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Abstract: The extremely small size of micro-/nanomaterials limits the application of conventional
thermal measurement methods using a contact heating source or probing sensor. Therefore, non-
contact thermal measurement methods are preferable in micro-/nanoscale thermal characterization.
In this review, one of the non-contact thermal measurement methods, photothermal (PT) tech-
nique based on thermal radiation, is introduced. When subjected to laser heating with controllable
modulation frequencies, surface thermal radiation carries fruitful information for thermal property
determination. As thermal properties are closely related to the internal structure of materials, for
micro-/nanomaterials, PT technique can measure not only thermal properties but also features in
the micro-/nanostructure. Practical applications of PT technique in the thermal measurement of
micro-/nanomaterials are then reviewed, including special wall-structure investigation in multiwall
carbon nanotubes, porosity determination in nanomaterial assemblies, and the observation of amor-
phous/crystalline structure transformation in proteins in heat treatment. Furthermore, the limitations
and future application extensions are discussed.

Keywords: photothermal technique; thermal properties; nanostructure characterization; thermal
conductivity; specific heat; thermal effusivity

1. Introduction

With reductions in size to the micro-/nanometer level, temperature probing and
thermal measurement have become difficult to conduct using traditional contact-based
methods and equipment (thermal couples and thermistor, etc.). Non-contact thermal
measurement methods have thus become prevalent for the thermal characterization of
micro-/nanomaterials [1,2]. Non-contact methods mainly benefit from the laser heating
source and thermally induced phenomena, which can be detected from a distance [3–11].
Based on the features of the phenomena, the widely adopted non-contact thermal meth-
ods are typically divided into three types: time-domain techniques, frequency-domain
techniques, and spectroscopy [1].

Among these techniques, time-domain thermoreflectance (TDTR) [7,12,13] and frequency-
domain thermoreflectance (FDTR) [14,15] detect the temperature rise by sensing changes in
the surface optical properties in the time and frequency domains. They utilize an ultrafast
heating pulse to generate a nanometer-level thermal penetration depth and thus have a
good ability to measure the in-plane and out-of-plane thermal conductivity for thin films
and bulks. The obvious drawbacks of these two methods are that they require smooth
surfaces and post-processing. The photoacoustic (PA) method is a frequency-domain
method that measures the surface temperature by detecting the sound waves produced
by the work done by the periodical thermal expansion of the heated surface [3]. Avoiding
the mechanical piston effect induced by the thermal expansion of the heated surface, the
modulation frequency of the heating laser is limited so that it is lower than the order of
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10 kHz [9,11,16]. The PA method can work well with micrometer-thick films and bulks due
to the long thermal penetration depth at a lower frequency [9]. Furthermore, as it is limited
by the microphone, the PA method is usually deployed at room temperature [3,9,11]. The
laser flash method [17,18] involves heating a suspended material on the front side and
analyzing the transient temperature rise in the time domain from the back based on the
thermal radiation. Compared with the PA method, the laser flash method can be used
with a wide temperature range from −125 to 2800 ◦C [1]. However, this method has
thickness limitations with regard to samples [19,20]. More recently, Raman-based thermal
methods have become popular due to its feature of being material-specific. The steady-state
Raman method has a simple physical mechanism for thermal characterization [21,22], while
the transient Raman method offers high accuracy in measurement results [8,23–31]. It is
notable that the temperature probing depth with the Raman method is usually tens of
nanometers. It is less often used to measure the thermal properties of thick films or bulks.
More comprehensive reviews of general photothermal technologies can be found in [1,2].

In this paper, a short review is provided for the photothermal (PT) technique based
on thermal radiation established in Wang’s lab [32,33]. This PT technique stems from PA
technology. However, in contrast to PA technology, PT technique acquires the frequency-
domain thermal radiation instead of sound waves, which can reduce the complexity of
the measurement setup and widen the temperature range for thermal measurement, as
the microphone is no longer necessary. Furthermore, it has no frequency limitation and,
thus, can theoretically measure samples with thicknesses ranging from nanoscale to bulk.
The PT method also has a low requirement for smooth surfaces when compared to ther-
moreflectance methods because it detects thermal radiation rather than reflections. In
Sections 2 and 3, the theory and a typical experimental setup for PT technique are intro-
duced. Section 4 discusses the application of PT technique in the thermal characterization
of micro-/nanomaterials, especially the measurement of thermophysical properties and
structure probing. Furthermore, considerations for the thermal measurement of micro-
/nanomaterials using PT technique are also discussed.

2. PT Theory for Thermal Property Measurements

The PT technique developed in Wang’s lab employs a periodically modulated laser
source to heat a solid surface. In each period, the surface temperature immediately rises
after heating is applied. The speed and intensity of the thermal response of the surface are
strongly dependent on the thermal properties of the materials under the surface. Thermal
radiation due to surface temperature rise carries important information regarding the
thermal properties of the materials and structures beneath, both for homogeneous and
multilayered structures.

2.1. Physical Model Derivation

PT technique stems from the physical model of PA technology proposed by Rosencwaig
et al. [3], which is a one-dimensional cross-plane heat conduction model in a multilayered
structure, as shown in Figure 1a. The model requires that the size of the heating source be
much larger than heat diffusion length in each layer, so that the in-plane heat conduction
can be safely neglected and the generated heat conducts one-dimensionally along the
cross-plane direction. Furthermore, the surface temperature rise should be moderate, and
the heat loss through thermal convection and radiation is reasonably negligible. Hence, the
governing equation of 1D cross-plane heat conduction under periodical heating is

∂2θi
∂x2 =

1
αi

∂θi
∂t
− βi I0

2κi
exp

(
N

∑
m=i+1

−βmLm

)
× eβi(x−li)(1 + ejωt), (1)

The subscript i means that the physical properties are for a certain layer i; therefore,
θi = Ti − Tamb is the temperature rise of layer i and Tamb is the ambient temperature. I0
is the incident laser power and ω is the angular frequency (2πf ) corresponding to the
modulation frequency f. αi, κi, and βi are the thermal diffusivity, thermal conductivity, and
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optical absorption coefficient for layer i. Li = li − li−1 is the thickness of layer i, where li is
the surface location of layer i on the x axis in Figure 1. j is

√
−1. A detailed derivation of

Equation (1) is provided in [9].
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The resultant surface temperature rise θi for layer i gradually increases from zero to
a new steady state with fluctuations. Thus, θi can be divided into three components: the
transient component, θi,t; the steady DC component, θi,s; and the steady AC component,
θ̃i,s. θi,t represents the initial temperature rise immediately after the laser heating is applied.
When the sample reaches the steady state, θi,s indicates the steady state temperature,
while θ̃i,s is the fluctuation in temperature due to the modulated heating source. θ̃i,s is
easily determined by a lock-in amplifier at a set modulation frequency. It has an explicit
expression as follows:

θ̃i,s = [Aieσi(x−li) + Bie−σi(x−li) − Eieβi(x−li)]ejωt, (2)

where Ei = Gi/(β2
i − σ2

i ) with Gi = βi I0/(2ki) exp
(
−

N
∑

m=i+1
βmLm

)
, and for I < N,

GN = βN I0/2kN , and GN+1 = 0. σI is (1 + j)·ai, where ai = 1/µi is the thermal diffu-
sion coefficient and µi =

√
αi/π f is the thermal diffusion length.

Ai and Bi are important coefficients derived from the interfacial transmission matrix
of heating U and the absorption matrix of light V:[

Ai
Bi

]
= Ui

[
Ai+1
Bi+1

]
+ Vi

[
Ei

Ei+1

]
, (3)
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where Ui and Vi from layer i + 1 to I are

Ui =
1
2

[
u11,i u12,i
u21,i u22,i

]
; Vi =

1
2

[
v11,i v12,i
v21,i v22,i

]
, (4)

where

u1n,i = (1± ki+1σi+1/kiσi ∓ ki+1σi+1Ri,i+1)× exp(∓σi+1Li+1), n = 1, 2, (5)

u2n,i = (1± ki+1σi+1/kiσi ∓ ki+1σi+1Ri,i+1)× exp(∓σi+1Li+1), n = 1, 2, (6)

vn1,i = 1∓ βi/σi, n = 1, 2, (7)

and

vn2,i = (−1∓ ki+1βi+1/kiσi ∓ ki+1βi+1Ri,i+1)× exp(−βi+1Li+1), n = 1, 2. (8)

Ri,i+1 is the thermal contact resistance between layer i and (i + 1). It is noticeable
that the thermal and optical properties of the materials in the multilayered structure are
all included in Equations (5)–(8). Thus, the thermal properties are closely related to the
temperature rise θ̃i,s of the layer i.

Under the assumption that the front air layer and back substrate are thermally
thick—that is, |σ0L0| � 1 and |σN+1LN+1| � 1—AN+1 and B0 are equal to zero. Then,
applying the interfacial condition between layer i and (i + 1),

ki
∂θ̃i,s

∂x
− ki+1

∂θ̃i+1,s

∂x
= 0 (9)

and ki
∂θ̃i,s

∂x
+

1
Ri,i+1

(
θ̃i,s − θ̃i+1,s

)
= 0, (10)

the solved Ai and Bi are[
Ai
Bi

]
= (∏N

m=i Um)

[
0

BN+1

]
+

N

∑
m=i

(∏m−1
k=i Uk)Vm

[
Em

Em+1

]
(11)

BN+1 = −

[
0 1

]
∑N

m=0 (∏
m−1
i=0 Ui)Vm

[
Em

Em+1

]
[
0 1

]
(∏m−1

i=0 Ui)

[
0
1

] (12)

By substituting Ai, Bi, and Ei into Equation (2), we can obtain the temperature distribu-
tion in any layer of interest. This greatly increases the flexibility of the PT method. For the
purpose of non-contact measurement, an infrared detector is usually employed to gather
the surface radiation from either the front or back.

2.2. Phase Shift and Amplitude

The AC temperature rise component θ̃i,s has two critical properties, amplitude and
phase. Compared with the original periodical heating source, the occurrence of temperature
rises and thermal radiation is delayed by the heat conduction inside the multilayered
structure. Correspondingly, the phase of the radiation is slower than the phase of the
heating source, and the difference (phase shift) between these two can be deducted to
be Arg(BN+1) − π/4. According to Equation (12), the thermal properties are included in
BN+1. Measurement based on the phase shift—the phase shift method—can be used to
accurately evaluate the thermal properties of a specific layer and the interfacial thermal
conductance in the multilayered structure due to the high sensitivity of ~0.1◦ [32]. However,
for bulk materials with a smooth surface, it becomes a constant of−45◦ [16]. In contrast, the
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amplitude of thermal radiation is proportional to the temperature rise. Since the thermal
diffusion depth is different with different modulation frequencies, the amplitude of the
thermal radiation changes against the frequency. Alternatively to the phase shift method,
measurement based on the amplitude is able to determine the thermal properties of the
bulk materials.

3. Experimental Implementation of PT Method for Thermal Property Measurements
3.1. Experimental Setup

A typical measurement setup using the PT technique developed in Wang’s lab [11] is
shown in Figure 1b. The function generator-modulated diode laser (at a visible wavelength)
is focused on a sample surface by using a focal lens to heat the sample. Then, a pair of off-
axis parabolic mirrors collect the raised thermal radiation resulting from the temperature
rise and send it to an infrared (IR) detector. Along with the radiation collection, the diffuse
reflection of the incident laser from the surface is also gathered. Though the IR detector
is much less sensitive to the visible wavelength, the reflection is still much stronger than
the radiation. Thus, an IR window (germanium (Ge) window in Figure 1b) is placed in
front of the detector to eliminate the visible diffuse reflection and let only the thermal
radiation enter into the detector. The radiation-converted voltage signal is then intensified
in a preamplifier and finally analyzed in a lock-in amplifier to extract the phase shift and
the amplitude when compared with the reference signal from the function generator.

When using PT technique, given that the unexpected, complex photon–electron–
phonon process may occur under laser irradiation in the sample, especially for semicon-
ductors, a metal coating (usually gold, aluminum, etc.) is applied to the sample surface
to act as a well-defined energy absorber and heater. The coating is optically thick and can
totally absorb the incidence. At the same time, it is thermally thin and has a negligible
effect on heat conduction (phase shift). It is physically understandable that the heat dif-
fusion length/depth in the multilayered structure should be controllable by changing the
modulating frequency. The selection of the modulating frequency of the heating laser needs
to be evaluated in advance because the sample layer in the multilayered structure should
be involved in the heat conduction.

3.2. System Calibration

The raw data recorded by the lock-in amplifier—the phase shift φraw and amplitude
Araw—are not available for direct analysis because the measurement system induces ad-
ditional errors in the raw data (the phase shift and amplitude). For example, the optical
path and electric devices involved raise an additional time delay in the phase shift, and
the fluctuations in the laser power, as well as the optical path, cause unexpected varia-
tions in amplitude. Thus, calibration of the measurement system is necessary to exclude
these effects from the raw data. The diffuse reflection of the incident laser is measured to
calibrate the measurement system, since it passes through the same path as the thermal
radiation does. The calibrated phase shift φcal and amplitude Acal are shown in Figure 2.
To calibrate φraw, the absolute phase shift due to heat conduction is quickly determined
as φnor = φraw − φcal. For the amplitude, it is more complicated. The amplitude is affected
by not only the laser power and attenuation in the optical path but also the modulation
frequency f. Xu et al. proposed the equation Anor = Araw ·

√
f /Acal to normalize Araw and

exclude all the possible errors induced by the system, detailed in [33]. The calibrated Anor
is approximated to ζ/et, where ζ is a system-related constant and the effusivity et =

√
κρcp.

It directly correlates Anor with the thermal properties. After calibration, φnor and Anor can
be used to determine the thermal properties of the materials of interest.
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Figure 2. The calibration of a typical experimental setup for PT technique: (a) phase shift and
(b) amplitude. The black square is the measured phase shift and amplitude, and the red dot denotes
the measurement uncertainty of the phase shift and amplitude.

3.3. Uncertainty

During the data measurement, different heat conduction processes occur when the
modulation frequency is changed. Then, the thermal properties can be determined by fitting
the temperature variation against the frequencies. Wang et al. found that the uncertainty is
related to the ratio of the thermal diffusion length µi to the layer thickness Li [11]. Based on
their SiO2/Si sample, the numerical uncertainty for the phase shift method was around
±5%when µi and Li were in the same order, and it increased to ±15% when µi/Li was
around 100. For the case in which µi/Li was less than 0.15, the thermal energy would not
diffuse across the SiO2 layer. The phase shift method would not be suitable for this case,
while the amplitude method showed a±10% uncertainty. Xu et al. studied a similar SiO2/Si
sample and achieved an experimental uncertainty of 5% based on the phase shift method
and 10% with the amplitude method [33]. For thermal contact resistance measurement, the
experimental sensitivity and uncertainty were limited by the uncertainty in the thermal
conductivity discussed above. The sensible limit was reported to be 10−8 m2K/W [11] for
the phase shift method and 10−7 m2K/W [33] for the amplitude method. Since the thermal
contact resistance fell in the range of 10−9–10−7 m2K/W, the amplitude method was not
sensitive to the thermal contact resistance. It could thus accurately measure the thermal
conductivity without knowledge of the interface.

4. PT Measurement of Nanomaterials

When the characteristic lengths of materials are reduced to the micro-/nanoscale, the
thermal properties also significantly decrease due to the size effect. Based on this fact, in-
vestigation of thermal properties can be an efficient supplementary way to characterize the
micro-/nanostructure in addition to the most commonly used micro-/nanoscale imaging.

4.1. Nanostructure Analysis through Thermal Characterization

Wang et al. [32,34] adopted the PT method and studied the axial thermal conductivity
of multiwall carbon nanotubes (CNTs) prepared using plasma-enhanced chemical vapor
deposition (PECVD). The CNT sample for PT measurement was composed of three layers.
As in Figure 3a, the layers from top to bottom were a thin silicon wafer (14 µm thick), a
layer of chromium (Cr, 70 nm thick), and the layer of vertically aligned CNTs. Between the
Cr layer and CNTs, there was a thin nickel (Ni) film of a negligible thickness, which offered
seeds for CNTs’ growth. The Si wafer was transparent to the incident laser wavelength
(1064 nm) and thermal radiation. Therefore, the incident laser heated the Cr film, the partial
generated heat was conducted along the axial direction of the CNTs, and the radiation from
the Cr surface was analyzed to obtain the axial thermal conductivity of the CNTs. The
resultant thermal conductivity of 27.3 W/m·K was dramatically lower than the theoretical
thermal conductivity of 1600–6600 W/m·K for single-wall CNTs, where phonons can
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conduct heat in a perfect wall plane. Combined with the TEM result for the CNTs, it
was found that the special structure of the Ni seeds led to the CNTs’ walls being tilted
with respect to the tube axis, as shown in Figure 3b. This unexpected structure raised a
large number of boundaries along the axial direction and thus reduced the axial thermal
conductivity of the CNTs. Here, though the PT method measured the CNTs’ axial thermal
conductivity as a bulk, the result greatly helped interpret the special growth mechanism of
the CNTs.

Nanomaterials 2022, 12, x FOR PEER REVIEW 7 of 11 
 

 

deposition (PECVD). The CNT sample for PT measurement was composed of three layers. 
As in Figure 3a, the layers from top to bottom were a thin silicon wafer (14 μm thick), a 
layer of chromium (Cr, 70 nm thick), and the layer of vertically aligned CNTs. Between 
the Cr layer and CNTs, there was a thin nickel (Ni) film of a negligible thickness, which 
offered seeds for CNTs’ growth. The Si wafer was transparent to the incident laser wave-
length (1064 nm) and thermal radiation. Therefore, the incident laser heated the Cr film, 
the partial generated heat was conducted along the axial direction of the CNTs, and the 
radiation from the Cr surface was analyzed to obtain the axial thermal conductivity of the 
CNTs. The resultant thermal conductivity of 27.3 W/m·K was dramatically lower than the 
theoretical thermal conductivity of 1600–6600 W/m·K for single-wall CNTs, where pho-
nons can conduct heat in a perfect wall plane. Combined with the TEM result for the 
CNTs, it was found that the special structure of the Ni seeds led to the CNTs’ walls being 
tilted with respect to the tube axis, as shown in Figure 3b. This unexpected structure raised 
a large number of boundaries along the axial direction and thus reduced the axial thermal 
conductivity of the CNTs. Here, though the PT method measured the CNTs’ axial thermal 
conductivity as a bulk, the result greatly helped interpret the special growth mechanism 
of the CNTs. 

(a) (b) 

Figure 3. Thermal and structural characterization of CNTs: (a) multilayered structure of CNTs; (b) 
schematics of CNTs’ wall growth on a Ni particle with a special structure. Reprinted with permis-
sion from Ref. [32], Copyright (2022), AIP Publishing. 

4.2. Porosity Determination in Nanostructures 
For loosely assembled nanoparticles, porosity is an important parameter demonstrat-

ing the quality of the assembly, but it is hard to measure by mapping only the surface. 
Pores and cavities in the nanostructure generate additional defects and boundaries and 
then reduce the thermal properties of the assembled nanostructure. Based on this mecha-
nism, Chen et al. [35] measured the effective thermal conductivity and volumetric heat 
capacity of a hydrogenated vanadium-doped magnesium (V-doped Mg) porous 
nanostructure using PT technique. Under the effect of cavities on the V-doped Mg com-
posite (MgH2 was the main component), the effective volumetric heat capacity was appar-
ently lower than that of the MgH2 bulk counterpart. The volumetric heat capacity ratio of 
nanostructure to bulk helped further reveal the porosity level φ of the nanostructure. The 
determined porosity level was validated through SEM observation. The porosity level φ 
was estimated to be 25–42% from SEM, and the φ calculated from the PT results was 9.0–
39.4%, with an upper limit falling into the range of the SEM observation. It should be 
noted that the SEM observation scale (microscale) was much smaller than that probed 
with PT technique (~millimeter scale). Thus, the PT-determined porosity level is more ap-
plicable when the size of nanostructured assemblies reaches the macroscale. The intrinsic 
thermal conductivity of the solid part of the porous nanostructure was then determined 
to be ~3.5 W/m·K, while it had been ~1.9 W/m·K before excluding the effect of the cavities. 
PT technique provides a new and convenient way to characterize the porosity level of 
porous nanostructures, as well as intrinsic thermal conductivity. 

Figure 3. Thermal and structural characterization of CNTs: (a) multilayered structure of CNTs;
(b) schematics of CNTs’ wall growth on a Ni particle with a special structure. Reprinted with
permission from Ref. [32], Copyright (2022), AIP Publishing.

4.2. Porosity Determination in Nanostructures

For loosely assembled nanoparticles, porosity is an important parameter demonstrat-
ing the quality of the assembly, but it is hard to measure by mapping only the surface. Pores
and cavities in the nanostructure generate additional defects and boundaries and then
reduce the thermal properties of the assembled nanostructure. Based on this mechanism,
Chen et al. [35] measured the effective thermal conductivity and volumetric heat capacity of
a hydrogenated vanadium-doped magnesium (V-doped Mg) porous nanostructure using
PT technique. Under the effect of cavities on the V-doped Mg composite (MgH2 was the
main component), the effective volumetric heat capacity was apparently lower than that of
the MgH2 bulk counterpart. The volumetric heat capacity ratio of nanostructure to bulk
helped further reveal the porosity level ϕ of the nanostructure. The determined porosity
level was validated through SEM observation. The porosity level ϕ was estimated to be
25–42% from SEM, and the ϕ calculated from the PT results was 9.0–39.4%, with an upper
limit falling into the range of the SEM observation. It should be noted that the SEM observa-
tion scale (microscale) was much smaller than that probed with PT technique (~millimeter
scale). Thus, the PT-determined porosity level is more applicable when the size of nanos-
tructured assemblies reaches the macroscale. The intrinsic thermal conductivity of the solid
part of the porous nanostructure was then determined to be ~3.5 W/m·K, while it had
been ~1.9 W/m·K before excluding the effect of the cavities. PT technique provides a new
and convenient way to characterize the porosity level of porous nanostructures, as well as
intrinsic thermal conductivity.

4.3. Nano-Crystalline Structure Evolution under Heating

Heat treatment facilitates the transformation between amorphous and crystalline
structures. It is hard to observe this kind of structural transformation with conventional
imaging methods. Thermal properties can again be a good indicator showing the variation
in the state of the crystalline structure because the amorphous and crystalline structures of
the same material have differences in their thermal conductivities. Xu et al. [36] applied
the PT method to study internal structure transformations of spider silk proteins under
heat treatment based on thermal effusivity. Two spider silk protein films prepared from
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two different types of spiders, N. clavipes and L. Hesperus, were studied, as shown in
Figure 4. When elevating the heating temperature, the thermal effusivity of the protein
films significantly increased because of the transformation from random coils (amorphous
structure) to α-helices and antiparallel β-sheets (crystalline structure). Supplementary
Raman studies of the films showed that the characteristic peak of protein started to shift
when the heating temperature reached 60 ◦C. In the heating process in this low temperature
range (lower than 60 ◦C), the increase in crystallinity was the main reason accounting for
the increase in the thermal effusivity. As the temperature increased to more than 80 ◦C, the
Raman characteristic peaks disappeared because the crystalline structures were destroyed
due to H-bond breaking among molecular chains. Increases in both thermal conductivity
(fewer boundaries) and volumetric heat capacity quickened the increasing rate of the
thermal effusivity from 100 to 120 ◦C. In this work, the Raman spectra of the protein films
were strongly affected by fluorescence induced by surface carbonization, especially in the
high temperature range, while the thermal effusivity from the PT technique continuously
responded well to the structure variation across the whole temperature range. Thus, PT
technique could be a good candidate for nanostructure investigation when conventional
methods are not applicable.
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permission from Ref. [36], Copyright (2022), Elsevier.

4.4. Considerations in the Measurement of Micro-/Nanomaterials

The abovementioned PT technique is able to measure the cross-plane thermal con-
ductivity, heat capacity (ρcp), and thermal contact resistance for a multilayered sam-
ple under the assumption of 1D heat conductance along the thickness direction. From
Equations (5)–(8), it can be seen that the method determines the absolute value of thermal
resistance for conductance (the sum of L/κ and R) and heat capacitance (Lρcp). For a certain
layer i with a thin thickness Li, when its thermal resistance (Li/κi) is much smaller than
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the uncertainty ∆R of R, R will dominate the variation in the PT signal and the change in
Li/κi will not be sensed. The minimum thickness in the PT method should thus be larger
than ∆R·κi. As alternatives, the TDTR and FDTR methods employ an ultrafast pulsed laser
(femtosecond to nanosecond) to realize a nanometer-level thermal penetration depth and,
thus, the thermal measurement of nanometer-thick coatings [14]. Raman-based thermal
methods measure temperature according to the variation in the materials’ characteristic
peaks in the Raman spectrum. They are available for both suspended and supported films
and need no metal coating on the top of samples [24,26,30,37,38].

Another concern about the PT method is the in-plane thermal conductivity. As de-
scribed in the physical model, the heating laser spot size should be larger than the in-plane
thermal diffusion length in each layer so that the 1D model is valid. However, if the
sample has a high in-plane thermal conductivity (such as graphene, etc.), the 1D model is
violated. A direct solution is to build a 3D heat conduction model and also consider the
spatial distribution of the heating laser [39,40]. For suspended samples, the evaluation of
the transient term in Equation (2) in the time domain and the steady-state temperature
field mapping can be used achieve in-plane thermal conductivity measurement using the
current experimental setup. Moreover, other methods, such as the TDTR [41], FDTR [14],
and Raman-based thermal methods [25,42,43], can achieve both kinds of in-plane thermal
conductivity measurement.

Furthermore, infrared thermal radiation is not material-specific. When measuring
an individual nanostructure, such as a single nanoparticle, an IR detector may gather
the thermal radiation from the nanoparticle and its surroundings/supporting materials.
The determined thermal properties are thus averages one rather than the properties for
a specific nanostructure. In contrast, Raman spectroscopy has a fingerprint feature and
can respond to temperature changes and detect the temperature rise for individual micro-
/nanostructures [24,38,44–47].

5. Conclusions

In this paper, we reviewed the physical mechanism of PT technique for thermal
property measurement and its practical application in the thermal characterization of
nanomaterials. With PT technique, the phase shift method provides a high sensitivity to
the thermal properties while the amplitude method can measure thermal conductivity
without considering interfacial contact. Utilizing the dependency of thermal properties
on the internal structure of materials, PT technique has shown its unique capabilities for
nanostructure investigation where commonly used micro-/nanoscale imaging technologies
might not be applicable. Though limitations exist, PT technique is quite mature. Future
application of PT technique can be extended to thermal property and structure detection
beneath the surface.
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