
sensors

Article

Semi-Remote Gait Assistance Interface: A Joystick with Visual
Feedback Capabilities for Therapists

Daniel E. Garcia A. 1, Sergio D. Sierra M. 1 , Daniel Gomez-Vargas 1 , Mario F. Jiménez 2,* ,
Marcela Múnera 1 and Carlos A. Cifuentes 1,*

����������
�������

Citation: Garcia A., D.E.; Sierra M.,

S.D.; Gomez-Vargas, D.; Jiménez,

M.F.; Múnera, M.; Cifuentes, C.A.

Semi-Remote Gait Assistance

Interface: A Joystick with Visual

Feedback Capabilities for Therapists.

Sensors 2021, 21, 3521. https://

doi.org/10.3390/s21103521

Academic Editor: M. Osman Tokhi

Received: 24 March 2021

Accepted: 6 May 2021

Published: 19 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito,
Bogota 111166, Colombia; daniel.garcia-a@mail.escuelaing.edu.co (D.E.G.A.);
sergio.sierra@escuelaing.edu.co (S.D.S.M.); daniel.gomez-v@mail.escuelaing.edu.co (D.G.-V.);
marcela.munera@escuelaing.edu.co (M.M.)

2 School of Engineering, Science and Technology, Universidad del Rosario, Bogotá 111711, Colombia
* Correspondence: mariof.jimenez@urosario.edu.co (M.F.J.); carlos.cifuentes@escuelaing.edu.co (C.A.C.);

Tel.: +57-(1)-297-0200 (M.F.J.); +57-(031)-668-3600 (C.A.C.)

Abstract: The constant growth of pathologies affecting human mobility has led to developing of
different assistive devices to provide physical and cognitive assistance. Smart walkers are a particular
type of these devices since they integrate navigation systems, path-following algorithms, and user
interaction modules to ensure natural and intuitive interaction. Although these functionalities are
often implemented in rehabilitation scenarios, there is a need to actively involve the healthcare
professionals in the interaction loop while guaranteeing safety for them and patients. This work
presents the validation of two visual feedback strategies for the teleoperation of a simulated robotic
walker during an assisted navigation task. For this purpose, a group of 14 clinicians from the
rehabilitation area formed the validation group. A simple path-following task was proposed, and
the feedback strategies were assessed through the kinematic estimation error (KTE) and a usability
survey. A KTE of 0.28 m was obtained for the feedback strategy on the joystick. Additionally,
significant differences were found through a Mann–Whitney–Wilcoxon test for the perception of
behavior and confidence towards the joystick according to the modes of interaction (p-values of 0.04
and 0.01, respectively). The use of visual feedback with this tool contributes to research areas such as
remote management of therapies and monitoring rehabilitation of people’s mobility.

Keywords: human mobility; rehabilitation; smart walkers; joystick; visual feedback; teleoperation

1. Introduction

Physical rehabilitation (i.e., often referred to as physiotherapy) aims to restore peo-
ple’s movement and physical functioning affected by injury, illness, disability, or traumatic
events [1]. One of the main approaches for physical rehabilitation is targeted at the re-
training of the human gait. Different health conditions can result in walking limitations or
problems, such as accidents and neurological disorders (e.g., stroke, spinal cord injury, cere-
bral palsy), aging, musculoskeletal diseases (e.g., arthritis), heart disease, among others [2].
Depending on each patient’s condition, gait rehabilitation and assistance therapies might
focus on providing, compensating, increasing, or retraining the lost locomotion capacities,
as well as the cognitive abilities of the individual [2]. Specifically, training interventions
seek to improve walking performance by (1) eliciting voluntary muscular activation in
lower limbs, (2) increasing muscle strength and coordination, (3) recovering walking
speed and endurance, and (4) maximizing lower limb range of motion [3]. In this manner,
several techniques and approaches have been developed, ranging from overground and
conventional gait training to robot-assisted and machine-based therapies [4,5].

In particular, robot-assisted gait training has gained considerable interest in recent
decades since sensors and actuators allow safe, intensive, and task-specific therapies [6,7].
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More profoundly, the integration of technology into physical rehabilitation processes also
provide: (1) replicable therapies due to the recognition of movement patterns, (2) high
intensity activities with adjustable difficulty, (3) monitoring of the patient’s physiological
state, (4) virtual and augmented reality, as well as feedback strategies, can be used to
provide immersive recovery experiences, (5) a trustworthy evaluation of the patient’s
recovery success, and (6) reduction of the physical effort of the therapists [2,8,9]. Some
examples of robotic solutions for gait rehabilitation are stationary or treadmill-based gait
trainers, wearable devices (e.g., exoskeletons), ambulatory devices, and mobile robots (e.g.,
robotic walkers, standing devices) [7,10–12].

Robotic walkers are a potent rehabilitation tool; conventional walker’s have been
empowered with features by integrating robotic and sensing technologies to allow the
users to move and interact freely in a given environment [13]. As the conventional type,
the robotic walkers improve overall balance, enhance lateral stability, and provide weight-
bearing [14]. Moreover, robotic walkers are also capable of: (1) providing cognitive and
physical support, (2) estimating biomechanical parameters, (3) extracting intentions of
movement, (4) providing guidance and navigation, (5) generating feedback, and (6) allow-
ing remote control [13,15,16]. Remarkably, this last feature is of great relevance since gait
rehabilitation therapies often demand close accompanying of therapists to provide therapy
monitoring [17].

Several studies have shown that combining robotic training with physical therapy
might improve the recovery process of neurological patients [7,18–20]. It has been widely
discussed that robots should not replace the neuro-rehabilitation therapy performed by a
therapist [7]. In contrast, it has been established that rehabilitation robots such as robotic
walkers can ease the physical burden on therapists. This has allowed the therapy manager
to focus on more specific tasks such as functional rehabilitation and supervision of patients,
optimizing their expertise and time [7,21,22]. In this sense, when using mobile robots
such as walkers, it is crucial to provide the therapists with a communication channel that
allows them to interact with the patient and the device without affecting independence
or adding cognitive burden to the patient [17,23,24]. With such a communication channel,
the therapists would command the robot remotely, perceive environment constraints, avoid
hazardous situations, and monitor the patient state.

According to the above, this work reports the implementation and validation of two vi-
sual feedback strategies for the teleoperation of a simulated robotic walker, using a joystick
during a path-following task. The first strategy allowed the users to visualize the path’s
information on a computer screen and the obstacles to avoid. The second strategy used
LEDs on the joystick to indicate if the user is in the appropriate direction. Thus, this work
sought to determine which strategy was better in terms of path following error and usabil-
ity. Additionally, this study also sought to identify the relevance for a group of healthcare
professionals to be actively included during walker-assisted rehabilitation processes.

2. Related Work

This section presents the different applications of a set of technologies for the operation,
control, real-time monitoring, and reprogramming of multiple devices. Typically, these
devices are robots that enable and facilitate shared control tasks [25] in a fast, efficient,
and safe way.

One of the main applications of teleoperation devices is drone control [26]. Due to
their versatility, teleoperation devices can contribute to both military and healthcare [25,27],
including environmental [28], and as a real-time monitoring mechanism [29]. Another
interesting application of teleoperation is surgical systems, making possible minimally
invasive human telesurgery over long distances [30,31]. Additionally, it should be noted
that this type of device is essential in the control of semi-autonomous robots [32,33]. At
this point, the implementation of interfaces that involved force or haptic feedback [34] for
obstacle avoidance tasks in dynamic environments and assisted navigation [35,36] should
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be highlighted. Unfortunately, despite their adequate performance, this kind of application
has shown calibration problems due to interface vibration [37].

After having a general overview of teleoperation devices’ applications, it is worth
highlighting their incidence and impact on individual vehicles that favor the transporta-
tion of people who have permanently, totally, or partially lost motor skills, i.e., electric
wheelchairs [38]. Due to its significant impact as an assistive device, interdisciplinary
groups have been working on the development of novel interfaces to make electric
wheelchairs more and more inclusive [39,40] as many people who suffer from tremors
or spasms or are unable to control their movements completely, find it challenging to
control wheelchairs with traditional joysticks. In this area, a particular and very significant
application is joystick car driving for people with disabilities. Such a joystick driving
device enables a person to drive a car while sitting in an electric wheelchair. The joystick’s
action in the back and power direction govern a car’s acceleration or deceleration, while
a steering wheel turns in the left and right direction [41]. Moreover, case studies about
teleoperation devices in simulated environments have been reported in the literature, in or-
der to mitigate as many errors as possible for the control devices when implemented in
real-life cases [42]. Manipulators that recognize the intention of the user’s movement are
also presented to make controlling the wheelchair easier [43]. Even control devices that
implement haptic [44] and visual [45] feedback are given. Unfortunately, this technology is
not designed to rehabilitate this kind of population but is limited to assisting. Considering
the high impact of teleoperation devices, the need to include this kind of technology in
rehabilitation and physical assistance scenarios should be highlighted.

This fact is also supported by the increasing demand for assistive robots, which re-
quire creating novel control modalities and interfaces to improve human–robot interfaces
(HRI) [46]. These situations are generally characterized by collaborative work between
robots and humans, where safe and efficient physical and cognitive encounters occur [47].
In particular, where humans and robots interact in complex scenarios where high per-
formance is required [48,49], several strategies have been introduced, such as virtual
environments [48], teleoperation with joysticks [50], interfaces with virtual impedance [50],
and approaches to force feedback [51]. Thus, these kinds of methods have, for exam-
ple, been used to interpret navigation commands and monitor robotic systems such as
wheelchairs, exoskeletons, and mobile robots [52–54] cooperatively.

Some are presented to contextualize these proposed solutions with the strategies
commonly used in smart walkers (SWs). To successfully and accurately facilitate the user’s
knowledge flow, SWs incorporate various contact channels [15]. The key objective of
these channels is to gather user-related information such as velocity, acceleration, location,
force, torque, movement intention, among others [6]. SWs are fitted with interfaces that
enforce control strategies to maximize their productivity to the fullest and, learn to respond
effectively to the user’s stimuli [15].

In addition, SWs also provide guidance and aided navigation functions [55–58]. These
characteristics include stability when leading the user through diverse and complex en-
vironments [6]. Some approaches are based on the path followed by methods where the
ideal path is created offline, and SW is followed [59,60]. More dynamic methods, on the
other hand, have also been applied, where path planning algorithms are used to estimate
the desired path online (i.e., changing barriers and complex landscapes directly impact the
intended path) [6,55].

The HRI paradigm has been independently discussed by recent implementations of
SWs, such that SWs can communicate with the user and the environment safely and natu-
rally. Similarly, using feedback modules to engage the individual in instruction activities
directly, certain methods have mutual management strategies [55]. However, the qualita-
tive evaluation of engagement techniques that have regular and intuitive mutual influence
along the road to tasks are still lacking. In addition, visual interface cooperation was
not completely used and exploited for guidance purposes in SWs, according to literature
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evidence. In this sense, this work describes the implementation and evaluation of two
visual strategies on a joystick to guide with an SW.

The remainder of this work is organized as follows. Section 3 describes the robotic
platform, the teleoperation device used during the study, and the proposed visual strategies.
Section 3.3 presents the experimental setup, including the volunteers and trial description.
Section 4 details the obtained results, presenting a comprehensive analysis of this work’s
primary outcomes. Finally, Section 5 points out the concluding remarks and future works.

3. Materials and Methods

This section describes the proposed system for the robot teleoperation in terms of
the included interaction platforms and the implemented feedback strategies. Likewise,
this part also details the experimental protocol for the system’s validation, including
quantitative and qualitative assessments.

3.1. Interaction Platforms

To provide visual feedback, the proposed system (see Figure 1) includes a (1) standard
workstation to execute and control the simulation, (2) a joystick to provide teleoperation
and feedback, and (3) a simulation environment to establish visual communication with
the user.

Simulation Environment

User

Joystick

LEDs

Figure 1. System proposed to provide visual feedback in teleoperation applications of smart walkers.

3.1.1. Standard Workstation

The system’s central compute consists of an Omen Laptop (HP, Palo Alto, CA, USA)
integrated with an Intel Core i7-7700HQ of 8 cores (2.80 GHz) and a RAM of 16 GB.
The device runs the Robotic Operating System (ROS, Kinetic Version) under a Linux
distribution (Ubuntu 16.04-Xenial).

3.1.2. Joystick

A Hapkit joystick (Stanford University, Stanford, CA, USA) was used, which provides
a remote command interface. The Hapkit is an open-hardware joystick with one degree
of freedom. The device was modified to include three LEDs placed on the base. These
LEDs were added to provide a visual feedback strategy focused on showing how the user
controlled the virtual smart walker (i.e., whether the robot’s trajectory was inside or outside
of the proposed path).

3.1.3. Simulation Environment

The graphic interface used the 3D visualization tool provided by the Gazebo ROS
package (Gazebo ROS package. Link: http://wiki.ros.org/gazebo_ros_pkgs. Accessed
on: 25 April 2021) and a 2D visualization tool, employing the rviz ROS package (Rviz
ROS package. Link: http://wiki.ros.org/rviz. Accessed on: 25 April 2021). This way,
the computer screen displayed the desired trajectory and the smart walker controlled by
the joystick in real-time (see Figure 1). To simulate the smart walker motion, the Gazebo

http://wiki.ros.org/gazebo_ros_pkgs
http://wiki.ros.org/rviz
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plugins for differential robots were used, and the Unified Robot Description Format (URDF)
(URDF model. Link: http://wiki.ros.org/urdf/XML/model. Accessed on: 25 April 2021)
was used to define the robot’s kinematics. The simulation measured the robot’s odometry
and received speed commands through a speed controller provided by Gazebo. Moreover,
a simulated laser rangefinder was also added to the robot, to provide obstacles sensing.
The Gazebo plugin for laser rangefinder was also used. It is essential to highlight that
for the joystick, the simulation, the admittance controller, the calculation of the kinematic
estimation error (KTE), a sampling rate of 30 Hz was implemented.

3.1.4. System Operation

The therapists were asked to guide a simulated smart walker through a predefined
environment (see Figure 1). Initially, the system indicated to the participants how to control
the smart walker by showing them the simulated environment (see Figure 2). The robot
was rendered in such a way that it resembled the standard structure of a robotic walker.
To simulate the patient, a constant impulse force (F) on the robot was generated. For this
specific case, this force was decided as a constant parameter. The task of the therapists was
to control the turning of the robotic walker. To this end, virtual torques were generated by
moving the Hapkit from one side to the other, as Figure 2 shows. Specifically, the position
of the joystick was converted to torque through the implementation of Equation (1):

τ = (−1) ∗ k1 ∗ tanh
(

x
k2

)
(1)

where τ is the torque, k1 a gain with a value of 5000, k2 a gain with a value of 50, and x the
joystick position. This formulation was based on a previous work for guiding people with
virtual torque signals, using a smart walker [61]. Subsequently, a constant virtual force (F)
of 10 N was generated to simulate a user driving the robotic walker. In this way, the force
(F) and torque (τ) were used to generate linear (v) and angular (ω) velocities using an
admittance controller [6,59].

Finally, two feedback modes on the joystick were tested during the simulation: (1) feed-
back on the screen and (2) feedback on the joystick (i.e., FS and FJ, respectively). It should
be noted that through the positions in x (Xω) and y (Yω) and the virtual robot’s orientation
(θω), the path’s orientation error, achieved by the device concerning the proposed trajectory,
can be estimated.

Position
to

Torque

x Admittance
Controller

τ

Joystick

Virtual User

F

v

ω

Smart Walker
Xω

θω

Yω

Screen

FJ

FS

Path
Control

x

y
Ideal Path

Simulated World

FJ

Therapist

Orientation
Error

Figure 2. Illustration of the interaction system constituted by the feedback strategies, the path
following task, and the simulation environment. x is the joystick position, τ is the virtual torque, F
is the impulse force, v is the linear velocity, ω is the angular velocity, Xω is the x coordinate of the
walker’s position, Yω is the y coordinate of the walker’s position, and θω is the walker’s orientation.
FJ refers to feedback on the joystick and FS to feedback on screen.

http://wiki.ros.org/urdf/XML/model
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In addition to the obstacles placed in the simulation environment, the robot proposed
an ideal path to be followed by the robot. Thus, the odometry of the robotic walker was
used to estimate the path-following error. To obtain the correct direction of turning at each
pose of the path, the path following controller developed by Andaluz et al. was used [62].

3.2. Visual Feedback Strategies for Teleoperation

Figure 3 shows the proposed visual feedback strategies for the robotic walker’s tele-
operation in the simulation environment from the interaction platforms detailed in the
previous section. Specifically, the strategies comprise (1) feedback on the screen and
(2) feedback on the joystick.

Robotic Walker

Simulation Environment

Feedback on Screen Feedback on Joystick

- Obstacles are visible.
- The desired path is shown 
  (in Green).
- The performed path is shown
  (in Red).

- Obstacles are not visible.

- The desired path is not shown. 

- The performed path is shown 
  (in Red).

User

LEDs
Enabled

LEDs
Disabled

Figure 3. Visual feedback strategies applied in the robotic walker teleoperation. The upper figures
show the simulation environment (gazebo) and the robotic walker used in the system. The central
figures illustrate the ideal path and the proposed strategies with their characteristics in the graphic
interface. The lower part exhibits the action on the joystick for each method.
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3.2.1. Feedback on the Screen (FS)

For this modality, the user receives the feedback directly from the graphic interface.
Therefore, the ideal and current paths are exhibited on the screen so that the therapist can
correct the smart walker’s trajectory by moving the Hapkit. The virtual walker and the
performed path were updated every 50 ms, approximately. Moreover, the obstacles sensed
by the laser rangefinder are also displayed.

3.2.2. Feedback on the Joystick (FJ)

In this mode, three LEDs located on the base of the Hapkit provide information
about the path-following error. Specifically, neither the obstacles nor the desired path are
displayed on the graphic interface. A red LED placed on the left side indicates negative
errors concerning the ideal path, a white LED in the middle illustrates when the smart
walker is correctly oriented, and a yellow LED placed on the right side indicates positive
errors (see Figure 4). In this way, this strategy’s primary goal consists of keeping the white
LED (i.e., placed in the middle) switched on as long as possible.

More precisely, as can be seen in Figure 4, a negative error experienced in the virtual
walker implied a deviation to the right side concerning the ideal trajectory. In this case,
the joystick turned on the left LED (red light), indicating to the users that they should
move the control in that direction to keep the robot inside the trajectory. Similarly, this
process occurred for the positive error when the walker was in the left part of the proposed
path (see Figure 4). Thus, the joystick turned on the yellow light (right LED), indicating
that the user should correct the walker’s trajectory. Finally, the center LED (white light)
was turned on for a no-error state, showing that the user controlled the robot correctly, as
Figure 4 shows.

Positive ErrorNo ErrorNegative Error

Figure 4. Illustration of the feedback strategy on the joystick. Three LEDs placed on the base of the
device indicate the existence or absence of a path following error. The arrows indicate how to move
the joystick to correct the error. The desired path is shown in green. The achieved path is shown
in red.

In addition, for the LEDs to light up, at least three successive data samples had to
have the same error behavior, i.e., for the yellow LED to light up, at least three consecutive
data samples had to have a positive error. Finally, it is worth noting that for this mode,
a threshold was defined for making the task a little more user-friendly and thus, to be able
to correctly determine the error on the trajectory. This threshold was 10 degrees both to
the left and to the right. That is when the subject deviated from the proposed route and
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exceeded this threshold, the respective LEDs would light up. The threshold was defined
experimentally to avoid overloading the cognitive communication channel between the
device and the user.

3.3. Experimental Protocol

This section describes the experimental validation executed to evaluate the perfor-
mance of the feedback strategies presented above.

3.3.1. Participant Recruitment

Considering the goal of the system, 14 occupational therapists participated in this
study. The group was composed of 12 females and 2 males with an average age of
23.4± 1.8 y.o. and a mean clinical experience of 2.3± 1.2 years. Table 1 summarizes the
demographic information of the participants recruited according to the exclusion and
inclusion criteria shown below:

• Inclusion Criteria: Occupational therapists (OT) or last year students in occupational
therapy (OT Student) with experience in gait rehabilitation scenarios.

• Exclusion Criteria: Candidates who presented upper-limb injuries, cognitive impair-
ments, or any condition that impedes using of the joystick and the graphic interface
were excluded in this study.

Table 1. Demographic information of the participants involved in the study.

Subject Age (Years) Gender Occupation Experience (Years)

1 21 Female OT Student 1
2 23 Female OT Student 1
3 23 Female OT Student 2
4 21 Female OT 2
5 23 Female OT 3
6 22 Male OT Student 1
7 21 Female OT 3
8 27 Female OT 5
9 23 Female OT 3

10 24 Female OT 4
11 24 Male OT 2
12 25 Female OT 2
13 25 Female OT 3
14 25 Female OT 1

3.3.2. Experimental Procedure

Before the experiment, participants were asked to fill out a brief three-question ques-
tionnaire (i.e., Have you worked with walkers? Have you worked with robotic walkers?
Have you worked with assistive robotics, in general?) to determine the level of approach
they have had with this type of devices. This questionnaire had two answer options, yes
if they had some approach to this type of devices, and no in case they do not have any
previous experience.

All participants were given appropriate instructions on the operation of the two
feedback strategies prior to the trials execution. The order in which the feedback strategies
were used, was randomized for each participant. Subsequently, the simulation environment
was set up with a left-turn trajectory to analyze and compare the effects of the two methods.
Each participant was required to complete three attempts of the path-following task,
and only the third one was used for analysis purposes. The first and second attempts were
used for training. A resting period of 30 s was allowed between each attempt of the same
feedback mode, whereas a resting period of 1 min was allowed when the feedback mode
was changed.
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Moreover, a maximum execution time of 1 min and 30 s was allowed for each attempt.
In case of exceeding this time, the attempt was aborted. The participants were only asked
to attend one session.

During the trial, log files were stored, and the rosbag ROS package (Rosbag ROS
package. Link: http://wiki.ros.org/rosbag. Accessed on: 25 April 2021) was used to record
the robotic walker information and the movements of the joystick. Once they accomplished
each strategy, the participants completed a qualitative survey to assess the acceptance and
usability of the proposed system.

3.3.3. Quantitative Assessment

To measure the users’ performance during the trials, the kinematic estimation error
(KTE) was calculated in this study [63]. The KTE compares the achieved path by the
participant against the ideal (the proposed path for the experiment), calculating the mean
error and including the trial variance, as Equation (2) shows.

KTE =
√
|ε|2 + σ2, (2)

where the |ε|2 value refers to the mean squared errors between the ideal and achieved paths,
and the σ2 value represents the data variance [24,63]. It is worth noting that this equation
does not require the walker’s speed or acceleration, since it aims to provide insights into
the spatial performance of the path-following error, rather than kinematic information.
Furthermore, the virtual impulse force was simulated as constant, thus the linear velocity,
generated by the admittance controller, was also constant. For this reason, the KTE is used
to estimate the error between the proposed trajectory and the one achieved by the subject.

Moreover, to analyze the user–joystick physical interaction during the task, several
kinematic characteristics such as the duration [s], the distance [m], the orientation error
[rad], the correction torque [N.m], and the walker’s pose (i.e., Xω, Yω, θω) were recorded.
Notably, the indicator related to the correction torque indicates the therapist’s average
torque, when moving the Hapkit. These indicators were only estimated for the third trial
of each mode, i.e., the validation trial.

3.3.4. Qualitative Assessment

Based on previous studies related to qualitative assessments in applications using
smart walkers, as presented in [6,59,64], this study included a perception and usability
survey. Table 2 illustrates the questionnaire adapted to this study to assess the user interac-
tion with the system. The questions were intended to estimate the naturalness, intuition,
and user preference concerning the proposed strategies. For that, the questionnaire inte-
grated six categories: Facilitating Conditions (FC), Performance and Attitude Expectation
(PAE), Expectation of Effort and Anxiety (EA), Behavior Perception (BP), Trust (TR), and At-
titude towards Technology (AT). Moreover, the survey integrated a 5-point Likert scale
to score the questions, being five fully agreeing and one completely disagreeing. As de-
scribed in Table 2, some questions were negatively formulated. Regarding these questions,
the collected answers were mirrored along with the neutral scale value (i.e., score = 3) for
analysis purposes.

To analyze the results of this survey, it was necessary to compile each category’s
questions into a single number. To achieve this, the percentage of each point of the Likert
scale was calculated concerning the total number of responses for each mode. That is,
for the specific case of FC, we calculated the quotient between the sum of the number of
votes for totally disagree (for the 4 questions) and the number of possible votes for the
mode. This last value for this case is 56 since there are 14 participants and 4 questions.
Finally, this quotient was multiplied by 100 to obtain its equivalent in percentage. This
procedure was applied to both modes in each of the categories.

http://wiki.ros.org/rosbag
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Table 2. Perception and usability questionnaire implemented in the experiment. Asterisks indicate
that questions were formulated negatively.

Cat. No. Question

FC

1 I had the necessary knowledge to use the device.
2 I have previously used similar systems.
3 The training was enough to understand the behavior of the mode.
4 Before using the device, I was intimidated. *

PAE

1 If I had to use a joystick as a command interface,
this device would be useful to me.

2 If I had to use a joystick as a command interface, I would like to use this device.
3 Using this device improves my ability to use command interfaces.
4 Similar devices may allow a new form of therapist-patient interaction.

EEA 1 In this mode, learning to operate the device was easy.
2 In this mode, I think I quickly learned to control the device.
3 In this mode, I was afraid of making mistakes or breaking something. *

4 If I had to control a robotic walker with this device in this mode, I would be afraid
of losing control. *

5 In this mode, working with the device was so complicated,
which is hard to understand. *

BP

1 In this mode, I felt the device understood me.
2 In this mode, I felt the device communicate with me.
3 In this mode, I felt like I was controlling the virtual walker with the device.
4 In this mode, I felt that the device helped me control the virtual walker.
5 In this way, I believe the type of feedback was appropriate and effective.
6 In this mode, I think the kind of feedback was easy to understand.

TR 1 In general, I would trust when the device gives me advice on how to control
the virtual walker.

2 In general, if the device give me advice, I would follow it.

AT
1 In this mode, I had fun using the device.
2 In this mode, I think it is interesting how the device interacts with me.
3 In this mode, using the device was frustrating for me. *

3.3.5. Statistical Analysis

For the quantitative data, the Shapiro–Wilk test assessed the normality of the measured
characteristics, and the t-student test determined whether there were significant differences
between the proposed strategies. Likewise, in the quantitative assessment, the Mann–
Whitney–Wilcoxon (MWW) test assessed statistical differences between the proposed
feedback methods. Thus, for this case, the test was used because of data reported to
have minimal Type I error rates and equivalent power without testing for Likert [65,66].
A significance value of p < 0.05 was used for all the statistical tests.

3.3.6. Ethics Statement

The Research Ethics Committee of the University approved this experimental protocol.
The participants were informed about the experiment’s scope and purpose, and their
written informed consent was obtained before the study. The participants were free to
leave the study when they decided to do so.

4. Results and Discussion

This section describes and discusses the primary outcomes of this study regarding
quantitative and qualitative results. A total of 14 sessions were completed, and no collisions
occurred during the simulations.

Figure 5 illustrates the results registered by a participant during the different trials
with the two proposed feedback strategies. These results were selected, as the participant
exhibited an average performance, in comparison to all participants. The upper figure
shows the achieved trajectories using the feedback on the screen method, and the lower
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part displays the paths for the feedback on the joystick. Trials 1 and 2 refer to the trajectories
obtained in the training stage, and the validation represents the path used to extract the
kinematic and interaction data exhibited below.
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(a) Path with Feedback on Screen.
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(b) Path with Feedback on Joystick

Figure 5. Path following task examples for one subject. Training and validation trials for (a) feedback
on the screen and (b) feedback on the joystick are shown.

It is worth noting that a single, simple path was proposed to validate this teleoperation
tool. This fact is supported by the data provided by the literature on the cognitive load
produced by visual interfaces when they are poorly implemented [67,68]. Several authors
recommend that to validate this type of technology, simple tasks should be performed so
that users become familiar with the work to be done [69,70] and thus, gradually increase
the complexity of the task. For this reason, since the joystick and the visual strategies are in
a validation stage, such a route was designed to have a clear perception of the clinicians
regarding the tool.

In addition, it should be noted that the experiment was conducted in a simulated
environment. Considering what the literature suggests about mobile robots, simulations
play an essential role in system validation, as presented in [71]. Some authors say that
although it has been shown that it is possible to train the devices in real environments,
the amount of trials needed to test the system discourages the use of physical robots during
the training period [71,72]. Therefore, it is recommended to validate the robot performance
in the early stages in simulated environments to mitigate as many errors as possible that
may occur in the real application [72].

4.1. Quantitative Results

Table 3 summarizes the mean values of the characteristics obtained in this study to
measure the participants’ performance during both strategies. The measured indicators
comprise aspects such as the duration to accomplish the path, the distance traveled by
the robotic walker, the kinematic estimation error (KTE), the orientation error, and the
correction torque calculated from the joystick movements.

In the statistical context, the Shapiro–Wilk test determined that all parameters followed
a normal distribution. Therefore, to find significant differences between the modes (i.e., FS:
feedback on the screen and FJ: feedback on the joystick), the t-student test was performed.
Notably, all measured parameters registered statistically significant differences (see Table 3).
Hence, it can be stated that each feedback methodology provides an entirely different
teleoperation performance. In this regard, although the path was the same for both
strategies, the interaction parameters evidenced statistically significant changes.
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Table 3. Summary of kinematic and interaction data obtained during the trials. All parameters
followed a normal distribution. Highlighted parameters (in gray) evidenced significant differences
between both strategies (p < 0.05). Asterisks indicate that the data have a normal distribution.

Parameter FS FJ p-Value
Duration [s] 26.15 ± 2.58 * 25.23 ± 3.91 * <0.01
Distance [m] 3.81 ± 2.20 * 3.80 ± 1.92 * 0.04

KTE [m] 0.31 ± 0.06 * 0.28 ± 0.03 * 0.02
Orientation Error [rad] 0.35 ± 0.11 * 0.32 ± 0.06 * 0.03

Correction Torque [N.m] 1.37 ± 3.28 * 1.26 ± 3.75 * <0.01

In terms of duration and distance, the feedback on joystick (FJ) strategy showed a
decrease in the mean value compared to the feedback on screen (FS) mode. Thus, it can
be highlighted that the therapists performed better trajectories (i.e., closer to the reference
path) when the joystick provided visual feedback. In addition, this behavior also led to the
accomplishment of the path in shorter times. This result may be supported by the fact that
the joystick’s feedback mode required fewer correction torques on the device (see Table 3).
Moreover, the LEDs’ use as visual feedback provides an instantaneous indicator of the path
following error, compared to the error’s perception on the screen.

Regarding the KTE error, the feedback mode on the joystick (FJ) registered the lowest
values. This result suggests that the user–device interaction was more intuitive and efficient
in keeping the walker within the proposed path, concerning the FJ strategy. In addition,
the comparison between the strategies was evidenced by statistically significant differ-
ences, which was expected, considering that the values obtained from the FS were always
considerably higher.

Similarly, the orientation error presented lower values for the FJ strategy. Thus, this
result indicates that the volunteers managed to keep the robotic walker within the ideal
path more easily. In contrast and similarly to the previous results, the feedback on the
screen presented higher error values.

Finally, regarding the correction torque, the FS strategy exhibited the highest values.
This result could be supported by the fact that this mode demanded more correction
movements with the Hapkit. In contrast, when the therapists controlled the smart walker
using the FJ strategy, the parameters evidenced lower values, indicating that the joystick’s
feedback was more efficient. In statistical terms, significant differences were found between
the modes.

Comparing these results with literature, in [73] negative results were obtained when
the user received feedback on a screen in a path-following task. Moreover, the study by [24]
suggested that visual feedback on the joystick was better, even compared with haptic
feedback. This evidence suggests that visual methods can be implemented to facilitate the
therapists’ involvement and to provide a useful teleoperation tool. Furthermore, ref. [74]
emphasized the importance of including an efficient visual strategy for teleoperation
applications, the proposed system’s results suggest that the feedback on the joystick could
be a solution with potential use in this area.

4.2. Qualitative Results

This study included a preliminary survey to assess levels of knowledge and per-
ception of robotic technology application in rehabilitation settings. Overall, 58.3% of the
participants had worked at least once with conventional walkers. However, 91.7% of the
therapists had never interacted with robotic walkers, and 66.7% said they had not used any
robotic devices for assistive applications. These results support the need to actively, closely,
and safely [20,75] have therapists during robotic walker therapies [23,76]. Furthermore,
such inexperience on the part of the therapists may be related to the low development of
tools to facilitate their task in the course of their therapy [50,77].
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On the other hand, to determine the naturalness, intuitiveness, safety, perception,
complexity, and users’ preference with the proposed strategies, a questionnaire (see Table 2)
was accomplished by all participants. Figure 6 summarizes the answers for the different
categories of the implemented questionnaire.

In the statistical context, the Mann–Whitney–Wilcoxon (MWW) determined significant
changes between both assessed feedback strategies. Table 4 summarizes the results for the
MWW test applied between the interaction strategies and the questionnaire categories.

In particular, the questions in the category of facilitating conditions (FC), which
assessed aspects such as safety, ease of use, and attitude during the interaction, show a
mainly positive distribution. For the mode on the screen, the perception was slightly higher
than the feedback strategy on the joystick (see Figure 6). Although, in general terms, this
aspect was positive for both methods. Furthermore, volunteers indicated ease to interact
with the proposed system independently of the applied modality. This way, the results
confirm that the strategies implemented were adjusted, generating non-complex scenarios
for the users.

Regarding the Performance and Attitude Expectancy (PAE) category, these questions
were intended to assess the device’s overall performance. The distribution of responses
for this category is positive and uniform (see Figure 6). This result indicates that users
showed a favorable attitude and acceptance for both modes, which is confirmed by the no
significant differences between the groups (i.e., FS and FJ) shown in Table 4.

Concerning the category of effort and the perception of anxiety (EEA), the statisti-
cal trial revealed significant differences between the feedback modes. Thus, the screen
strategy presented better results in comparison with the feedback on the joystick. More-
over, although the tendency was positive for most participants, some therapists perceived
considerable anxiety and relevant efforts using the system.

For the perception of behavior (i.e., a category that aimed to measure the user-device
communication directly), there were significant differences between the proposed strategies,
as Table 4 shows. Moreover, Figure 6 illustrates the distribution for both cases, where the
feedback on the joystick exhibited more positive values than the method on the screen.
This result indicates that volunteers felt more comfortable and confident using this strategy.

In the TR category case, which assessed the confidence of the subjects when using
the device, strategies evidenced differences between them (see Figure 6). This result is
consistent with the statistical analysis exhibited in Table 4. Specifically, the joystick’s
feedback mode presented a more extensive positive distribution than the method on the
screen. Thus, the favorable perception could be supported because the subjects felt more
confident interaction under the guided feedback mode using LEDs, possibly because this
strategy could be more natural and intuitive in teleoperation applications.

Table 4. p-values obtained from the Mann–Whitney–Wilcoxon test. The highlighted values (in gray)
indicate differences with a significance level of 0.05.

Category Feedback on the Screen vs. Feedback on the Joystick
FC 0.01

PAE 0.50
EEA 0.03
BP 0.04
TR 0.01
AT 0.02
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Figure 6. Distribution of acceptance and usability questionnaire answers. Feedback on screen (FS),
feedback on joystick (FJ). Asterisks indicate that there are significant differences between modes.

Regarding to the category focused on measuring of the subjects’ attitude towards tech-
nology (TA), there was a slight decrease in the interaction mode showing the orientation
error on the screen (Figure 6). Table 4 shows statistical differences between the strategies,
where the method on the screen registered lower favorable perception. Moreover, the pos-
itive distribution in the joystick’s feedback strategy indicates that users understood the
device’s teleoperation satisfactorily employing LEDs for feedback information.

It is worth mentioning that one of the significant limitations of this study is related to
the path chosen for the experimental trials. However, this work’s main objective was to
validate the strategy in a simple scenario, while further works will include more complex
experimental conditions. Exceptionally, it would be useful to include obstacles, longer and
more difficult paths, and a real smart walker.

Furthermore, it is important to highlight a key point within this study related to the
feedback strategies. If the joystick’s feedback lights were not on the device but on the screen,
very similar results would probably be obtained. However, the idea of this study was
to validate two methods of feedback and to verify whether the mode with less cognitive
load would allow users to obtain better results in the path-following task. Additionally,
in future implementations we expect to develop a portable joystick that can be carried by
the therapist. In this way, the device will not be required to be connected to a desktop
computer or workstation. Therefore, with this work we sought to validate a feedback
method that applies to this portable version.
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5. Conclusions and Future Work

A new method for walker-assisted gait therapy monitoring and control using a com-
mand interface was proposed in this article. Using the visual capability of a joystick device,
a physical and cognitive communication channel was developed. In this sense, a Physical
and Cognitive Interface (PCI) for human–robot interaction between therapy manager and
joystick was created in this work. In addition, different levels of communication were
provided by a series of visual feedback strategies.

On 14 participants who completed multiple trials with the device, an acceptance and
usability questionnaire was applied. Participants had a higher level of confidence in the
visual feedback mode using the joystick’s LEDs, as well as a greater understanding of
the interaction. Similarly, the kinematic estimation error (KTE) was determined during
experimental trials, with lower values in this strategy.

The use of feedback strategies integrating physical and cognitive interaction between
the therapist and an interface contributes to research areas such as telerehabilitation and
monitoring of people in hospital environments. Likewise, those applications empower
therapist capabilities by reducing the energetic expenditures performing physical activities.
Moreover, through the system’s information, the therapist can perceive the patients’ per-
ceptions using mobile devices for assistive applications. This way, the therapist can control
the SW and prevent undesirable situations such as falls or collisions.

As a result, on the one hand, the therapist would have a greater view of the envi-
ronment and people’s recovery process with the proposed tool. Overall, there were some
shortcomings due to participants who did not understand the joystick interface chan-
nel used for feedback. On the other hand, learning how to interpret therapy knowledge
through a non-traditional communication medium can necessitate a brief period of training.

As future work, the implementation of the device in a real environment with slightly
more complex path-following tasks will be carried out. For that reason, the idea of this
study was also to develop an innovative tool in the context of teleoperation in robotic
walkers. This tool was designed to explore an alternative to conventional remote control
devices for walkers (e.g., laptops, tablets). In particular, they tend to have complex and
unfriendly interfaces, thus generating considerable cognitive load for clinicians and not
allowing them to adequately perform their role within the therapy.
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