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Diversity, distribution, and
significance of transposable
elements in the genome of the only
e selfing hermaphroditic vertebrate
™ Kryptolebias marmoratus

Jae-Sung Rhee®”, Beom-Soon Choi**, Jaebum Kim**, Bo-Mi Kim*, Young-Mi Lee®,
II-Chan Kim$, Akira Kanamori’, Ik-Young Choi8, Manfred Schart!® & Jae-Seong Lee*

. The Kryptolebias marmoratus is unique because it is the only self-fertilizing hermaphroditic vertebrate,

. known to date. It primarily reproduces by internal self-fertilization in a mixed ovary/testis gonad. Here,

© we report on a high-quality genome assembly for the K. marmoratus South Korea (SK) strain highlighting

. the diversity and distribution of transposable elements (TEs). We find that K. marmoratus genome
maintains number and composition of TEs. This can be an important genomic attribute promoting
genome recombination in this selfing fish, while, in addition to a mixed mating strategy, it may also
represent a mechanism contributing to the evolutionary adaptation to ecological pressure of the species.

: Future work should help clarify this point further once genomic information is gathered for other taxa of

. the family Rivulidae that do not self-fertilize. We provide a valuable genome resource that highlights the
potential impact of TEs on the genome evolution of a fish species with an uncommon life cycle.

. Reproduction by selfing is a common phenomenon in plants and many hermaphroditic invertebrates, but it
: has not been detected in vertebrates! except for the extraordinary mangrove killifishes (Kryptolebias marm-

oratus and closely related forms). This species routinely reproduces by self-fertilization>*. Eggs are internally

fertilized by sperm that is produced in the testicular part of the bisexual composite gonad*. Selfing of the
. mangrove killifish leads to high degree of inbreeding and genome homogenization®. Natural populations of
. K. marmoratus are often inbred to the extent that may be viewed as assemblages of clonal lineages that are genet-

ically variable®””. However, occasional outcrossing with males is possible that may also contribute to the species’
© capacity to overcome ecological pressure’. Historically, K. marmoratus had been considered as a single species
. with an enormous geographic range (Florida to southeastern Brazil). At a broader phylogeographic scale, K.
. marmoratus was found to be comprised by at least two genetically and geographically distinct lineages®. The
. Panama (PAN-RS) and Dangriga, Belize (DAN) are strains that represent each lineage®. Recently, a restric-
. tion site-associated DNA (RAD)-seq linkage map was made from a hybrid between these strains (PAN-RS was
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Assembly methods ALLPATHS-LG (Ver. r42411)

Total length (bp) 680,349,455

Total number 3,072
N50 (bp) 2,229,659

Scaffolds Minimum length (bp) 3,954

Maximum length (bp) 11,911,191
nN (%) 5.66
GC (%) 37.76

Table 1. Assembly statistics.

referred to K. hermaphroditus and Dan, K. marmoratus therein) utilizing significant genetic differences between
them’. Since extensive phylogeographic analyses of the K. marmoratus ‘species complex’ are being undergone but
are still ambiguous to determine consensus on the level of taxonomic recognition, we conservatively refer it as the
‘South Korea (SK) strain’ and do not assign it to any particular species.

Although K. marmoratus consists of androdioecious populations, the mixed mating strategy, composed of
dominant selfing and occasional outcrossing with gonochoristic males!® has puzzled biologists on the adaptive
significance of such systems. In K. marmoratus, there are two types of males that have been observed. First, pri-
mary males have functional testicular but not ovarian tissues. Such males were found to occur, although rarely,
in nature, and can be induced, under certain conditions, in the laboratory!'. Second, males are typically the
result of hermaphrodites that transform into secondary males by ovarian atresia!!. Most of the males in natural
populations of this kind have been found to have transformed into an early life stage thereby ovarian tissue is
typically absent at later life>'2-1. High levels of inbreeding like those observed in K. marmoratus are considered as
maladaptive for a number of reasons like for example susceptibility to diseases!®!”. Nevertheless, the evolutionary
forces that are key for maintaining the predominantly selfing reproductive mode and limiting mixed mating still
remain largely unclear.

Mangrove killifish are easily kept and maintained in the laboratory. As a laboratory model, mangrove killi-
fish offers most advantages of fish models [comparable to zebrafish (Danio rerio) and medaka (Oryzias latipes)]
including transparent embryos, breeding in large numbers and the ability to produce embryos from artificial
insemination!®!. This is combined with its unique feature of isogenicity. Together these characters make the
mangrove killifish a suitable model organism for environmental toxicology as well as for the understanding of the
evolution of phenotypic plasticity®. To make full use of an emerging model system and to understand the unique
features of the mangrove killifish, including its physiological plasticity and the evolution and effects of selfing
reproduction in a vertebrate, the availability of a high-quality reference genome is required. Recently, approx-
imately 900 Mb of the genome sequence, including 27,328 protein-coding genes of the K. marmoratus Reckley
Hill Lake (RHL), Bahamas strain, was published?!. Here, we report the genome assembly and annotation of the
SK strain of mangrove killifish and its analysis. We compare both genomes and present evidence on the utility
of transposable elements (TEs) as a molecular mechanism of the mangrove killifish for evolutionary adaptation
mechanism to ecological pressure.

Results
The haploid genome of the mangrove killifish is encoded on 24 chromosomes*?. We sequenced the genome of
the SK strain of mangrove killifish by employing a whole genome shotgun approach to 118 x read coverage and
2,418 x physical coverage (estimated genome size of 680 Mbs; Suppl. Fig. 1) using the Illumina HiSeq 2000 plat-
form. We prepared five pair-end libraries spanning insert sizes from 200bp to 20kb (Suppl. Table 1). A total of
80 Gb of sequence data were generated from paired-end reads. The inbreeding-mediated isogenic genome of K.
marmoratus facilitated the de novo assembly. Genome assembly using ALLPATHS-LG (ver. r42411; Table 1) was
performed to produce scaffolds, yielding finally 3,072 scaffolds with N50 length of 2.2 Mb (Table 1). The total
length of scaffolds is 680 Mb, which is consistent with K-mer prediction. Assuming conserved synteny with the
closest phylogenetic relative, the medaka, we employed a ‘reference-assisted’ assembly strategy?® that improved
the assembly by allowing to build larger scaffolds after correcting for misassemblies (Suppl. Table 2). By compar-
ison, the number of genome assembly statistics became higher compared to that of the RHL strain. The genome
assembly of the RHL strain of mangrove killifish resulted in 7,929 scaffolds ( > 10kb) with N50 length of 112kb*!.

Quality of the assembly was assessed by a core eukaryotic gene mapping method (Suppl. Table 3). Also, the
intactness of large-scale gene clusters such as Titin A/B, major histocompatibility complex (MHC) class I, and
homeobox (Hox) gene family clusters strongly confirmed that the genome assembly of K. marmoratus is of high
quality (Suppl. Figs 2, 3 and 4). Gene level synteny comparison with other teleost genomes (e.g. medaka, stick-
leback, and zebrafish) also showed highly conserved gene content in mangrove killifish scaffolds subject to phy-
logenetic distance discrepancies, as for example the mangrove killifish is evolutionary more closely related to
medaka than to zebrafish thereby the fraction of scaffolds with breakpoints is expected to increase for zebrafish
(Suppl. Fig. 5). The GC content was 38% based on 500 bp non-overlapping sliding window along the genome
assemblies (Suppl. Fig. 6). The ratio is comparable to the GC content of the RHL strain genome (39%)?!.

To construct a high-resolution genetic map, genome assemblies of the mangrove killifish were mapped to the
recently established 24 linkage groups that are defined by 9,904 polymorphic restriction site-associated DNA
(RAD)-tag (DNA markers)’. The entire set of markers of the genetic map was directly aligned to the mangrove
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killifish scaffolds. As result, 98% (9,726 loci) of the total markers could be assigned to scaffolds thus anchoring the
genome sequence to 24 linkage groups, corresponding to the haploid chromosome number of this species (Fig. 1;
Suppl. Table 4). The mean map distance ranged from 1.11 to 1.37 cM (average 1.22 cM), and the average value
of cumulative number of recombination events per chromosome was 52.0 cM/LG. These numbers are like other
teleosts having same number of haploid chromosomes (Suppl. Table 5)°.

Gene prediction in mangrove killifish genome, we used a logical pipeline (Suppl. Fig. 7) in a standard anno-
tation approach based on a whole-genome alignment with teleost genomes and transcriptome information
from RNA sequencing (RNA-seq) of different developmental stages, larvae or mixed tissues of hermaphrodites
(Suppl. Table 6), resulting in a final gene set of 20,954 genes and 643 tRNAs (Table 2; Suppl. Table 7; Suppl. Fig. 8).
The gene number was found to be markedly different from the RHL strain of mangrove killifish (27,328 genes and
536 tRNAs)?! most likely due to a higher assembly quality metrics of the SK genome. After gene annotation, total
length and GC content of the SK genome reached 37 Mb and 54%, respectively (Table 2). We constructed two
orthologous gene clusters, one within teleosts and one covering vertebrates from fish to human. The mangrove
killifish genome contains 6,576 orthologous gene families in comparison with four teleosts, while 3,439 genes are
specific to the mangrove killifish (Suppl. Fig. 9). 6,635 orthologous gene families were found after comparison
of orthology relationship of mangrove killifish genome to four vertebrates with 5,415 mangrove killifish-specific
gene families (Suppl. Fig. 10).

Transposable elements (TEs) are repetitive DNA sequences with the capacity to move within the genome.
They are generally grouped into two classes; the class I retrotransposons which are subdivided into short inter-
spersed elements (SINEs), long interspersed elements (LINEs), long terminal repeats (LTRs), and non-LTR ret-
rotransposons, and the class Il DNA transposons. RepeatMasker analysis of both SK and RHL strains’ assemblies
showed that 27% of the genome matched to interspersed repeats (Table 3,4; Suppl. Table 8), thus approximately
one-fourth of the mangrove killifish genome is composed of TEs. Teleost genomes (e.g. spotted gar, European eel,
zebrafish, cod, Japanese medaka, platyfish, tilapia, stickleback, tetraodon, and fugu) show the highest diversity of
TE superfamilies in vertebrates, as most TE superfamilies (e.g. Gypsy, BEL/Pao, ERV, DIRS, Penelope, Rex6/Dong,
R2, LINEI1, RTE, LINE2, Rex1/Babar, Jockey, Helitron, Maverick, Zisupton, Tcl-Mariner, hAT, Harbinger,
PiggyBac and EnSpm) are present in all teleost genomes®*. As noticed in other teleost genomes, TEs show a high
diversity with many families present in the mangrove killifish genome (Suppl. Table 8). This diversity is also
observed in the RHL strain and the composition of each TE family is quite similar in both strains (Table 4). DNA
transposons (10-14%) are relatively common in two killifish genomes (Mangrove killifish and African turquoise
killifish) and Japanese medaka (Atherinomorpha: Beloniformes: Adrianichthyidae), while other teleosts have
considerable differences ranging from 2% for tetraodon (Tetraodon nigroviridis) and fugu (Takifugu rubripes) to
38% for zebrafish (Table 4; Suppl. Table 8)*°. The amount of DNA transposons in the mangrove killifish genomes
(10% for SK; 12% for RHL) is quite comparable to the proportion of retrotransposons (12% for SK; 10% for
RHL). The most abundant DNA transposon family are the TcMar (3%) and hAT (2%) families (Suppl. Table 8).
The majority of class I retrotransposons in the mangrove killifish genome are LINE elements, covering 6.4% of
the genome sequence. Interestingly, the pronounced abundance of rolling-circle (RC) eukaryotic transposons
(0.7% for SK; 0.6% for RHL), known as Helitrons, compared to the abundance of some of its closest phylogenetic
relatives [Japanese medaka (0.03%) and African turquoise killifish (0.06%)] (Table 4) makes of an interesting case.
The expression of Helitron TEs was also examined by using the RNA-seq data, and more than 70% of exons that
contain those sequences were observed to be expressed (Table 5).

Discussion

Comparative analyses of Kimura distances showed that, while the two killifish genomes, Japanese medaka and
African turquoise killifish all have rather recent TE copies?, the TEs of the mangrove killifish genomes are rel-
atively older (Fig. 2). Similarly, TE sequence divergence relative to TE consensus sequences shows a peak at
about 20% for mangrove killifish, while for the other studied fish species (namely the Japanese medaka, African
turquoise killifish and the zebrafish) the divergence rate peak is lower (Fig. 3), providing a clear indication that
the mangrove killifish has more diverged copies of TEs. Recently, a positive correlation between TE content
and genome size was observed in teleosts*, and this positive correlation applies also to the mangrove killifish
(Suppl. Fig. 11). In flowering plants, the transition from outcrossing to selfing is considered as a common evo-
lutionary event?. Fewer members of TE classes were observed in the selfer Arabidopsis thaliana than in the
predominantly outcrossing relative Arabidopsis lyrata®. A similar phenomenon was observed in species of the
weed genus Capsella, although TE load comparison between selfing and outcrossing Capsella showed either no
differences or TE enrichment in the outcrossing Capsella®®. Genome analysis revealed that this was due to the
accumulation of TE members in the outcrossing progenitor Capsella grandiflora rather than to the loss of TE
members in the selfer Capsella rubella®®. A recent study on several asexual lineages of arthropods and their sexual
relatives noted no accumulation of TEs in the non-recombining genomes?. Following these observations, we
may assume that an outcrossing mating system is considered to play a crucial role in driving the evolutionary
dynamics of TEs. However, such a correlation of the number and composition of TE families for selfing versus
outcrossing is less clear in fish. The mangrove killifish has a comparably diverse composition and high abundance
of TEs as many other fish.

Approximately one-fourth of the mangrove killifish genome is comprised of TEs. Diversity and activity of
mangrove killifish TEs indirectly represent its occasional outcrossing with gonochoristic males. In general, self-
ing induces potentially a critical impact on genome construction with a decline of internal or external TE inva-
sion due to self-fertilization, which triggers reduced exchanges between selfers®**!. Because most teleosts employ
external fertilization, their genomes can be susceptible to horizontal TE transfer®?, resulting in higher diversity
and activity of TEs. Since the mangrove killifish maintains internal self-fertilization with occasional outcrossing,
several TEs can be potentially introduced by mating. In the rare case that a horizontal TE transfer occurs, once
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Figure 1. Direct comparison of K. marmoratus (SK) scaffolds to the genetic map constructed by 9,904
polymorphic restriction site-associated DNA (RAD)-tag (DNA markers) (Kanamori et al. ?).
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20,954 37,255,075 1,778 32,469 89,619 54.05

Table 2. Details of the gene annotation.

DNA 364,269 69,083,668 10.15
SINE 31,960 4,972,714 0.73
LINE 173,854 43,256,267 6.36
LTR 144,730 31,019,789 4.56
Satellite 4,252 884,548 0.13
RC/Helitron 20,430 4,437,200 0.65
Simple_repeat 234,100 8,952,672 1.32
Low_complexity 33,489 1,484,546 0.22
rRNA 1,667 296,691 0.04
Unknown 184,901 32,842,992 4.83
Total 1,193,652 185,353,175 27.24

Table 3. Contents and classification of repeats identified in the K. marmoratus SK genome.

K. marmoratus (SK) 10.15 6.36 4.56 0.73 0.65 4.83 27.28
K. marmoratus (RHL) 12.06 5.64 4.11 0.34 0.57 4.41 27.13
O. latipes 14.09 5.22 2.75 1.2 0.03 2.07 25.37
D. rerio 38.27 3.61 5.86 241 1.48 0.25 51.89
C. carpio 18.57 5.57 4.66 0.61 0.79 241 32.61
N. furzeri 11.35 11.08 5.97 1.2 0.06 3.37 33.02
T. rubripes 2.65 3.51 2.06 0.22 0.04 0.37 8.86
T. nigroviridis 1.93 227 1 0.18 0.03 0.95 6.36
G. aculeatus 3.58 2.76 3.1 0.36 0.1 0.77 10.68

Table 4. Comparison of transposable elements (TEs) in nine teleost genomes. The numbers for each TE
class represent percentage.

1 471 (0.75) 455 (0.73) 446 (0.71) 443 (0.71)
0.1 545 (0.87) 535 (0.85) 532 (0.85) 522 (0.83)
0.01 550 (0.88) 539 (0.86) 534 (0.85) 527 (0.84)

Table 5. Expression of the RC/Helitron transposable elements’.”Among exons overlapping with the
RC/Helitron transposable elements (total 626 exons), the number of exons (fraction in parentheses) that were
expressed in different RNA-seq samples was counted by using the FPKM measure with three thresholds.

it takes place, it may be that it cannot be purged out as effectively as in the non-selfers. A previous theoretical
approach explained the discrepancy of a significant amount of active TEs observed in several selfing animals that
selfers might experience occasional outcrossing to hinder the eradication of TEs®.

The evidence of different TE diversity of the mangrove killifish compared to those of other teleosts could
potentially help us understand its unique mode of reproduction. Previously, the potential effect of several TEs (i.e.
Rex element and others) that directly mapped to sex chromosomes suggested their putative involvement in the
process of molecular differentiation of sex chromosomes in Nile tilapia and Antarctic fish*-3¢. More recently, the
analysis was expanded to not only the sex determination regions of the Y and W sex chromosomes but also the
corresponding regions of the X and Z chromosomes in several fishes®”. Thus, analysis of the accumulation of TEs
on autosomes and/or TE-rich locus may help to explain the sexual development of the mangrove killifish after
completion of genome sequencing.

By their mobility, TEs have the potential to modify genomes, but it is unclear whether their diversity or activ-
ity can explain/promote adaptation to pressure and equilibrium?®. Although selfing will generally reduce the
effective population size**, the observation of a high genetic diversity combined with the genetic subdivision of
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Figure 2. Kimura distance-based copy divergence analysis of transposable elements of (A) K. marmoratus
(SK), (B) K. marmoratus (RHL), (C) Oryzias latipes, (D) Danio rerio, and (E) Nothobranchius furzeri. Y-axis
represents genome coverage for each type of TEs (i.e. DNA transposons, SINE, LINE, LTR retrotransposons,
and unknown TEs), and X-axis represent K-value.

the population structure suggests that local populations of mangrove killifish have been relatively stable and that
they did not experience major recent reductions of effective population size*'. Of diverse possible factors, the rel-
atively high content of RC/helitrons would contribute to the high genetic diversity of K. marmoratus populations.
Kimura distance revealed that the genome of the mangrove killifish contains many more old RC/helitron copy
than those of other killifish (Fig. 3; Suppl. Table 9). This subfamily of TEs is known to be involved in mediating
duplication, shuffling, and recruitment of host genes*2. Transposition events that affect the genome structure
could have led to lineage-specific genetic diversity. Although critical evaluation of the relationship between TE
diversity and ecological pressure requires further understanding of the molecular mechanisms of TEs, the here
presented information on the genome and TEs in mangrove killifish is a unique reference as a self-fertilizing tel-
eost genome and may provide an essential resource to understand teleost genome evolution, as TE diversity and
abundance clearly contribute to genome evolution and adaption®’.

Materials and Methods
Ethics in experiments. All animal handling and experimental procedures were approved by the Animal
Welfare Ethical Committee and the Animal Experimental Ethics Committee of the Sungkyunkwan University
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Figure 3. Kimura distance-based copy divergence analysis of RC/Helitrons of K. marmoratus (SK),
K. marmoratus (RHL), Oryzias latipes, Danio rerio, and Nothobranchius furzeri.

(Suwon, South Korea). Experiments were carried out in accordance with the approved guidelines of the Animal
Experimental Ethics Committee of the Sungkyunkwan University.

Genetic background of the sequenced K. marmoratus specimen.  Kryptolebias marmoratus (order
Cyprinodontoformes; family Rivulidae; formerly known as Rivulus marmoratus; mangrove rivulus) were kindly
provided by Dr William P. Davis (US EPA, Gulf Breeze, FL) and maintained exclusively by selfing. For each library
preparation, total genomic DNA was extracted from a liver tissue of single hermaphroditic K. marmoratus and
used for genomic DNA sequencing.

Genomic DNA isolation. Liver (approximately 10 mg per individual adult hermaphrodite) was homoge-
nized in a sterile container with gDNA isolation buffer (Tris-Cl, 10 mM, pH 8.0; NaCl, 100 mM; ethylenediamine-
tetraacetic acid (EDTA), 25 mM, pH 8.0; proteinase K, 100 pg/ml; sodium dodecyl sulfate (SDS), 0.5%; RNase,1 p
g/ml). The sample was incubated in a water bath at 55 °C overnight. The gDNA was isolated with phenol/chloro-
form (Sigma, St. Louis, MO, USA) and chloroform (Sigma), and precipitated with 10 M ammonium acetate (0.2
volumes, Sigma) and isopropanol (0.5 volumes, Sigma). After washing with 70% ethanol, the gDNA was dissolved
in TE (Tris-Cl, 10 mM, pH 8.0; EDTA, 1 mM) buffer and stored at 4 °C. Finally, gDNA was qualified and quantified
using a spectrophotometer (Qiaxpert®, Qiagen, Hilden, Germany) and electrophoresis with 0.8% agarose gels.

Pair-end sequencing. We sequenced DNA using the Illumina HiSeq 2000 platform (GenomeAnalyzer,
[lumina, San Diego, CA, USA) with recommended protocols from the manufacturer. We randomly sheared
5ng of K marmoratus gDNA using the nebulizer (GenomeAnalyzer, Illumina, San Diego, CA, USA) follow-
ing the manufacturer’s instructions. The fragmented DNA was end-repaired using T, DNA polymerase and
Klenow polymerase with T, polynucleotide kinase for phosphorylation of 5’ ends of the DNA. To ligate Illumina
paired-end adaptor oligonucleotides with the sticky ends of DNA, a 3’ overhang was created using a 3/-5’
exonuclease-deficient Klenow fragment. Products were electrophoresed on an agarose gel, and fragments of each
size were stabbed with a scalpel blade. We employed different fragment sizes to increase the genomic coverage per
paired-end sequenced. DNA was enriched with Solexa primers and 18 cycle PCR reaction was performed accord-
ing to the manufacturer’s instructions. Subsequently, the GenomeAnalyzer paired-end flow-cell was prepared and
clusters of PCR colonies were then sequenced on the GenomeAnalyzer platform according to the manufacturer’s
instructions. FASTQ sequence files were reproduced from raw images.

Genome size estimation. In this study, genome size was calculated based on the frequency distribution
analysis of k-mers with the raw sequencing read data set, as employed in previous studies****. The distribution
profiles of the k-mer were analyzed using an out-of-core k-mer counter, meryl (http://sourceforge.net/apps/
mediawiki/kmer). The sequencing depth was calculated by the formula M = Nx(L-K + 1)/L, where M is the peak
depth, N is the sequencing depth, L is the average read length, and K is the k-mer length, respectively. Using a
default k-mer length of 17 bases, the genome size of K. marmoratus was calculated as 755,646,977 bp (=756 Mb,
Suppl. Fig. 2), resulting in a similar size as the genome of the Japanese medaka (=700 Mb).

Assembly. In both short and long paired-end reads, duplicate, microbial, adapters, and low quality reads
with at least 1 N were removed using SOAP-denovo2 program package®. A total of 80 Gb of genomic data that
contained more than 90% of bases with base quality equal to Q20 or greater than Q20 moved for the de novo
assembly. Before assembly of the raw reads, we excluded highly repetitive, non-informative reads, and reads,
which consisted entirely of short tandem repeats. ALLPATHS-LG (Ver. r42411) was applied with default parame-
ters. As a result, a draft genome of 680 Mb with scaffold N50 values of 2.2 Mb (contig and scaffold statistics are in
Suppl. Table 10) was obtained and quality metrics was comparable to results of other Illumina genome assemblies.
The final assembly was anchored to a high-resolution genetic map constructed by 9,904 polymorphic RAD-tag
(DNA markers)?. All marker sequences were aligned to mangrove killifish scaffolds, and scaffolds aligning to
markers in the same linkage group were considered anchored.
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Assembly quality assessment. Assembly quality of the K. marmoratus genome was checked with Core
Eukaryotic Genes Mapping Approach (CEGMA) (http://korflab.ucdavis.edu/datasets/cegma). In total 248 core,
eukaryotic genes (CEGs) from Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Homo
sapiens, Saccharomyces cerevisiae, and Schizosaccharomyces pombe (listed alphabetically) were mapped on the
K. marmoratus genome assembly. The results showed that the K. marmroatus genome assembly covered more
than 86% of the completed CEGs and more than 97% of the partial CEGs (Suppl. Table 3).

Gene-level synteny comparison. Gene-level synteny of the mangrove killifish genome was compared
with the genomes of Japanese medaka, stickleback, and zebrafish that have published chromosome assembly
information in teleosts. Briefly, entire protein sequences of the mangrove killifish were analyzed with the BLAST
Reciprocal Best Hit in NCBI. Then 530 scaffolds (44.4%) containing reciprocal best-matched genes were directly
mapped to the other fish genomes. All scaffolds that contained less than five genes were excluded, and the number
of breakpoints in each scaffold with their proportion was calculated. Of all scaffolds, results of the longest scaf-
folds (scaffold#: 1, 2, 4, and 7) are presented in this manuscript.

Repeat analysis. We used the RepeatMasker fish library together with a de novo generated repeat library
to perform repetitive sequence analysis. To identify transposable elements (TEs) at the DNA and protein levels,
homologous repeat family annotation was conducted by employing the programs RepeatMasker (ver. 4.0.5)
and RepeatProteinMask (http://www.RepeatMasker.org) with default parameters against the TE database
Repbase (version 20160829)*’. The de novo repeat family was analyzed with RepeatModeler (ver. 1.0.8; http://
www.RepeatMasker.org) using default parameters. To obtain consensus sequences from the alignments, the
entire identified TEs sequences were aligned with Muscle software®®. All TE sequences were classified with
RepeatClassifier in the RepeatModeler package against Repbase®’. Tandem repeats were also analyzed using
TRFfinder (ver. 4.04) (parameters settings: match = 2, mismatch =7, delta=7, PM = 80, PI =10, Minscore = 50,
and MaxPeriod = 10)*°. The above procedure was applied to all fish genomes in this study.

RNA-seq. Three different developmental stages (stage 15, 30, and larvae) and mixed tissues (e.g. brain, gill,
gonad, liver, kidney, ovary, testis, muscle) from adult hermaphrodites were homogenized in TRIZOL® reagent
(3 volumes, Invitrogen, Paisley, Scotland). Total RNA was isolated according to the manufacturers’ protocols.
DNA digestion was performed using DNase I (Sigma). Total RNA was quantified by UV absorption at 260 nm
and quality checked by analyzing the ratios A230/260 and A260/280 using a spectrophotometer (QIAxpert®,
Qiagen, Hilden, Germany). A paired-end library was synthesized and sequenced using the Genomic Sample
Preparation Kit (Illumina, San Diego, CA, USA) and Illumina HiSeq™ 2000 (Illumina) according to the man-
ufacturer’s instructions at the National Instrumentation Center for Environmental Management (NICEM,
Seoul National University, Seoul, South Korea). Briefly, short fragments were isolated with the MinElute PCR
Purification Kit (Qiagen, Chatsworth, CA, USA). Adaptor-ligated fragments were separated by size on an agarose
gel, and the desired range of cDNA fragments (200 & 25bp) was excised from the gel. Suitable fragments were
purified as templates for PCR amplification and subsequently, PCR amplified to create the final cDNA library
template. The image data output was transformed by base calling into sequence data. Image deconvolution and
quality value calculations were conducted using Illumina HCS 1.1 software based on the Illumina GA pipeline
(ver. 1.6) following the protocol of the manufacturer (Illumina).

Transcriptome assembly. Low-quality sequences (reads containing more than 50% bases with
Q-value <20), adaptor-only reads, empty nucleotides (N’ in the end of reads), and adaptor sequences were
totally removed from raw reads in the clean process. All the clean reads were subsequently assembled to generate
contigs, unigenes, and non-redundant unigenes using the de novo assembler Trinity (ver. 2.0.6)°!. Candidate
coding regions from the assembled transcripts and/or contigs were analyzed with TransDecoder (http://transde-
coder.sourceforge.net). The regions were used for BLAST analysis against the NCBI non-redundant (nr) protein
database. The presence of conserved domains in the assembled transcripts was identified and annotated using
InterProScan5*. Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis
of the contigs were performed using Blast2GO*. Three main categories of GO such as cellular component, bio-
logical process, and molecular function were analyzed after comparing for similarities using default parameters
at the NICEM, Seoul National University (Seoul, South Korea).

Transposon expression analysis. The preprocessed RNA-seq reads were aligned against the scaffold
assembly by using the STAR program (ver. 2.5.1b) with gene annotation data and default parameters®*. The num-
bers of mapped reads in exons were counted by using the HTSeq program (ver. 0.6.1)%. The expression level
of exons overlapping with transposons was calculated by the FPKM (Fragments Per Kilobase of transcript per
Million fragments mapped) measure®. Three FPKM scores (1, 0.1, and 0.001) were used as a threshold to count
the number of expressed exons.
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