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ABSTRACT

Multiple sources of variability can bias ChIP-seq data
toward inferring transcription factor (TF) binding pro-
files. As ChIP-seq datasets increase in public repos-
itories, it is now possible and necessary to account
for complex sources of variability in ChIP-seq data
analysis. We find that two types of variability, the
batch effects by sequencing laboratories and differ-
ences between biological replicates, not associated
with changes in condition or state, vary across ge-
nomic sites. This implies that observed differences
between samples from different conditions or states,
such as cell-type, must be assessed statistically, with
an understanding of the distribution of obscuring
noise. We present a statistical approach that charac-
terizes both differences of interests and these source
of variability through the parameters of a mixed ef-
fects model. We demonstrate the utility of our ap-
proach on a CTCF binding dataset composed of 211
samples representing 90 different cell-types mea-
sured across three different laboratories. The results
revealed that sites exhibiting large variability were
associated with sequence characteristics such as
GC-content and low complexity. Finally, we identified
TFs associated with high-variance CTCF sites using
TF motifs documented in public databases, pointing
the possibility of these being false positives if the
sources of variability are not properly accounted for.

INTRODUCTION

Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) has become a routine technique used to mea-
sure genome-wide epigenomic events such as transcription
factor (TF) binding on DNA (1). However, due to non-
specificity of the experimental protocol and other unwanted
source of variability, distinguishing signals of interest from
obscuring variability is critical toward accurately inferring

the genomic locations of protein–DNA binding. Several ge-
nomic characteristics have been previously described to af-
fect ChIP-seq measurements, including chromatin structure
and GC content in a sample-specific manner (2–5). Cur-
rent peak callers, the main ChIP-seq data processing tools
used to detect protein binding locations, account for these
effect separately for each sample (6). This is accomplished
by modeling the effects, referred to as background or con-
trol signals (4,7–11). However, we find that individual ChIP-
seq experiments provide limited power to fully describe all
sources of variability, including batch effects. Recently, large
consortia, such as the ENCODE project (12), have gener-
ated and made publicly available large numbers of ChIP-seq
datasets across numerous human cell states and conditions
(13). These datasets permit multi-sample analyses and bring
into view other important source of unwanted variability.

We identified two main types of variability that if not
accounted for can lead to false discoveries: batch effects
and site-specific variability observed within biological repli-
cates. These have been previously described for other high-
throughput assays (14–18). Possible reasons for observing
batch effects are the use of different experimental protocols
by different laboratories and changes made to the assays by
the manufacturer (2,4). We refer to these as experimental
effects. Possible reasons for observing within-replicate site-
specific variation include differences in chromatin structure,
protein co-regulators and sequence characteristics such as
GC-content (2–5). We refer to this as local chromatin re-
lated biological variability or, when there is no ambiguity,
chromatin variability. Note that we have previously demon-
strated that batch effects in ChIP-seq can be partially ex-
plained by GC-content biases (4). Here we describe sources
of variability that are not fully explained with deterministic
quantities such as GC-content.

Lacking the availability of predetermined deterministic
covariates, such as the regions GC-content, we model the
experimental and chromatin sources of variabilities with
random effects rather than fixed effects to represent the
variability induced by multiple factors. Specifically, we pose
a mixed-effect hierarchical model with fixed effects used
to model known conditions or states of interests, such as
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cell-type. We can leverage large ChIP-seq datasets to fit
the model. Here, we demonstrate the usefulness of our ap-
proach by fitting our model to 211 CTCF ChIP-seq sam-
ples from 90 different cell-types measured across three lab-
oratories obtained from the ENCODE project (12,13). We
demonstrate that the experimental and chromatin variabil-
ity is site-specific, that the DNA sequence composition of
the CTCF binding sites drives both experimental and chro-
matin variability, with different sequence compositions af-
fecting these two differently. This divergence of sequence
composition underscores the critical role of protein co-
regulators play in contributing to ChIP-seq variability by
binding to specific sequence motifs co-localized with CTCF
binding sites.

MATERIALS AND METHODS

Data acquisition and preprocessing

Human CTCF ChIP-seq data generated by the first pro-
duction phase of ENCODE project (12) was downloaded
from the UCSC data portal (https://genome.ucsc.edu/
ENCODE/). Data from three production centers, compris-
ing 94% of CTCF ChIP-seq by phase one ENCODE, were
selected for downstream analysis. These centers are labo-
ratories located at the Broad Institute (Broad), University
of Texas at Austin (UTA) and University of Washington
(UW). ChIP-seq reads were first aligned to human reference
genome hg19 using Bowtie2 (19) with parameters ‘-k 1 -N
0’. Samples were removed if <1 million reads were found
in the putative CTCF binding sites, resulting 211 ChIP-
seq samples for downstream analysis. Here, CTCF binding
sites were download from ENCODE encyclopedia (https:
//www.encodeproject.org/data/annotations/v2/). Only auto-
somal binding sites were considered to minimize sex biases.
Sequencing reads were counted for binding sites using fea-
tureCounts (20) with read length extended to 150 bp and
minimum read mapping quality set as 10. ChIP-seq read
counts were then logarithmically transformed and quantile
normalized using voom (21). In addition, INPUT data were
downloaded for the small datasets involving nine cells from
three laboratories.

Mixed-effect hierarchical model

Three levels of effects were considered in the model, includ-
ing fixed effect for cell conditions and random effects for the
experimental and chromatin variability. ChIP-seq signal Y
for potential binding events thus was modeled as:

Ysi jk = αsi + βs j + γsk + δsi jk

where s, i, j, k indicate binding sites/locations, cell types, lab-
oratories and technical replicates, respectively. Here the αsi
are fixed effect for cell types indexed by i at location indexed
by s, the βsj are a normally distributed random effects for
laboratory indexed by j at locations indexed by s with stan-
dard deviation �, γ sk are normally distributed random ef-
fects for biological replicates indexed by k for binding site in-
dexed by s with standard deviation � , and δ is measurement
error with standard deviation ε. Here, � and � represented
the experimental and chromatin variability, respectively.

Read counts in high-throughput sequencing data tend to
follow over-dispersed Poisson distributions, with varied dis-
persion along expected read count (7). In order to consider
variabilities between binding sites with small and large read
counts equally, voom normalized ChIP-seq signals were se-
lected to fit the mixed-effect model (21). Here, two compo-
nents of the voom were considered: the logarithm values of
ChIP-seq signal and their respective weights characterizing
its statistical confidence. For each binding site, effects were
estimated by weighted mixed-effects linear regression using
blmer function in R package blme (22). Standard deviation
of two random effect variables were extracted as the esti-
mated variabilities. It is noted that chromatin variabilities
were approximated as the sum of site-specific effects and
random error here.

PWM score calculation

To assess the association between estimated standard devia-
tions and binding site genuineness, we scanned CTCF motif
enrichment in all analyzed CTCF binding sites. Specifically,
we used the human CTCF motif from the JASPAR 2018
database (23) to define a position weight matrix (PWM)
score sequence of the same size as the motif (24). We as-
signed a PWM score to each binding site by selecting the
maximum PWM within the region that includes the bind-
ing site and its flanking 150 bp regions at both sides.

GC content calculation

GC content for narrow CTCF binding sites, ∼150 bp, was
calculated with a robust strategy as we described previously
(4). In brief, to accommodate the sequencing reads that were
partially located inside binding sites, GC content of 150 bp
flanking regions were taken into consideration during the
estimation of GC content for CTCF binding sites using a
weighted approach.

4-mer motif frequency

All possible 4-mers were first generated not including com-
plementary 4-mers. Their proportional frequencies within
each CTCF binding site were then calculated by counting
their appearances based on 4 bp sliding windows. Propor-
tional frequencies were averaged across binding sites as the
4-mer frequencies for a given group, e.g. binding sites with
high GC content and high chromatin variability. 4-mer mo-
tif enrichment was estimated by comparing their frequen-
cies between high and low variability sites, with a difference
deviated from three standard deviations from the mean dif-
ference identified as significant.

Canonical motif enrichment using publicly documented TF-
BSs

We first applied DREME motif discovery (25) to identify
de novo motifs (Figure 5) enriched in high variability sites
(top 5%) compared to the control sites (the remaining 95%)
for each site group. Enriched motifs (DREME E-value <
0.001, Motif width >= 5 bp) were further compared with
known transcription factor binding motifs documented in
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public databases (JASPAR (23) and UniPROBE (26)) using
Tomtom (27), in order to identify TFs associated with high
ChIP-seq variabilities.

RESULTS

CTCF dataset

We collected a large set of CTCF binding ChIP-seq data
for an insulator (28) that was analyzed in detail by the EN-
CODE project. This dataset was composed of 211 samples,
the most of any transcription factors studied by ENCODE.
It spanned 90 human cell types and three experimental lab-
oratories. QC control, filtering, pre-processing and normal-
ization were applied (see Materials and Methods section).
To avoid the variability introduced by peak calling algo-
rithms, we focused our analysis on CTCF 284 712 putative
binding sites (Materials and Methods section) previously
assembled by the ENCODE project (29). On average these
sites were 150 base pair long.

Using exploratory data analysis, we identified regions as-
sociates with cell-type, laboratory and within-biological-
replicate variability (Figure 1). These regions clearly
demonstrate how not accounting for obscuring variation
can lead to false positives. Sites that showed only strong
cell-type effects exhibited a bimodal distribution across the
cell-types, consistent with signals between associated with
binding (on) and non-binding (off) events (Figure 1A and
B). For a given site, all on-event samples showed compara-
ble high signals while off-event samples held similar low sig-
nals. We saw this for both regions that were mostly on (Fig-
ure 1A) and cell-specific (Figure 1B). In contrast, sites that
were strongly associated with the laboratory in which they
were processed (Figure 1C and D) had a more continuous
distribution, indicating potential batch-related variability
induced by differences in experimental settings. Figure 1G
highlighted such variability in confounding with cell type
differences. Sites exhibiting strong unidentified biological
variability (Figure 1E and F) also exhibited more of a con-
tinuous distribution, consistent with this being induced by
differences in chromatin properties that span a wide range
rather than discrete states. Figure 1H highlighted such vari-
ability across different replicates in different laboratories for
two cell types.

Mixed-effect hierarchical model accounts for all source of
variability

We fitted a random effects model with the cell-type ef-
fects represented with fixed effects and the experimental and
chromatin variability represented with random effects. In
this model, we accounted for the different levels of variabil-
ity with site-specific standard deviations for each of the two
types of effects. To fit this model, we used a weighted regres-
sion approach to account for different levels of variability
for low and high signals (Materials and Methods section).

We fit this model to two datasets: the full QC-controlled
211 samples (Materials and Methods section) with imbal-
anced samples across different laboratories, and a balanced
subset of 50 samples spanning 9 cell conditions and 3 lab-
oratories. Most cell types were only profiled by one labo-
ratory in the full dataset (imbalanced) while nearly all cell

types were profiles by all laboratories in the smaller subset
(balanced). Similar standard errors were estimated with the
two datasets (Pearson correlation at 0.97 and 0.91 for ex-
perimental and chromatin variabilities, respectively), indi-
cating the robustness of our proposed model and that we
could use the balanced smaller subset to obtain precise es-
timates (Supplementary Figure S1A and B). If not further
referred, the results presented in the rest of the paper are for
the results of the balanced smaller subset.

The range of estimated standard errors for experimental
variability were higher than that for chromatin variability
(Supplementary Figure S1C). This indicates that batch ef-
fects were the dominant source of variability for a signifi-
cant portion of binding sites, which is consistent with previ-
ous publications reporting on ChIP-seq and other sequenc-
ing techniques (4,16,30).

To demonstrate the utility of the mixed-effect model fit
for separating signal from noise, we applied hierarchical
clustering to the CTCF binding signals with high signal to
noise ratios. Specifically, we filtered the top 500 CTCF bind-
ing sites ranked by the statistical significance of their across-
cell-type variability and applied clustering to only those
sites. This resulted in groups of samples with well recognized
cell identities (Figure 2A). In contrast, when we applied
the same clustering algorithm but after filtered to the top
500 sites based on their experimental variability ability, we
clearly distinguished samples from the different labs (Figure
2B). As expected, if we filtered by sites with high chromatin
variability but low for the other two sources of variability, it
did not result in grouping of any obvious meaning (Figure
2C). In summary, we identified 57% of binding sites show
high (upper quartile) cell effects, experimental variability or
chromatin variability, among which 11%, 10% and 8% are
dominated by only one effect (identified as lower half in the
other two effects), respectively.

Variability summaries can detect false positives

To further assess our model’s performance on all putative
CTCF binding sites, we examined if the estimated variabil-
ity summaries were informative in detecting false positive
binding sites. We evaluated the enrichment of canonical
CTCF motifs (23,31) on all CTCF binding sites using posi-
tion weight matrix (PWM) score (32) (Materials and Meth-
ods section). Both experimental and chromatin variability
estimates were found to be negatively associated with the
PWM score across all binding sites, indicating that sites with
high variance are more likely to be false positive detection
of binding sites (Figure 3A and B). Specifically, while exper-
imental variability showed a decreasing monotonic trend
with PWM score (Pearson correlation -0.19), a bimodal dis-
tribution was observed for chromatin variability with the
low variance cluster presenting relatively high PWM score.
The bimodal feature implied that chromatin variability is
sounded in protein binding sites regardless with high or low
confidence, suggesting it as an intrinsic property of ChIP-
seq data. It is also worth noting that, overall, general chro-
matin variability was higher than experimental variability
for the majority of binding sites (Figure 3), although the
range of latter is larger than the former (Supplementary
Figure S1C). These together suggest that experimental dis-
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Figure 1. Illustrative CTCF binding sites demonstrating different types of variability in ChIP-seq signals. (A and B) Two CTCF binding sites showing
strong cell-type effects. (C and D) Two sites showing strong batch effects associated to laboratories. (E and F) Two sites presenting high withing replicate
variability across all cell-types. Cell types corresponding to each column of plotted dots are listed in the same order at the bottom. The same cell types
under different library preparation or treatment protocols are labeled as different cell names with an abbreviation suffix of the protocols/treatments. Dot
colors represent samples from different laboratories. Dashed lines at different styles represent the normalized ChIP-seq signals at 25, 50 and 75 percentiles.
(G and H) ChIP-seq pileup signals of two example regions in (C and E) for selected cells. Signals of 800 bp centering the binding sites are shown. In each
figure, replicates from the same laboratories are in the same colors.

Figure 2. Heatmap of ChIP-seq signals based on CTCF binding sites filtered by high level of the three different types of variability. (A) Heatmap of sites
with strongest cell-type effects but low variabilities (lower quartile). (B) Heatmap of sites with strongest experimental variability but low cell effects and
chromatin variability. (C) Heatmap of sites with high levels of chromatin but low cell effects. Each heatmap contains 500 sites (rows) and 50 samples
(columns). Colored bars at the top of heatmaps represent different laboratories and cell types.
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Figure 3. Variabilities associated to CTCF motif enrichment and GC-content bias. Both experimental variability (A and C) and chromatin variability (B
and D) are showed. Pearson correlations with CTCF motif enrichment are labeled at the top left in (A and B). Different GC-content levels are highlighted
with dotted squares in (C and D).

crepancies acted as local events instead of global by affect-
ing a selected portion of binding sites when introducing
ChIP-seq variability.

It is noted that the analysis above is based on CTCF bind-
ing sites annotated during phase 2 of ENCODE project.
ENCODE has been improving their data processing pro-
tocol constantly to create more reliable annotations. For
instance, their up-to-date annotation (v4 1.5.1) has incor-
porated IDR approach (33) to control reproducibility be-
tween sample replicates. We found that IDR analysis could
decrease false positive detection of CTCF binding sites es-
pecially when chromatin variability is high (Supplementary
Figure S2). In brief, we performed the same analysis with
IDR-controlled sites as we did for all CTCF binding sites
before. We compared the distributions of the estimated vari-
abilities and found IDR-controlled sites resulted in a lower
frequency of high chromatin variability. We didn’t observe
significant improvement in terms of accounting for experi-
mental variability. This is expected as IDR analysis doesn’t
intend to control cross-sample/cell variance such as batch
effects.

Variabilities enhanced by GC-content biases

We have previously reported that GC-content introduces
significant bias in ChIP-seq signals (4). To understand the
roles GC-content plays in the variability described here, we
compared the estimated standard deviations to the GC-
content of each CTCF binding sites (Figure 3C and D).
Here, GC-content was calculated using a robust approach
to ease the boundary effects of narrow CTCF binding sites
(Materials and Methods section). Higher variability was
observed on binding sites with extreme high or low GC-
content. Such GC-content biases were statistically signif-
icant (P < 10∧(-16)) for both types of variabilities when
compared to medium GC binding sites, while inflated effects
were observed at some sites with high experimental variabil-
ity (Figure 3C and D). It has been hypothesized that GC-
content bias is introduced mainly by PCR-amplification
during sequencing library preparation (34,35). However,
our analysis suggests that in addition to that, other fac-
tors, such as local chromatin characteristics could also con-
tribute to GC-content biases, underlining the interplay be-
tween local sequence composition and ChIP-seq variability.
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Figure 4. 4-mer enrichment in CTCF binding with high variabilities. Enriched 4-mers (bars deviated from Mean – 3*SD of overall difference, the dotted
lines) were labeled with their names next to the plots. Subfigures are ordered by GC-content levels (high: A and B; medium: C and D; low: E and F) and
variability type (experimental: A, C and E; chromatin: B, D and F). Names of the 4-mers corresponding to plotted bars are listed in the same order at the
bottom.

Low sequence complexity is associated with high variability

Because GC-content bias is confounded with the estimated
ChIP-seq variability, we stratified the CTCF binding sites
into three GC-content groups for downstream analysis. Su-
perficially we divided the sites into groups with 0.25-0.4, 0.4-
0.7 and 0.7-0.85 GC proportions, respectively (Figure 3C
and D). We further explored the roles of genomic sequence
composition in ChIP-seq variability by comparing high to
low variability sites in each group.

We defined high variability sites as the top 5% in each
GC-content group, and compared them with the remaining
95% of low variability sites (control). The 5% threshold was
chosen to reflect a clear increase among each binding site
group (Supplementary Figure S3). We counted the frequen-
cies of all 4-mers for CTCF binding sites and calculated the
differences of the average 4-mer frequencies between high
and low variability sites (Materials and Methods section).
Several 4-mers showed strong enrichment in high variability
sites, suggesting their roles in increasing ChIP-seq variabil-
ity (Figure 4). Note that 4-mers hardly showed enrichment
in the 95% low variability sites. When summarizing the en-
riched 4-mers across different binding site groups (different
GC-content levels and types of variabilities), we found that
they were characterized by simple sequence compositions,
usually containing only 1 or 2 nucleotides (18 out of 19 in to-
tal enriched 4-mers). This suggests that low sequence com-
plexity acts as a key characteristic for the high variability
sites.

We further compared the 4-mer enrichment in sites with
high levels of both experimental and chromatin variability.
Some 4-mers showed variability-specific enrichment, while

other 4-mers were shared by both groups (Figure 4). Specif-
ically, sites with high experimental variability were highly
enriched with low complexity 4-mers across all GC-content
levels (e.g., AAAA and CCCC). In contrast, sites with high
chromatin variability were uniquely enriched with palin-
drome 4-mers or 2 bp repeats (i.e. ATAT, TATA, ACAC and
CACA). This suggests that while low sequence complexity is
a universal feature across high variability ChIP-seq sites, ex-
perimental covariates tend to be more sensitive to extremely
low complexity genomic regions than chromatin-associated
covariates.

Protein co-localization plays a role in high variability sites

Several studies have reported the confounding effects of co-
localized proteins on ChIP-seq studies (3,5). We thus ex-
tended the above sequence composition analysis to study
the enrichment of canonical transcription factor binding
sites (TFBS) (23) at high variability sites of CTCF bind-
ing (Materials and Methods section). The sequence of sites
associated with canonical motifs showed low complexity
among high variabilities, similar to the results on 4-mer
analysis (Figure 5A).

We then generated a list of potentially co-localized pro-
teins for which motifs were enriched in the high variability
sites for each GC-content group (Materials and Methods
section, Supplementary Table S1). Unique and shared mo-
tifs were found between different types of variability (Fig-
ure 5A). In summary, we identified a list of known TFs that
were previously reported to co-localize with CTCF bind-
ing sites, e.g. YY1 (36) and SMAD3 (37), indicating their
co-colocalization could increase variability levels in CTCF
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Figure 5. Transcription factors associated to high ChIP-seq variabilities. (A) Venn diagram listing the numbers of enriched TFs in high ChIP-seq chromatin
variability sites. Top three associated motifs (limited to 8 bp long) are also listed with each group. (B) Enriched TFs shifting from chromatin variability
sites to experimental variability sites with GC-content decreasing and increasing. Names are listed for the shifted TFs. (C) Similar to (B) but with shifting
direction reversed.

ChIP-seq protocols. A number of other proteins were also
highlighted to associate with high variability sites, although
we did not identify a mechanism for these (Supplementary
Table S1). A possible explanation of co-factor induced vari-
ability might attribute to the varied effects from co-factors
due to their presence or alterations across experiments.

Finally, we compared TFBS enrichment across different
GC-content binding sites groups. We observed a more com-
plex pattern of enrichment for TFBSs (Figure 5B and C).
For example, TCF3 was found to be enriched in sites with
high chromatin variability sites in medium GC-content,
while it was enriched in high experimental variability sites
for low GC-content binding sites. This highlights the roles
of combinatorial effects between GC-content and protein
co-localizers in contributing to ChIP-seq variability.

DISCUSSION

We proposed a mixed-effect hierarchical model to esti-
mate differences across states or conditions of interest and
deconvolve variability into experimental- and chromatin-
associated from ChIP-seq data. We demonstrated the utility
of this approach on a CTCF ChIP-seq dataset. We found
that low sequence complexity underlined high variability,
with different patterns of low complexity corresponding
to different sources of this variability. By studying the se-

quence motifs of the high variability sites, we identified the
combinatorial roles of GC-content bias and different co-
localized proteins in increasing ChIP-seq variability. Our
approach is applicable for large sets of ChIP-seq data from
the same TF. Currently, there are not many such datasets
which is why we only applied the approach to CTCF. We
expect the availability of such datasets to increase.

We modeled experimental and chromatin effects as ran-
dom effects to represent broad factors affecting ChIP-seq
data from experimental preparation and site-specific ef-
fects, respectively, and estimated cell conditions as fixed ef-
fects. However, due to the complexity of bias source fac-
tors, it is hard to clearly define the types of effects for some
bias factors. For example, different antibodies trigger dif-
ferences at the experimental preparation and the interplay
with local chromatin structure, suggesting their contribu-
tion to both experimental and chromatin variabilities. As a
result, although we termed ‘experimental’ and ‘chromatin’
to represent batch effects and site-specific variability sepa-
rately, caution should be taken to precisely interpret the esti-
mated variabilities. Particularly, we selected laboratories as
the batch representative for a list of confounded factors, in-
cluding library preparation protocol, applied antibody, se-
quencing instruments and cell culture-related lab effects etc.
The estimated experimental variabilities thus showed clear
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association with laboratory information, although they re-
flected the combination of effects from multiple confound-
ing factors. Similarly, chromatin variability reflects another
combination of site-specific effects such as local chromatin
structure, motif characteristics, cell culture-related repli-
cate effects, co-factors and their interplay with antibodies
etc. Fixed cell effects reflect a combination of biological ef-
fects such as bio-sample information, cell types, drug treat-
ment and DNA variants (38–40) etc. Due to their confound-
ing with cell conditions, their effects were estimated as part
of the fixed cell effect in our model. We highlighted DNA
variant effects on CTCF binding using an example (Supple-
mentary Figure S4) demonstrating different alleles (evalu-
ated by Strelka2 (41)) are associated with different levels of
CTCF binding on 14 LCL cell lines from the UW labora-
tory.

ChIP-seq INPUT data has been successfully applied to
remove local structural biases in peak calling (7–9). How-
ever, there is ongoing debate regarding the inclusion of IN-
PUT profiles in comparing peak differences across samples
(42–45). We didn’t incorporate INPUT data in our model
to simplify estimation and avoid introducing additional bi-
ases due to library preparation differences between ChIP
and INPUT data. In practice, studies have demonstrated
that INPUT differences are usually not strong enough to
dominate the real ChIP-seq difference (42–44). For sanity
check, we analyzed INPUT data separately with the same
model we applied for CTCF data. We estimated the exper-
imental and chromatin variabilities at CTCF binding sites
in INPUT dataset and compared them with those estimated
with CTCF dataset (Supplementary Figure S5). We didn’t
see significant co-occurrence of variability although some
binding sites do show high variability in both CTCF and
INPUT, suggesting potential improvement at these sites if
INPUT data are accounted for. In addition, we didn’t see in
INPUT data the bimodal distributed chromatin variability
as presented in CTCF data. One explanation is that CTCF
binding shows low chromatin variability when the local mo-
tif is highly preferred, while INPUT has no preference and
shows high randomness.

We have described an association between sequence com-
position and ChIP-seq variability. However, further exper-
iments are needed to better interpret these findings. For
instance, although PWM scores are widely accepted to
measure protein binding affinities for a given genomic se-
quences, they do not completely determine binding events.
For example, CTCF was found to be one of the bound-
ary markers for topologically associating domains (TAD)
on chromatin recently (46,47). The biological meaning of
CTCF ChIP-seq variability could be better described using
TAD information once 3D chromatin interaction data (48)
become available. In addition, future work is needed to fully
capture the nature of low complexity sequences triggering
ChIP-seq variabilities, with the aid of tools such as SEG
program (49).
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