of a multiparameter ML

algorithm for predicting the need for life-saving interventions in

trauma patients. All patients sustained severe blunt and

penetrating injuries and were transported to two Level I trauma

centers by helicopter. The authors used 79 patient records with

over 110,000 feature sets to train the system and applied the

trained network to data from 104 patients. The algorithm

showed positive results for the prediction of trauma patients

needing live-saving interventions (22).

In another paper from the same year, Liu et al. analyzed the

data of 104 patients extracting a combination of vital signs,

heart rate complexity, and others, again applying ML tools to

identify the need for life-saving interventions. They showed

that an ML model has superior performance over multivariate

logistic regression models (23).
Predicting admission to ICU/length of
hospital stay

For healthcare providers, the assessment of valences in

intensive care units and their distribution at any given point

in time is essential. In 2015, Gholipour et al. used trauma and

injury severity score (TRISS) variables to train a feed-forward

propagating ANN to predict the length of stay in the ICU

and mortality. For this purpose, data from 95 trauma patients

admitted to the emergency room were retrospectively used to

train an ANN and tested on 30 other cases.

Overall, the results were good, with a sensitivity of 75% and

a specificity of 96% for the survival of trauma patients and no

significant difference in the ICU length of stay prediction and

real length of stay (24).
Predicting mortality

In 19 studies, mortality was the most common prediction in

this review. A total of 17,972,347 patients were included overall.

In total, 13 different ML algorithms and models were

considered, showing positive results for 18 of 19 studies.

Models based on ANNs were most prevalent in this review,

with the adaption of this architecture in 16 papers (84% of

mortality predicting articles).

Ahmed et al. identified 3,041 trauma patients admitted to

their trauma surgery ICU. Univariate and multivariate

analyses on mortality were performed, and ANN and other

ML models were deployed on the extracted data. With an

accuracy of 92.3% and sensitivity of 79.1%, the ANN-based
Frontiers in Surgery 11
deep-FLAIM model outperformed other tested methods (25).

Almagrabi et al. used the TARN database to access

retrospective vital sign data from 177,014 patients to predict

mortality, testing different ML models. With AUC values of

0.6882, 0.6829, and 0.678, respectively, logistic regression,

interpretable ML, and ANN were the best classifiers tested (26).

An earlier study by DiRusso et al. compared established

mortality predictors, namely, TRISS and Injury Severity Score

(ISS), with a feed-forward backpropagation neural network,

showing its superiority with a receiver under the operating

curve (ROC) of 0.912 for the ANN and 0.895 and 0.766 for

TRISS and ISS, respectively. Including 10,609 patients admitted

to 24 hospitals in a seven-county region, this multicenter study

confirms the previous work of the research group (27). A 2005

study from Fuller et al. also compared TRISS predictions with

ANN including 2,510 patients from the CAMC Trauma

registry. Using ISS and six other inputs, the ANN

outperformed TRISS predictions with a relative error of 5%

compared to 28%. Unfortunately, no AUC, ROC, accuracy, or

sensitivity were calculated in this study (28). A more recent

study from 2015 by Gholipour et al. used input variables of

TRISS on 125 patients to predict mortality and length of stay,

showing satisfactory results with a sensitivity and specificity of

75% and 97%, respectively, for the prediction of mortality by

ANN. Comparing the results to TRISS, the sensitivity and

specificity of TRISS showed better results with 81% and 95%,

respectively (24). In 2019, Gorczyca et al. were able to achieve

excellent classification rates for mortality prediction, comparing

a state-of-the-art ANN to several other prediction models

including Bayesian networks, ISS, and others (29). Hubbard

et al. used SL to predict mortality and the need for transfusion

within discrete time intervals (30–90, 90–180, and 180–

360 min) in patients meeting the criteria for highest-level

trauma activation in 10 major Level I hospitals. SL

outperformed the standard methods for predicting future

mortality, with the greatest difference being the prediction of

death at the 180–360 min interval (AUC SL 0.92 vs. 0.55 for

standard methods) and a 5% increase compared to logistic

regression models in prediction performance (30). Kim et al.

extracted 460.865 cases of blunt and penetrating trauma from

the National Trauma Data Bank (NTDB) and assessed the

implementation of a consciousness index as well as ML

algorithms to predict mortality. With an AUC of 0.89, the deep

neural network showed the best results in predicting mortality.

The used input variables were chosen as though they were

collected by wearable patient devices, showcasing the feasibility

of such devices (31).

Pearl et al. published two studies in 2006 and 2008 using

ANNs with eight and five parameters, respectively, for the

prediction of mortality for clinicians and nonclinicians [32]. In

both studies, the NTDB data were used, including 1,433,024

patients in 2006 and 7,688 patients in 2008. Pearl et al. could

show that ANNs predicted mortality with prehospital variables
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well, with a correct prediction of 91% in 2006, but could not show

improvement when excluding pulse and other input variables in

2008 for nonclinician use of ANNs (33).

In a recent study by Rau et al., the authors compared

mortality prediction for 18,811 patients using TRISS, ANN

(neural network configured via the Stuttgart neural network

simulator), support vector machine, and logistic regression.

Results showed high accuracy for all four models but the

highest specificity (51.5%) for ANN (34). Another retrospective

analysis by Roveda et al. included 20,207 patients from the

CRASH (Clinical Randomisation of an Antifibrinolytic in

Significant Haemorrhage) database to predict mortality, as well

as ICU stay and need for surgical intervention. All tested

models (logistic regression, Bayesian network, random forest,

ANN) showed similar results, concluding that a combination of

the above-mentioned models could enhance the performance of

predictive power (35).

Schetinin et al. used Bayesian averaging over decision trees

to predict the mortality of NTDB data by considering 571,148

cases, comparing results with TRISS estimates, and concluding

that the goodness of fit was superior to the TRISS method

(36). A study from 2017 by Sefrioui et al. compared different

ML approaches to the NTDB database, characterizing every

patient (n = 656.092) by 17 features, including GCS, vital

signs, and other parameters, with TRISS prediction. In their

testing, the random forest approach showed the most

promising results (ACC 0.9774) compared to TRISS and other

ML models in the prediction of patient mortality (37). A

recent study from Servia et al. used data from the National

Trauma Registry of 52 Spanish ICUs to test the predictive

capabilities for mortality on nine ML-based classifiers on data

from 9,790 critically injured patients, showing a high

correlation of mortality in patients with traumatic brain injury

and organic failure. Even though all tested classifiers were able

to produce a high accuracy, specificity, and AUC, low values

for recall were obtained. Servia et al. discussed that since

comparable results in accuracy and sensitivity could be

achieved by all nine classifiers, one should rather choose ML

techniques by their architecture and fit to a specific task than

by the determination of statistical superiority only (38).
Discussion

Decision-making in the acute management of severely

injured patients has to be based on reliable and accurate

statements and predictions.

In the past, experience-based algorithms like TRISS have

shown weaknesses in clinical use. Data-driven ML tools show

great potential as a new approach to problems of this nature.

In this systematic review, we could show that ML tools are

generally more accurate and sensitive when compared to

existing tools for decision-making in acute trauma
Frontiers in Surgery 12
management like GCS, ISS, and TRISS. Only one of eight

studies that compared prediction performance showed TRISS

superior when compared to the tested ML mechanisms.

Mortality was the most frequently predicted outcome

parameter in our review (n = 19). We included this outcome

even though the use of decision aid for predicting mortality is

discussable. Using vital signs and BGA parameters, mortality

can be predicted with higher accuracy and sensitivity

compared to methods in clinical use right now. Different

models, more recently ANNs, can solve the task of

determining the mortality risk of a patient in the resuscitation

bay, but the implementation of these tools assumes digitalized

parameters of patients’ vital signs, lab parameters, and

demographics at the time of hospitalization. Furthermore,

interfaces need to be in place to make these predictions

possible and actually aid in the acute management of trauma

patients. We hypothesize that these are limitations to the

broad implementation of these tools. Clinical validation of

such tools also mandates standardization of evaluation

parameters of ML models fit for clinical use. The benefit of

mortality prediction in the acute setting of a resuscitation

room remains unclear. However, if an implementation can aid

in acute management and the above-mentioned limitations

are addressed, we consider ML tools as a promising

development. Would we do less if a patient had a 70%

probability of 48 h-survival?

Because of the broad range of different trauma mechanisms,

injury pattern prediction showed a heterogeneous field of

studies that all predicted specific outcomes with different ML

models. The complexity of the prediction makes it hard to

generalize injury patterns of trauma patients in one ML

model so far. Another field with similar limitations was the

prediction of emergency interventions. One paper was able to

predict the need for DCL with high sensitivity and specificity,

but the often complex indication of different emergency or

damage control interventions makes predictions on a general

scale complicated. Further developments are needed to make

ML models implementable for these tasks.

Also, hemorrhage and the subsequent need for transfusion

can be predicted by different ML models; recent publications

especially show high accuracy in these predictions. If the

implementation of live evaluation of vital signs and BGA

parameters is widely available, ML-powered decision support

for transfusion protocols seems likely to be implemented in

the near future. Only one article set the prediction of ICU

length of stay as the main outcome of ANN implementation

and was able to show that the prediction made by the

network did not significantly differ from the real length of

stay after training on 95 cases. However, due to the small

number of cases and lack of comparable studies, we cannot

assess the validity of these findings yet.

Specific problems cannot always be answered best by one

ML model or approach. To evaluate models only on their
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differences in accuracy or sensitivity does not always reflect their

implementation ability, especially in a clinical environment,

with the need for clinical evaluation and standardization.

ANNs show a wide range of implementation possibilities for

the future but are very sparsely implemented in the clinical

routine so far. To our knowledge, none of the shown ML

tools in the included studies seem to be in actual clinical use

in the version described in the respective articles. One reason

is the need for big data to train these ML tools, reflected by

the large number of studies in this systematic review (10 of

36) training and testing their models on data from national or

international registries or databases. Unfortunately, data

generation in such databases can be incomplete at times and

are not standardized internationally. Subsequently, there will

be a call for access to well-structured and complete datasets

for trauma patients in the future, which we hope will enable

the training of generalized ML and ANN models.
Conclusion

Digitalization and general computing and technical

capabilities of healthcare providers are the basis on which

implementation of ML models into the clinical routine can be

made possible. While the benefits of these ML tools, especially

ANNs for prediction in different fields (image segmentation,

image processing) are undeniable, several requirements

concerning live availability of data, better and more accessible

big data sets on trauma patients, technical requirements on

site, and insurance of patient data security need to be met

before the implementation of ML techniques, and especially

ANNs can become a widely implemented reality in the acute

management of trauma patients.
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