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Neuropeptide Y (NPY), which is widely distributed in the nervous system, is involved in
regulating a variety of biological processes, including food intake, energy metabolism, and
emotional expression. However, emerging evidence points to NPY also as a critical
transmitter between the nervous system and immune system, as well as a mediator
produced and released by immune cells. In vivo and in vitro studies based on gene-editing
techniques and specific NPY receptor agonists and antagonists have demonstrated that
NPY is responsible for multifarious direct modulations on immune cells by acting on NPY
receptors. Moreover, via the central or peripheral nervous system, NPY is closely
connected to body temperature regulation, obesity development, glucose metabolism,
and emotional expression, which are all immunomodulatory factors for the immune
system. In this review, we focus on the direct role of NPY in immune cells and
particularly discuss its indirect impact on the immune response.
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INTRODUCTION

Neuropeptide Y (NPY), a polypeptide consisting of 36 amino acid residues, was first isolated from
the porcine brain in 1982. It belongs to the neuroendocrine peptide NPY family, which also includes
peptide YY (PYY) and pancreatic polypeptide (1). The NPY is widely present throughout the body.
In the central nervous system (CNS), it is distributed in the hippocampus, cerebral cortex,
hypothalamus, thalamus, brain stem, and cerebellum structures (2). In the peripheral nervous
system, NPY is stored in the postganglionic sympathetic nerve, and co-stored and co-released with
Abbreviations: NPY, Neuropeptide Y; PYY, Peptide YY; CNS, Central nervous system; NE, Norepinephrine; NPYRs,
Neuropeptide Y receptors; BT, Body temperature; TH+, Tyrosine hydroxylase-positive; BMDCs, Bone marrow-derived
dendritic cells; CeA, Central amygdala; PVN, Paraventricular nucleus; LPS, Lipopolysaccharide; Th, T helper; IFN-g,
Interferon-gamma; NK, Natural killer; DCs, Dendritic cells; ERK, Extracellular signal-regulated kinase; TNF-a, Tumor
necrosis factor-alpha; MCP1, Monocyte chemoattractant protein 1; NOS2, Nitric oxide synthase 2; TLR2, Toll-like receptor 2;
NO, Nitric oxide; NLRP3, NLR family pyrin domain containing 3; ASC, Adaptor apoptosis-associated speck-like protein
containing a CARD; MAPK, Mitogen-activated protein kinase; HSP27, Heat shock protein 27; ARC, Arcuate nucleus; AgRP,
Agouti-related protein; BAT, Brown adipose tissue; DMH, Dorsomedial hypothalamus; UCP1, Uncoupling protein 1;
NPFFR2, Neuropeptide FF receptor 2; GABA, Gamma-aminobutyric acid.
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norepinephrine (NE) (3). An increasing number of studies have
found widespread existence of NPY in peripheral tissues, such as
the retina, smooth muscle, intestine, bone marrow, and thymus
(4–7). Moreover, NPY is also expressed in a variety of immune
cells. Its extensive distribution has a series of biological effects on
various processes, including food intake, energy metabolism,
stem cell differentiation, blood pressure regulation, and
immune regulation (2, 8–10).

NPY exerts its effects through interaction with NPY receptors
(NPYRs), which are seven-transmembrane G protein-coupled
receptors with different isoforms. There are six isoforms of NPY,
Y1, Y2, Y3, Y4, Y5, and Y6 receptors, except Y3R, which have
been cloned in mammals (11). The Y6R is inactive in primates as
it loses seven transmembrane domains, but it plays a particular
biological function in mice (12). Various NPYRs own
corresponding specific agonists with the most robust affinities,
Summarized in Figure 1. Though diverse, their structures are
surprisingly similar, having an N-terminal which ends with
tyrosine (13). Notably, dipeptidyl peptidase 4 (CD26) on the
cell membrane is a serine protease that participates in the
primary N-terminal truncation of NPY and PYY, leading to
the formation of NPY3-36 and PYY3-36 (14) (Figure 1A).
Promisingly, several specific NPYRs antagonists have been
developed (13) (Figure 1B).

By utilizing specific agonists and antagonists of the NPYRs, it
was shown that NPY and its receptors involved in the functional
modulation of immune cells could directly act on the NPYRs of
immune cells to regulate the immune response. Additionally,
NPY plays a crucial role in body temperature (BT) regulation,
weight control, glucose metabolism, anti-anxiety, and anti-
depression, which are closely related to the immune response.
Frontiers in Immunology | www.frontiersin.org 2
Therefore, we propose an indirect effect of NPY on immune
regulation. In this review, we highlight the direct role of NPY in
the immune response and discuss its potential impact on the
immune system.
NPY AND ITS RECEPTORS IN THE
IMMUNE SYSTEM

Sources of NPY in the Immune System
The NPY of the immune system is mainly derived from the
sympathetic nervous system, parenchymal, and immune cells
(Table 1). The sympathetic nerve releases NPY to act on the
immune organs it innervates (15, 31, 32). Furthermore, splenic
tissue sections release NE and NPY spontaneously or under electric
field stimulation; subsequently, NPY acts on the Y1R to inhibit the
release of interleukin-6 (IL-6) (31), suggesting that neuronal release
of NPY modifies the immune response. Indeed, NPY produced by
splenic sympathetic nerve endings mediates nerve communication
with immune cells (15). Furthermore, NE significantly promotes the
release of NPY from prostate cancer cells through the b-2
adrenergic receptors (NE-b-2AR-cAMP pathway) (18), thereby
regulating the tumor immune microenvironment.

The removal of the sympathetic nerve did not reduce the
content of NPY in the spleen. Moreover, denervation retained
high NPY expression in leukocytes isolated from renal grafts,
implying that immune cells independently provide NPY (33).
However, the NPY of immune cells is inducibly expressed rather
than constitutively expressed. It appears that immune cells
synthesize NPY only when stimulated or differentiated into
mature cells (21, 22, 28, 29), and subsequently participate in
A

B

FIGURE 1 | The agonists and antagonists of Y receptors. (A) NPY and PYY are processed into different ligands. Although these ligands have a similar amino acid
composition to NPY/PYY, when the two amino acid residues of NPY/PYY are replaced or truncated, it significantly changes their affinity for different Y receptor
subtypes. (B) The most commonly used agonists and antagonists specific for different Y receptor subtypes. NPY, neuropeptide Y; PYY, peptide YY; Tyr, Tyrosine;
Leu, Leucine; Pro, Proline; Ala, Alanine; Aib, 2-aminoisobutyric acid.
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the regulation of cytokine production and activity of immune
cells (25). In addition, nerve growth factor promotes NPY
synthesis by unstimulated T cells; however, this effect is not
observed in B cells (29).

NPYRs in the Immune System
NPYRs are widely expressed in immune cells, especially Y1R,
which exists in almost every type of immune cell (Table 2). Y1R
was initially detected in rat splenic lymphocytes. Although it
shares 100% homology with Y1R receptors in the brain, its basal
expression level is significantly lower than that measured in the
frontal cortex (37). However, in a variety of immune cells, when
Frontiers in Immunology | www.frontiersin.org 3
functional activity is required, the basal expression of NPYRs is
robustly upregulated after antigen stimulation or inflammatory
stimulation (27, 36, 41). Moreover, NPY also plays a role in
regulating the expression of its receptors (28).

The expression of NPYRs is also altered depending on age
and pathological status. The percentage of granulocytes in air
pouch expressing Y1R, Y2R, and Y5R in adult rats was
significantly higher than that noted in young and old rats;
however, there was no difference between young and old rats
(39). Moreover, Y4R, Y5R, and Y6R of tyrosine hydroxylase
positive (TH+) cells were significantly increased in diabetic mice
(15), and Y1R expression was also increased in the bone marrow-
TABLE 2 | Neuropeptide Y receptors in immune cells.

Species Tissue Cell type Receptorisoform Molecular level Reference

Rat Peripheral blood Granulocyte Y1R, Y2R, Y5R Protein (34)
Peripheral blood Monocyte Y1R, Y2R, but not Y5R mRNA (35, 36)
Spleen Lymphocyte Y1R mRNA (37)
Dental pulp CD43+-granulocyte

CD4+-lymphocyte
Y1R Protein (38)

Air-pouch Granulocyte Y1R, Y2R, Y5R Protein (39)
Retinal CD11b+ microglia Y1R, Y2R Protein (40)

Mouse Bone marrow Macrophage Y1R, Y2R mRNA (6, 19)
Bone marrow Dendritic cell Y1R, Y2R, Y4R, Y5R mRNA (24, 41)
Lymph node T/B lymphocyte Y1R mRNA (42)
Spleen Leukocyte Y1R, Y2R, Y4R, Y5R, Y6R mRNA (15)
Adipose tissue Macrophage Y1R, Y2R mRNA (24)
– N9

Microglia cell line
Y1R, Y2R, Y5R mRNA

Y1 (mRNA and protein)
(28)

Human Peripheral blood Neutrophil Y1R, Y2R, Y4R, Y5R mRNA (41)
Infantile hemangioma T/B lymphocyte (CD45+) and mast cells (tryptase) Y1R Protein (43)

Pig Hippocampi Microglial Y1R mRNA (27)
Oct
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TABLE 1 | Source and role of neuropeptide Y.

Sorting Source Role Reference

Nonimmune
tissue

Splenic sympathetic nerve Mediates the communication between nerve and Tyrosine Hydroxylase+ leukocyte (15)
Retina Regulates immune cells involved in maintaining the immune immunity of the eye (4, 16, 17)
Myc-CaP cells Promotes the migration of macrophages and the secretion of IL-6 to participate in the

regulation of the tumor microenvironment
(18)

Vascular smooth muscle cells and macrophages Increases chemotaxis of inflammatory cells, thereby amplifying vascular inflammation
and triggering the formation of smooth muscle foam cells.

(6)

Enterocyte Regulates the migration of medullary immune cells to mucous membranes and plays an
anti-inflammatory role

(7)

Bone marrow endothelial cells Activates the Y1R in macrophages to promote neural protection. (19)
Thymic epithelium Protects thymus cell development (5)

Monocyte
system

Langerhans cells Helps protect the skin against invading microbes (20)
Human monocyte-derived DC Is involved in the maturation of dendritic cells (21)
Mouse bone marrow-derived monocytes and
human peripheral blood monocytes

Is involved in the regulation of monocyte function (22, 23)

Mouse DC and macrophages Performs anti-inflammatory role (24)
Airway macrophages Is involved in the regulation of cytokine production and cellular activity of immune cells in

asthma
(25)

Retinal microglia Is involved in the regulation of eye inflammation (26)
Primary hippocampal microglia May be related to the immune response against sepsis (27)
N9 microglial cell line Inhibits NO synthesis and IL-1b release (28)

Lymphocyte T and B lymphocytes Is involved in lymphocyte autoregulation (29, 30)
Granulocyte Mastocyte Executes a role in the infection and elimination of hepatitis virus (30)
DC, dendritic cell; IL-1b, interleukin-1b; IL-6, interleukin-6; NO, nitric oxide.
icle 580378

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. NPY Is an Immunomodulatory Factor
derived dendritic cells (BMDCs) of obese mice (24). Although
homologous immune cells express various receptors, the
expression of different Y receptor subtypes on a single cell and
their effects on cell function warrant further investigation.
NPY DIRECTLY REGULATES IMMUNE
CELLS

The innervation of immune organs constitutes the anatomical
link between the nervous system and immune system. The
sympathetic nerve fibers end in the parenchyma in close
contact with immune cells (44). At this neuroimmune
junction, the neurotransmitters released by sympathetic nerve
endings can stimulate specific receptors on immune cells and
affect the function of immune cells. For example, activation of
the central amygdala (CeA) and paraventricular nucleus (PVN)
corticotropin-releasing-hormone neurons control humoral
immune responses in a T-cell-dependent manner by
promoting splenic sympathetic output and releasing NE (45).
Moreover, under the stimulation of inflammation, the content of
NPY secreted by neurogenic, structural, and immune cells is
elevated, regulating immune cell function in a paracrine or
autocrine manner (46–48). Thus, endogenous NPY may serve
as an immunoregulatory factor directly on NPYRs of immune
cells (Figure 2).

Lymphocytes
NPY-IR nerve fibers are in close contact with lymphocytes (46),
and NPY produced by splenic sympathetic nerve endings
facilitates nerve communication with TH+ leukocytes (15). It
Frontiers in Immunology | www.frontiersin.org 4
betokens that NPY is engaged in lymphocyte recruitment.
Indeed, NPY preferentially mobilized CD4+ T cells at high
doses, whereas it recruited IgMlowCD5+CD11b+B cell subsets
dose-dependently (49).

Additionally, the physiological concentration of NPY induces
high-level adhesion of human and murine T cells to fibronectin
in the resting-state by inciting b1 integrins. In humans, this may
be due to Y2R activation providing a pre-adhesion signal for T
cells (50). However, in rats, Y1R and Y5R also participate in
lymphocyte mobilization, in which Y-5R activation is enhanced,
and Y-1R tension inhibits adrenaline-induced leukocyte
mobilization (35).

Discrepantly, NPY heightened the chemotaxis of lymphocytes
in axillary and peripheral lymph nodes of mice, yet it restricted
the chemotaxis of thymic lymphocytes and had no impact on
splenic lymphocytes (51). Withal, the regulatory effect of NPY on
chemotaxis is inhibited or absent in aged animals. Therefore,
NPY may alter lymphocyte recruitment by modifying
lymphocyte adhesion and tropism, depending on the activated
receptor, age, and lymphocyte subsets.

NPY (10−12–10−8 M) inhibited lymphocyte proliferation in vitro
(33). NPY significantly restrained lymphocyte proliferation in
response to stimulation with mitogen Concanavalin A or
lipopolysaccharide (LPS) (5). Moreover, this regulatory effect of
NPY may be exerted by diminishing the production of IL-2;
however, those effects are abrogated with aging (5). Furthermore,
the Y1R pathway is involved in the supervision of B cell development
in bone marrow, decreasing the number of pro-B, pre-B, and
immature B cells and increasing that of mature B cells (52).

Interestingly, in humans, NPY also appears to preserve T and
B lymphocytes from apoptosis, and promotes the proliferation of
FIGURE 2 | NPY directly regulates immune cells. NPY of the immune system derived from the secretion of the sympathetic nervous system, tissue structure cells,
and immune cells. NPY plays multiple roles in immune cells, including via Y1R inhibiting activation and regulation of proliferation, differentiation, and cytokine
secretion; via Y1R/Y2R/Y5R mediating phagocytosis and migration. Among these, Y1R has a bimodal effect on the immune system, showing both anti-inflammatory
properties and specific pro-inflammatory effects. In addition, the Y1R mainly mediates the promotion of NPY, while the Y2/Y5 receptor mediates the inhibition of
NPY. Therefore, the interaction of Y1R and Y2/Y5R is involved in the regulation of immune cells. In this figure, NPY receptor symbols on different immune cells
symbolize their involvement in the diverse functional regulation of NPY. NK, natural killer; NPY, neuropeptide Y; SNS, sympathetic nervous system.
October 2020 | Volume 11 | Article 580378
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lymphocytes. In critically ill patients, the level of NPY is
positively correlated with the total number of lymphocytes, T
helper (Th) cells, and toxic T cells (53). Furthermore, serum NPY
is negatively correlated with the expression of apoptosis-related
molecule Fas/Fas ligand in Th cells and cytotoxic T cells, and
negatively correlated with the expression of Fas in B cells
(54). Early studies demonstrated that NPY (10−12–10−6 M)
facilitates the proliferation of human colonic lamina propria
lymphocytes by promoting the production of IL-1b in
monocytes (55). Nevertheless, whether NPY has a positive role
in lymphocyte survival and proliferation merits further research.

NPY also improves the Th2 inflammatory response in
asthmatic patients (56). Indeed, NPY (10−9 M) upregulates the
expression of IL-6 and IL-10 by human immature dendritic cells,
promoting the secretion of IL-4 via Th2 polarization, and
inhibits the production of interferon-gamma (IFN-g) (57). It
has been demonstrated at the animal level that activation of Y1R
may be required for this process, as specific Y1R agonists have a
significant inhibitory effect on Th1 polarization and promote
autoimmune T cells to Th2 bias (42). However, Y1R holds a
bimodal role in the immune system, serving as a potent negative
regulator of T cells and a key activator of antigen-presenting
function (58). While Y1R signaling can inhibit the activation of T
cells, mice without a Y1R signal are resistant to Th1 cell-
mediated inflammatory response, showing a decrease in the
level of Th1 cell-promoting factor IL-12 and the production of
IFN -g. It may be that NPY stimulates Th1 cells to secrete Th1
(IL-2 and IFN -g) and Th2 (IL-4) cytokines and directly
stimulates Th2 cells to secrete IFN -g (50).

Natural Killer Cells
The NK cell is a critical immune cell in the body, playing an
essential role in anti-tumor, anti-virus infection, and immune
regulation (59). In the context of inflammation, NPY inhibits NK
cell activity. NK cells need to be fully activated to exert their
immune effects, and this process can be interrupted by Y1R
signaling. Studies have demonstrated that human NK cell activity
is negatively correlated with plasma NPY levels (60). Intravenous
injection of NPY begets a dose-dependent inhibitory effect on
splenic NK activity in rats (61). Moreover, the Y1R antagonist
eliminates the inhibitory effect on NK cell activity (61).

The regulation of NPY on NK cells is characterized by
heterogeneity. Analogously, large doses of NPY (50 mg/kg)
intravenously mobilized activated NK cells, while low doses of
NPY (0.1 mg/kg) significantly reduced the number of NK cells in
the blood (49). Further, 15 min following the intraventricular
injection of NPY (10−9 M), the number of NK cells in the blood
increased, while the toxicity of NK cells decreased. However, 1 h
and 24 h after the initial immunosuppression, NPY enhanced the
activity of NK cells (62). Finally, NPY stimulated the NK activity
in axillary lymph nodes and thymus of adult (24±2 weeks) and
mature (50±2 weeks) animals, whereas it inhibited the NK
activity in the spleen of young mice (12±2 weeks). Moreover, it
decreased the cAMP level in the leukocytes of adult mice,
indicating that the messenger may be involved in the
regulation of NK cells by NPY (63).
Frontiers in Immunology | www.frontiersin.org 5
Dendritic Cells
In mice stimulated by inflammation, the maturation of DC and
the production of inflammatory cytokines are hindered by NPY
(24). Following stimulation, endogenous tonic activation of Y1R,
Y2R, and Y5R inhibited the expression of pro-inflammatory
factors. This tonic activation also inhibited the expression of
maturation markers of DC. Indeed, NPY (10−9 M) failed to
induce the phenotypic maturation of BMDCs. Nevertheless, its
dose-dependent (10−12–10−7 M) effect caused transendothelial
migration of immature DCs by binding to Y1R, and activating
the extracellular signal-regulated kinase (ERK) and p38 mitogen-
activated protein kinase. Furthermore, NPY plays an anti-
inflammatory role by promoting the production of IL-6 and
IL-10 in DCs, inducing T-cell to polarize toward Th2 (24).

However, the pro-migration effectiveness of NPY on DCs
appears to play a specific pro-inflammatory role, leading to the
aggravation of local inflammation in mice (64). NPY inhibited
the expression of costimulatory molecules CD80 and CD86 in
antigen-presenting cells (65). Similarly, BMDCs in Y1R-deficient
mice exhibited an impaired phagocytic capacity for fluorescent-
labeled ovalbumin and reduced their production of IL-12, thus
failing to provide optimal stimulation to T cells (58).
Interestingly, both human BMDCs and murine Langerhans
cells can synthesize NPY (20, 21); hence, NPY may control the
function of antigen-presenting cells in an autocrine-dependent
manner to induce adequate adaptive immune responses.

Granulocytes
The role of NPY in granulocytes is heterogeneous. It is based on
both the dose of NPY, the diverse receptor activation, and the
source of granulocytes. In the bronchoalveolar lavage fluid of the
mouse asthma model, the concentration of NPY was positively
correlated with the total count of leukocytes and eosinophils
(66). Furthermore, NPY enhanced human neutrophil
phagocytosis of Escherichia coli at low doses but did not alter
respiratory burst. At high concentrations, NPY inhibited
phagocytosis but enhanced respiratory burst (41).

However, various isoforms of NPYRs activation also play
different roles. Activation of Y1R heightens granulocyte adhesion
and phagocytosis of zymosan by rat granulocytes (34). On the
contrary, activation of Y5R does not regulate its phagocytosis, but
inhibits its adhesion (34). Indeed, Y1R antagonists possess an
inhibitory potency on mice eosinophils (64). Moreover, Y2R of
granulocytes appears to have an unusual opposite effect versus Y1/
Y5R. Activation of Y1/Y5R inhibited the phagocytosis of zymosan by
rat granulocytes (39), but potentiated phagocytosis by stimulating
the production of reactive oxygen species in human neutrophils (41).
In contrast, Y2/Y5R stimulation did not affect the phagocytosis of
zymosan by rat granulocytes (39), but resulted in a substantial
reduction in its production of reactive oxygen species (67).

NPY also has various impacts on granulocytes at different
localities (68). NPY inhibits the function of blood granulocytes
by activating Y1R. On the contrary, NPY and Y1R antagonist
BIBP3304+NPY initiate the function of splenic granulocytes.

Regulation of granulocyte phagocytosis by NPY is manifested
by different effects on heterologous particles. NPY holds the
October 2020 | Volume 11 | Article 580378
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ability to enhance opsonin-dependent phagocytosis by human
neutrophils, but has no or a slight inhibitory effect on opsonin-
independent phagocytosis (69). It is comprehended that NPY is
highly dependent on the local microenvironment and
participates in the regulation of inflammation-related
granulocyte function through the interaction of Y1, Y2, and Y5R.

Monocytes/Macrophages
Under various pathological conditions, NPY has been identified
as a chemical attractant and adjusts cell adhesion to regulate
the recruitment of monocytes and macrophages in rodents
(6, 18, 34). Endogenous NPY affects the recruitment of
monocytes/macrophages by activating Y1R to decrease their
adhesion and promote migration (6, 34). Besides, exogenous
NPY possesses significant chemotactic properties for monocytes
at physiological concentrations (10−8 –10−10 M) (70). However,
NPY (10−9–10−10 M) inhibited the migration of macrophages
(RAW264.7) to Leishmania (71). Moreover, NPY inhibited the
recruitment of retroviral-infected monocytes to CNS. This
process is linked to the upregulation of monocyte Y2R (72).
Indeed, NPY enhances the adhesion of monocytes through Y2R
(36). This effect may be due to diversity in the dominant receptor
subtypes activated by NPY because Y1R mediates the promotion
of NPY, whereas Y2/Y5R mediates the inhibition of NPY. These
opposite effects principally depend on the activity of dipeptidyl
peptidase 4 (34). Dipeptidyl peptidase 4 is an enzyme that
terminates the activity of NPY on the Y1 receptor subtype, and
its activity changes with age (73).

Hence, the effect of NPY on macrophage adhesion also shows
time and age specificity (74). NPY [(10−13–10−7 M) with 10 min]
significantly enhanced the adhesion ability of macrophages in
mature (50±2 weeks) and aged (70±2 weeks) mice. At the same
time, NPY did not affect the adhesion ability of macrophages in
young (12±2 weeks) and adult (24±2 weeks) animals. However,
NPY [(10−11 M) with 20–30 min] enhanced the adhesion ability
of macrophages of mice at all ages, except aged mice.
Furthermore, NPY (10−13–10−8 M) significantly stimulated the
chemotactic capacity of macrophages in adult mice and,
conversely, the NPY inhibitory chemotactic capacity of
macrophages at other ages.

As discussed for the granulocyte, different NPYRs are
activated, and the diversity in heterologous particles leads to
complex effects of NPY on the phagocytic function of
monocytes/macrophages. NPY (10−10 M) and LP-NPY (Y1/
Y5R agonist, 10−10 M) significantly increased the phagocytosis
of zymosan in monocytes, whereas NPY3-36 (Y2/Y5R agonist,
10−10 M) decreased the phagocytic capacity of monocytes
(34). Nevertheless, Y5R agonist [(Ala31-Aib32) NPY] could
not regulate the phagocytosis of zymosan by monocytes,
inferring the role of Y1R in NPY-induced intensification of
phagocytic function. However, BIBO3304 (Y1R antagonist,
10−8 M) and L152804 (Y5R antagonist, 10−8 M) both
antagonized the NPY-induced increase in the phagocytic
capacity of monocytes (34).

Furthermore, treatment with NPY (10−12–10−6 M) in vitro
dose-dependently inhibited macrophage phagocytosis; yet, NPY
Frontiers in Immunology | www.frontiersin.org 6
(10−14–10−6 M) enhanced the release of H2O2 to kill foreign
particles (75). NPY enhanced the production of peritoneal
macrophage peroxide by simultaneously activating Y1R and
Y2R (73). NPY (10−12–10−8 M) and PYY (10−12–10−6 M)
boosted the oxidative burst involving the activation of protein
kinase C in macrophages stimulated by phorbol myristate
through Y1R and Y2R mediation. However, only Y2R
signaling diminished the oxidative burst in zymosan-
stimulated cells, compromising the signaling pathways after
binding of zymosan to macrophage complement receptor 3
(76). This diverse impact mediated by receptor subtypes has
led to many seemingly contradictory conclusions, and the effects
of NPY on macrophage phagocytic function for different
heterologous particles are also divergent.

NPY (10−12–10−8 M) significantly intensifies the phagocytosis
of latex particles by mouse macrophages (74), while NPY (10−10–
10−5 M) inhibited the phagocytic and killing ability of
macrophages (RAW264.7) against Leishmania (77). Besides,
co-treatment of RAW264.7 macrophages with melanocyte-
stimulating hormone/NPY affects lysosomal activity by
inhibiting the expression of lysosomal associated membrane
protein 1. This hinders the maturation of phagosomes, but
does not affect their antigen presentation function (4). When
treated with NPY only, the phagocytic ability of macrophages to
unopsonized Escherichia coli and Staphylococcus aureus
biologicals was significantly reduced. In contrast, the
phagocytic ability of antibody-modified biologicals and Fc
receptor-mediated phagocytosis of Gram-positive biologicals
were not significantly impaired. Moreover, the inhibitory
effect of neuropeptides on phagocytic activity does not occur
through downregulation of CD206 or macrophage receptor with
collagenous structure expression. These two primary scavenging
receptors in activated macrophages inhibit the activation of
phagocytic pathways and the production of Fc receptor-related
active oxidative products (78). Thus, the effect of NPY on
mononuclear/macrophage phagocytosis is highly dependent on
the type of foreign particles, peptide truncation, and the
interaction of specific Y receptors.

A critical role of NPY is to modulate the secretion of cytokines
by macrophages. Knockdown of NPY reduced the secretion of pro-
inflammatory factors frommonocytes/macrophages in animals (18,
64), revealing the pro-inflammatory effect of NPY on macrophages.
Under stimulation by inflammation, NPY significantly increases the
expression of tumor necrosis factor-alpha (TNF-a), C-reactive
protein, and monocyte chemoattractant protein 1 (MCP1) in
RAW264.7 macrophages by activating Y1R (79). Moreover, NPY
(10−9 M) upregulated the expression of HMGB1, which is a potent
inflammatory stimulus, in the absence of an inflammatory stimulus,
and the protein kinase C/ERK pathway was required in this
process (80).

NPY also has obvious anti-inflammatory effects. Inhibition of
the Y1R signal-induced production of IL-12 and Y1R-knockout
macrophages also provoke their response to inflammatory
stimuli (M1 phenotype) without affecting their alternating
activation phenotype (M2 phenotype) (81, 82). Consistently,
NPY produced by adipose tissue macrophages inhibits the
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expression of pro-inflammatory genes IL-6, TNF-a, and nitric
oxide synthase 2 (NOS2) and decreases the secretion of IL-6 and
TNF-a through the autocrine and paracrine systems, thereby
inhibiting the activity of M1-like adipose tissue macrophages
(24). NPY transformed macrophages to the M2-like phenotype,
while NPY (10−6 M) mainly stimulated the release of
macrophage anti-inflammatory cytokines IL-10 and IL-1RA
and prevented the release of pro-inflammatory cytokines (e.g.,
TNF-a, IL-12, and IL-6) (83). Furthermore, NPY activates Y1R
in macrophages to protect sympathetic fibers and bone marrow
cells through TGF-b secreted by the PI3K/AKT/mTOR/eIL4E
signaling pathway (19). However, it is noteworthy that the anti-
inflammatory properties of NPY are also age-specific, and NPY
(10−10 M) has an inhibitory effect on the release of TNF-a and
IL-2 in adult mice, but not in aged mice (74).

Microglia
NPY similarly inhibits microglial activation, phagocytosis, and
cytokine secretion. It has been demonstrated that intracerebral
injection of NPY (10−2 g/L) can diminish microglial activation
induced by 6-hydroxydopamine in rodents, and NPY inhibits
microglial activation by binding to the translocator protein
(TSPO) ligand [3H]PK11195 (84). Although NPY repressed
microglial activity, it did not impair microglial survival.
Instead, NPY (10−6 M) inhibited the activation of microglia
induced by methamphetamine and shielded them from
methamphetamine-induced death (85).

NPY decreases the secretion of pro-inflammatory factors by
microglia. Specifically, exogenous NPY (0.01, 0.10, 0.50, and
1.0 × 10−6 M) dose-dependently inhibited TNF-a production in
microglia induced by toll-like receptor 2 (TLR2) agonists (27).
Furthermore, NPY (10−6 M) lessened the LPS-induced
transcription and secretion of IL-1b and TNF-a by microglia;
however, this consequence was prevented after inhibition of Y1R
receptors (86). Thus, activation of Y1R reduces the production of
pro-inflammatory factors in microglia. Indeed, following
inflammatory stimulation, microglia release IL-1b, which
promotes nitric oxide (NO) production through a nuclear
factor-kB-dependent pathway, whereas NPY (10−6 M) inhibits
the release of IL-1b, nuclear translocation of nuclear factor-kB
and inducible NOS expression through Y1R activation, thereby
reducing the production of NO (28).

Moreover, Y2R also exhibits specific anti-inflammatory
properties. In the medial prefrontal cortex, Y2R agonists PYY3–36

reversed LPS-induced increases in NLR family pyrin domain
containing 3 (NLRP3), caspase-1, adaptor apoptosis-associated
speck-like protein containing a CARD (ASC), IL-1b levels. NPY
further reversed LPS-induced increases in caspase-1 and ASC levels,
while the Y2R antagonist (BIIE0246) blocked the effect of NPY.
Additionally, the results of the enzyme-linked immunosorbent assay
showed that NPY and PYY3–36 reversed the LPS-induced
upregulation of IL-1b levels; this effect was also prevented by
BIIE0246. These data suggest that NPY inhibits the NLRP3
pathway through Y2R to prevent neuroinflammation (87). In
conclusion, the activation of Y1R and Y2R holds a particular
inhibitory capacity in the secretion of pro-inflammatory factors.
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The role of NPY on microglia is also revealed in its direction
of migration and phagocytosis. NPY (10−6 M) significantly
restrains IL-1b-induced microglial motility by inhibiting p38
activation and actin recombination through Y1R activation (88).
Moreover, in an inflammatory environment, microglia are
strongly activated through a process involving downstream
phosphorylation of p38 mitogen-activated protein kinase
(MAPK) and heat shock protein 27 (HSP27) and magnify their
phagocytic capacity. Notably, NPY (10−6 M) significantly
represses the above process through activation of Y1R,
inhibiting LPS-induced Fc receptor-mediated phagocytosis (89).

Considering that NPY is more broadly expressed in the CNS
and microglia act as specific immune cells in the CNS, their
interaction may be more intimate. For instance, the density of
NPY fibers in the arcuate nucleus (ARC) and PVN increased
after microglial ablation, although NPY expression in the
hypothalamus was unaltered (90). Activated microglia remain
in close contact with NPY neurons and inhibit the expression of
NPY (91). Furthermore, activation of microglial TLR4 in ARC
results in restraint of Agouti-related protein (AgRP)/NPY
activity (92), and the mechanism involved in this process may
be mediated by inducible NOS-NO signaling (93).

Interestingly, caloric restriction-induced changes in NPY are
not directly involved in inhibiting LPS-induced microglial
activation, but may indirectly affect microglial activation
through BT regulation (94). It was speculated that NPY
directly regulates immune cells by triggering NPYRs, and
indirectly affects them by regulating other physiological and
pathological processes.
NPY INDIRECTLY REGULATES THE
IMMUNE RESPONSE

The immune system is susceptible to various physiological and
pathological changes, including changes in BT, the occurrence of
obesity, abnormal blood glucose, the development of depression
and anxiety, and other immunomodulatory factors (95–98).
Studies have confirmed that these immunomodulatory factors
have a profound connection with NPY (Figure 3).

NPY and BT
It is established that BT is an essential regulator of immune
function. Hyperthermia stimulates the immune response,
prompting primitive immune cells to enter the supporting
environment of the lymph nodes; hypothermia reduces
inflammation and immune response, affecting the circulation
pattern of immune cells or the expression of transport molecules,
mainly exerting an anti-inflammatory effect (95). Although there
is no evidence confirming that NPY influences the immune
response by regulating BT, some studies imply that NPY may
indirectly affect the activation of immune cells through changes
in BT (94). Indeed, NPY can influence the changes in BT by
altering the vasomotor function of skin and the thermogenesis of
brown adipose tissue (BAT), regulating the heat dissipation and
heat production balance.
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Investigations have shown that before the local temperature
increases, the application of Y1R antagonists weakens
the vasodilator response. However, after the local temperature
increases, the Y1R antagonist has no impact on the
response of vasodilators (99). In short, NPY is required to
initiate vasodilation caused by local skin warming, but it does
not participate in the maintenance of vasodilation. This
performance may be due to the impact of NPY on the
corresponding receptors of the skin sensory nerves. In contrast,
the Y1R antagonism reduces the skin vasoconstriction response
induced by systemic cooling. Furthermore, blocking the
adrenergic a and b receptors does not entirely prevent the
systemic cooling reflex response; however, this is achieved by
the simultaneous application of NPYR antagonists (100). Thus,
NE and NPY co-released by sympathetic nerves are involved in
the contraction of skin blood vessels caused by cold stimulation
to reduce heat dissipation. Collectively, the evidence reveals that
the regulation of skin vasomotor function by NPY is highly
dependent on environmental settings.

Thermogenesis is also an essential approach to BT regulation.
A large body of evidence has supported that the hypothalamus
is a vital transit station involved in BT regulation, altering
BT by inducing the thermogenesis of BAT through the
sympathetic nervous system (101). Intriguingly, NPY is
widely expressed in the hypothalamus and has the highest
concentration in the ARC. Furthermore, NPY neurons in ARC
project to other hypothalamic regions closely related to heat
production and appetite control, including the PVN and
dorsomedial hypothalamus (DMH) (102). Chao et al. disclosed
that knockdown of NPY in rat DMH led to an increase in the
expression of uncoupling protein 1 (UCP1) in BAT and
enhanced browning of inguinal white adipocytes tissue, thereby
enhancing the thermogenic activity of classical BAT, which in
Frontiers in Immunology | www.frontiersin.org 8
turn led to an increase in BT (103). Further studies on the
sympathetic denervation of inguinal white adipocytes tissue
found that DMH NPY knockdown increased sympathetic
outflow (103). Besides, DMH NPY overexpression led to a
decrease in UCP1 expression in BAT (103). However, a
thoroughgoing DMH NPY signaling pathway regulating BAT
thermogenesis remains to be determined.

Consistent with these findings, our previous research
reported that ARC NPY neurons projected onto PVN,
inhibiting the sympathetic drive of BAT (8). More specifically,
ARC NPY directly acting on the Y1 receptor on TH+ neurons in
PVN reduces the expression of TH in PVN, which subsequently
leads to a decrease in the expression of TH in the brainstem locus
coeruleus, A1/C1 neurons, and nucleus tractus solitarii (8).
Eventually, the activity of A1/C1 catecholaminergic neurons in
the ventrolateral medulla associated with sympathetic ganglia is
reduced, resulting in reduced sympathetic nerve outflow to
peripheral tissues (e.g., BAT) (8). A study showed that the
neuropeptide FF receptor 2 (NPFFR2) signal directly acts on
ARC NPY neurons (104). Lack of this NPFFR2-induced tone on
NPY neurons reduces the capacity of these neurons to control
TH+ neurons in the PVN, with a consequent reduction in BAT
function. Hence, the NPFFR2 signaling pathway in NPY neurons
appears to affect the regulation of thermogenesis by controlling
the expression level of NPY.

Additionally, ARC NPY activates the gamma-aminobutyric acid
(GABA)-ergic neurons of the intermediate and parvicellular
reticular nuclei through the nucleus tractus solitarii, thereby
inhibiting the sympathetic premotor neurons, which ultimately
leads to the inhibition of the thermogenic effect on BAT (105).
The reduction of hypothalamic NPY after cold stimulation in wild-
type rats is coupled with the increased expression of UCP1 in BAT,
leading to heat generation (106). Paradoxically, when the third
FIGURE 3 | NPY indirectly regulates the immune response. NPY regulates thermoregulation, obesity, and development of diabetes by controlling the vasomotor of
the skin, thermogenesis of BAT, fat storage in WAT, food intake, insulin secretion, and insulin resistance. Moreover, NPY plays anti-anxiety and anti-depression roles
to transform emotional expression. Interestingly, this regulation by NPY profoundly impacts the immune response. BAT, brown adipose tissue; NPY, neuropeptide Y;
WAT, white adipose tissue.
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ventricle was injected with NPY (15 mg/ml in 2 h), the BT of the
animal was rapidly increased. Although the mechanism of centrally
administered NPY involved in inducing an increase in BT is
unclear, increased exercise activity and increased peripheral
vasoconstriction may be the cause of this phenomenon (107).
Moreover, overexpression of NPY by NE neurons increases the
BT of the animal after exposure to cold (108).

Overall, these findings strongly suggest that both hypothalamic
ARC and DMH-derived NPY can directly control thermogenesis,
at least in part by regulating sympathetic nerve output and BAT
heat production. Besides, NPY derived from the sympathetic
nervous system regulates heat dissipation by modifying the
vasomotor of the skin and finally plays a role in regulating BT.
However, the final result of BT regulation by NPY may be a
combination of various effects.

NPY and Obesity
Obesity produces a chronic inflammatory state, resulting in
altered immune cell production, reduced T-cell variation,
polarization of macrophages to a pro-inflammatory state, and
an increase in multiple pro-inflammatory cytokines (96).
Numerous immunomodulatory adipokines also affect the
recruitment and polarization of immune cells, including leptin
signals, adiponectin signals, cytokines, and chemokines secreted
by adipose tissue (109). However, the occurrence of obesity
involves a complicated synergy between extravagant food intake
or reduction in energy expenditure, where the NPY system has
been recognized as a critical player in the regulation of energy
balance and pathophysiology of obesity.

As discussed earlier, NPY influences energy expenditure by
regulating BAT thermogenesis and energy intake by regulation of
appetite. Within the ARC of the hypothalamus, two significant
groups of neurons play essential roles in the regulation of energy
homeostasis: one group coexpresses NPY/AgRP and promotes
food intake. In contrast, the other group coexpresses cocaine-
and amphetamine-related transcript and proopiomelanocortin,
decreasing appetite (110). Notably, NPY is one of the most
potent appetite-promoting factors identified thus far. Its
feeding stimulation is mediated through Y1R and Y5R in
the hypothalamus and inhibition of ARC cocaine- and
amphetamine-related transcript neurons (110). Reversely, Y2R
appears to have an antagonistic effect on Y5R (111). In the
hypothalamus of fasting and obese rats, NPY levels are elevated
and correlate with food intake (13). Furthermore, acute exercise-
induced feeding in mice requires activation of ARC NPY
neurons (112).

NPY also plays a role in regulating feeding behavior in other
nuclei. Firstly, DMH NPY gene silencing improves overeating
and obesity induced by a high-fat diet (103); in turn, DMH NPY
overexpression leads to increased food intake and weight gain,
aggravating diet-induced eating disorders and obesity (113).
Besides, the expression of DMH-NPY is inhibited by ARC
GABAergic-proopiomelanocortin neurons (114), which may
contribute to reasonable control of food intake. Secondly, NPY
in the lateral hypothalamus increased rat food intake of free
choice high-fat high-sucrose and chow diets and Y5R antagonists
prevented all of the above results. In contrast, Y1R antagonists
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only played a significant role in chow-fed rats (115). Thirdly,
selective activation of CeA NPY neurons leads to increased food
intake and reduced energy expenditure (116). Importantly,
selective lack of NPY in CeA neurons attenuates the obesity
phenotype, whereas excessive production of NPY in CeA further
enhances that phenotype (116).

Peripheral NPY also plays a crucial role in promoting
adipocyte proliferation and differentiation and adipose storage
in white adipose tissue. Adipose tissue-derived NPY promotes
the proliferation and differentiation of mesenchymal stem cells
and preadipocytes, a process thought to occur through Y1R, Y2R,
and Y5R (117). Throughout differentiation, NPY mediates the
increased expression of reactive oxygen species, peroxisome
proliferator-activated receptor-g, and CCAAT/enhancer-
binding protein alpha. It also decreased the expression of
UCP1, leading to increased lipid accumulation in terminal
differentiation (118).

NPY and Diabetes
In diabetes, the proliferation of T cells and macrophages is
altered, and the functions of NK cells and B cells are impaired,
manifesting as abnormalities of innate and adaptive immunity
(97). The key to the development of diabetes is insufficient
insulin secretion and insulin resistance, and NPY is involved in
these processes. Researches have revealed that NPY plays a vital
role in the regulation of blood glucose homeostasis in diabetic
models (119). The ability of AgRP neurons to induce insulin
resistance depends on the expression of NPY (120), and the
application of NPY in the CNS has been shown to efficiently
reduce sympathetic activation of BAT and improve systemic
insulin sensitivity (8, 107). Therefore, the NPY-dependent
regulation of systemic insulin sensitivity is consistent with
reducing energy expenditure in mice under fasting conditions,
possibly by regulating the sympathetic activation of BAT.

DMH NPY knockdown plays a therapeutic role in impaired
glucose homeostasis in rats (121). Overexpression of NPY in
DMH decreased the expression of UCP1 in BAT, leading to
insulin resistance (122); however, the downregulation of DMH
NPY improved glucose homeostasis and enhanced insulin
sensitivity (103). Downregulation of DMH NPY improves
hepatic insulin sensitivity in high-fat diet rats by activating the
hepatic PI3K/AKT insulin signaling pathway (123). The central
mechanism of this effect may be that DMH NPY projects to the
dorsal motor nucleus of the vagus nerve and subsequently
regulates glucose homeostasis through hepatic vagal efferents,
as hepatic vagotomy eliminates the inhibitory effect of DMH
NPY knockdown on hepatic glucose production (124).

Additionally, previous data persuasively suggested that the
direct effect of NPY on insulin release from isolated islets is
inhibitory, while the central effect of NPY indirectly leads to an
increase in plasma insulin (125). The Y1R mediates the
inhibitory impact of NPY on insulin secretion on islet b-cells
(126). Given the effects of NPY on the central stimulation of
feeding behavior in rats, it is logical that NPY induces delayed
and transient increases in circulating insulin. Furthermore, NPY
can rapidly and transiently induce the phosphorylation of ERK1/
2 to promote b-cell proliferation (126, 127).
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NPY and Emotion
Increasing data indicate that our emotional and immune states
have complicated and bidirectional relationships with each other.
These observations paved the way for the new concept of
“affective immunology” that has been proposed (98). Studies
have confirmed that NPY neurons are involved in the regulation
of anxiety in mice (128). Moreover, direct injection or
overexpression of NPY in the brain exerts anti-anxiety effects
in rodents (129), and knockout of NPY exacerbates the anxiety
phenotype in mice (130). In rodents, the alleviation of anxiety
caused by overexpression of Y1R also corroborates the above
findings (131). Similarly, knockout of Y1R leads to anxiety
outcomes (132), and the intranasal administration of Y1R
agonists is sufficient to prevent anxiety (133). Moreover,
specific Y5R agonists were injected into the PVN, resulting in
a reduction in anxiety-related behaviors in animals (134).
Accordingly, Y1R and Y5R have overlapping regulatory effects
on anxiety (135). Conversely, activation of the Y2R is anxiogenic
by inhibiting GABAergic input (136), and treatment with specific
Y2R antagonists can reduce anxiety behavior in rodents (137).
Surprisingly, overexpression of NPY in cells that regularly
express NPY in mice did not lead to the expected reduction in
anxiety-like behavior (138).

The level of plasma NPY is significantly increased in patients
with depression (139), and the NPY gene can be used as a risk gene
for severe depression (140). However, NPY expression in the brain
decreases overall during depression (13). Consequently,
intraventricular infusion of NPY or intranasal delivery of NPY
to the brain effectively prevents depressive behavior in animal
models (133, 141). LP-NPY (Y1R and Y5R agonists) is as useful as
NPY and presents therapeutic potential in preventing the
development of depressive-like behavior (142). Nevertheless,
Y5R antagonists also play an antidepressant role through the
MAPK/ERK and PI3K signaling pathways (143). Besides, Y2R
plays an antidepressant role by inhibiting the NLRP3 signaling
pathway in LPS-induced depression model rats (87). Intriguingly,
in turn, the depression-induced increase in NPY expression affects
immune cell recruitment and cytokine secretion (18).

Taken together, either the indirect regulation of NPY neurons
in the brain or the direct promotion of NPY secreted by
sympathetic ganglia and adipose tissue to peripheral organs is
closely related to various regulatory factors of the immune
response. This ultimately influences the immune response.
Therefore, it is conceivable that NPY directly regulates the
immune response through these immunomodulatory factors.
SUMMARY AND PROSPECT

Existing data indicate that the regulatory effect of NPY on the
immune response can be either through the NPYR that directly
acts on the surface of immune cells or indirectly through the
regulation of physiological or pathological conditions such as BT,
obesity, glucose metabolism, and mood (Figures 2, 3). In
summary, NPY has a variety of regulatory effects on immune
cell activity, including proliferation, differentiation, cytokine
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secretion, migration, and phagocytosis, some of which are even
contradictory. Considering the difference in the expression of
NPYRs in different states of cell differentiation and activation,
the different biological activities of NPY in immune cell
populations can be interpreted. The complicated role of NPY
and its signaling can be better understood if we consider that the
role of NPY and the complexity of its signal transduction in
intricate physiological or pathological contexts are correlated to
the need for various types of regulation in a wide range of
immune cell types to maintain appropriate homeostasis.
Furthermore, it is vital to consider that the impact of NPY on
the immune function of the body should be based on the overall
effect, not ignoring its indirect effects.

Prospectively, NPY analogs with higher human NPYR
selectivity, and different functional properties, have been
developed in recent years (144). As discussed in this article,
NPYR subtypes are an interesting target in biomedical research
and drug development due to their diverse physiological and
pathophysiological roles. Biased NPYR agonists/antagonists can
be used to specify a signaling pathway for a specific biological
effect. For example, in the case of Y1R and Y2R signaling, they can
demonstrate which receptor subtype dominates the anti-
inflammatory effect of NPY, and further clarify the downstream
complex signaling pathways that mediate this effect. Furthermore,
short NPYR agonists with different properties can be used as
“shuttles” to target immune cells, accurately guide covalently
linked therapeutic drugs to reach the cell surface, and enter cells
through human NPYR-mediated internalization transfer to achieve
precise therapy. This observation will help find treatments that
target specific pathways of human disease without affecting other
signal-transduction pathways and lessen side effects. Future research
in this field is warranted to produce fruitful results related to the
development of unique immunotherapies.
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Exposure to acute physical and psychological stress alters the response of rat
macrophages to corticosterone, neuropeptide Y and beta-endorphin. Stress
(2007) 10(1):65–73. doi: 10.1080/10253890601181289
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