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Abstract In metabolomics, time-resolved, dynamic or

temporal data is more and more collected. The number of

methods to analyze such data, however, is very limited and

in most cases the dynamic nature of the data is not even

taken into account. This paper reviews current methods in

use for analyzing dynamic metabolomic data. Moreover,

some methods from other fields of science that may be of

use to analyze such dynamic metabolomics data are

described in some detail. The methods are put in a general

framework after providing a formal definition on what

constitutes a ‘dynamic’ method. Some of the methods are

illustrated with real-life metabolomics examples.
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1 Introduction

In the last decade exciting science and innovation in Life

Sciences are driven from a systems view. Systems biology

has found a scientific focus due to advances in the high

throughput enabling technologies, measuring quickly at

different biological levels such as transcripts, proteins and

metabolites (Hood 2003; van der Greef et al. 2007; Wol-

kenhauer 2002). The progress of the systems based

approach is in a large part depending on developments in

biostatistics and bioinformatics to integrate high-dimen-

sional data to obtain a systems view. Many challenges

remain in this area some of which will be discussed.

A systems view recognizes that at different levels of a

complex system new properties are emerging and as a

consequence we need to study a system as a whole and not

by focusing on elements only. In addition to this, the multi-

level, interconnected, non-linear and dynamic properties

become the focus from which the self-organization of a

system can be understood. The dynamic characteristics

both from a measurement and biostatistics point of view

are becoming mandatory to reveal new system information,

e.g., to understand homeostasis and resilience after per-

turbation. Understanding health and disease based on

concepts as resilience can be understood from a biological

view, but the ability to measure and to analyze the complex

longitudinal high-dimensional data is mandatory to make

progress in research.

The concept of dynamic diseases was coined by Glass

and Mackey (1988) and the importance of biorhythms in

relation to health and disease as well as intervention are

surfacing as topics in multi-factorial disease etiology. From

a measurement point of view, metabolomics is an attractive

tool as it reveals information close to the phenotypic level

and it allows for large scale measurements in a robust way.

To set the stage, we first describe which type of dynamic

metabolomic data will be the topic of this paper. We will

not discuss approaches in metabolic flux analysis, since

that topic is covered elsewhere (Kholodenko 2004;
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Stephanopoulos et al. 1998) and occurs at a different time

scale involving other mechanisms than the data we want to

discuss. Also metabolic network inference methods through

dynamic data will not be discussed because this is a topic in

itself (Samoilov et al. (2001); van Berlo et al. (2003)). The

dynamic data we are going to discuss can originate from

different sources, depending on the relevant biological

question and the study design. In human metabolomics,

dynamic data from a challenge test may be available: a

person receives a challenge (e.g., a test meal) and blood is

sampled afterwards (Bijlsma et al. 2006) (time scale of

minutes/hours). This points to the topic of personalized food

and medicine where each person is subjected to a challenge

test that serves as a blueprint of the ‘metabolic status’ of that

person (van der Greef et al. 2006). In animal studies, also

serial tissue sampling (besides bodily fluids) might be

available (Kleemann et al. 2007) (time scale of hours/days).

Another example in animal studies is toxicology, where a

toxic compound is administered at different dosage levels

and samples of urine, blood and liver are collected in time

(Heijne et al. 2005; Keun et al. 2004) (time scale of hours/

days). A completely different type of dynamics is in

microbial metabolomics, where time-resolved measure-

ments are done on the intracellular metabolome of an

organism in a fermentation process (Rubingh et al. 2009)

(time scale of hours).

In this paper, we will focus on metabolomics data

(mostly) obtained through instruments such as NMR,

LC-MS and GC-MS. We will discuss methods to under-

stand underlying dynamic behavior of biological systems

based on analyzing metabolomics data. We will give an

overview on approaches taken in other fields such as

chemical engineering, systems theory and psychometrics.

Since these fields are very large, only those approaches are

discussed which are of potential use in metabolomics. The

existing approaches in transcriptomics will also be dis-

cusssed in this framework. We will discuss the methods in

the context of multivariate and high-dimensional data.

Multivariate means that for a single sample, multiple

metabolites are measured and in high-dimensional data,

many more metabolites are measured than samples. For

metabolomics, hardly any methods incorporating dynamics

exist sofar, to our best knowledge. We will specify this

statement later.

Three real-life data sets will be used as examples

throughout this paper to illustrate the working of some of

the methods. A brief introduction to the specifics of the

examples; building blocks of dynamic metabolomic data

analysis and a definition of ‘dynamics methods’ are also

provided to set the stage. Many of the methods reviewed

and proposed are not yet used in metabolomics, hence, the

area of dynamic metabolomics data analysis is still very

open for research.

2 Short description of the examples

Hormones are signaling and regulatory molecules. In

humans many hormones exhibit a circadian rhythm. There

are indications that the dynamic behavior of hormones are

related to disease states and also change upon treatment

(Kok et al. 2004, 2006). Hormones are secreted in pulses,

delivered to the bloodstream and subsequently degraded. In

the example, women were hospitalized for a study and

during a 24 h period, blood samples were taken every 10

min (n = 145 per individual). These blood samples were

analyzed for certain hormones, among them cortisol and

luteinizing hormone (LH). These measured hormone levels

are shown in Fig. 1 for one female. The data show clearly

pulsatile patterns.

The second example concerns NMR spectra of urine of

rhesus monkeys (Macaca mulatta) measured in time.

Samples are taken of ten monkeys (five male and five

female) at n = 29 days unevenly spread over a time course

of 57 days. This is a normality study: the monkeys were

kept in a non-stressed environment to study their natural

biorhythms. Details of the study were published elsewhere

(Jansen et al. 2004).

The third example is on nutrikinetics: the kinetic fate of

nutritional compounds (van Velzen et al. 2009). In a ran-

domized, placebo controlled double blind cross-over study,

20 healthy volunteers were subjected to a tea treatment.

NMR measurements were performed of their urine which

was collected over time (n varies between 9 and 14). This

allowed for estimating kinetic parameters for metabolites

in their urine.

3 Short description of methods

The potential viable methods are categorized in six groups

of methods where each group shares a similar underlying

idea. There is a loose ordering of the categories by the

amount of a priori knowledge needed to perform the data

analysis or, stated differently, by the strictness of the

imposed assumptions.

The first group consists of methods that are based on

fundamental models. This means that a priori knowledge

should be available about the functional form of the

dynamics for the metabolites. The second group consists of

methods based on predefined basis functions; such as

wavelets. Hence, some form of the dynamics must be

reasonable given the underlying biology. The third group

discusses dimension reduction methods, such as principal

component analysis. These methods work if there is an

underlying low dimensionality in the metabolomics data.

Group four discusses multivariate time series models,

which can be used if certain stationarity assumptions hold.

4 A. K. Smilde et al.

123



Group five deals with analysis-of-variance (ANOVA) type

models and finally, the sixth group discusses methods

imposing smoothness, using the intrinsic consecutiveness

of time-resolved measurements.

When selecting a specific method for modeling dynamic

metabolomics data, it is useful to think in terms of the ‘data

generating process’. A possible data generating mechanism

is when the biological system under study is perturbed

thereby inducing changes in unobservable biological pro-

cesses. These in turn then affect the manifest variables,

which are the measured metabolites. Variations on this

theme are possible; this particular example is the idea

behind data generating processes for which dimension

reduction methods are suitable. Postulating a specific data

generating process presupposes knowledge about the bio-

logical system under study and the way the experimental

design has perturbed that system. Ideally, the knowledge

about the form of the dynamic system behavior as made

explicit in the data generation process is matched to the

requirements for the data analysis method. We will there-

fore make assumptions of the methods as explicit as

possible.

4 Building blocks

4.1 Fundamental models

Fundamental models of biological processes are usually

put in the framework of differential or difference equations.

These will therefore be discusses in some detail. Good

introductory textbooks exists for both linear (Fortmann and

Hitz 1977) and nonlinear dynamics (Strogatz 1994). The

general form of a first-order differential equation for x(t) is

_x ¼ f ðxðtÞ; t; aÞ; ð1Þ

where f(x(t), t;a) is a (possible nonlinear) function of

x(t) and t and only the first order derivative of x(t) is

present; the function f contains (possibly unknown)

parameters a. An example of a simple DE is

_x ¼ ax; ð2Þ

which is a first order (only first order derivatives), linear

(only linear terms in x), autonomous (time appears only

implicitly through x(t)) and homogenous (no forcing

functions or inputs) differential equation and the solution

of this equation is x = aeat for the initial condition

x(0) = a. Depending on the value of a, Eq. 1 has a stable

solution (a decreasing e-power for a\ 0) or an unstable

solution (an increasing e-power for a[ 0); for a ¼ 0; _x ¼
0; and x(t) = x(0) for all t. If x(0) = 0, the derivative _x ¼ 0

and the solution is then x(t) = 0 for all t and this solution is

indicated with x* (a fixed-point of Eq. 1). These solutions

show the typical behavior of linear first order differentail

equations: constant, blow-up or decaying towards zero.

Hence, no oscillations can take place.

A second order linear differential equation may look like

€x ¼ a1xþ a2 _x; ð3Þ

which can be rewritten as

_x ¼ y

_y ¼ a1xþ a2y;
ð4Þ

or, using obvious matrix notation

B

AFig. 1 Measured cortisol (a)

and luteinizing hormone (b)

levels in a woman during 1 day

showing pulsatility and

biorhythms
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Hence, higher-order linear differential equations can

always be transformed to first-order systems. The solutions

of a second-order differential equation are richer in

behavior, e.g, oscillations are possible (Strogatz 1994).

These solutions are characterized by the eigenvectors and

eigenvalues of the system matrix A: there are oscillations if

the imaginary parts of the eigenvalues differ from zero.

Another way of expressing dynamics is in the form of

difference equations using discrete time points. Such an

equation can look like

xtþ1 ¼ gðxt; t; aÞ; ð6Þ

or, in a simple example

xtþ1 ¼ axt: ð7Þ

There are relationships between Eqs. 1 and 6 (Fortmann

and Hitz 1977) but that is beyond the scope of this paper. In

the sequel, continuous time functions are denoted as x(t)

and discrete time functions as xt.

Examples of using fundamental models and differential

equations will be given in Sect. 7.1 using both the hor-

mones and nutrikinetics data.

4.2 Time series models

A time series of a single metabolite can be approximated

with time series models such as an autoregressive process

of order 1 (AR(1))

xtþ1 ¼ hxt þ �tþ1; ð8Þ

where h is the parameter to estimate and et is a so called

random shock. The parameter h has to obey a regularity

condition (|h| \ 1 for the AR(1) process) to be meaningful.

Alternatively, moving average (MA) processes can be used

xtþ1 ¼ �tþ1 � /�t; ð9Þ

or combinations of both (ARMA processes),

xtþ1 ¼ hxt þ �tþ1 � /�t; ð10Þ

which is an ARMA (1,1) model. These are also available

for higher orders and in nonlinear ways. It is important to

realize that Eqs. 8 and 9 make assumptions about the time

series xt. They both assume stationarity: the mean and

standard deviation do not depend on t and the autocovari-

ance only depends on s (the lag time is defined as a time

interval s = t2 - t1, where t1 and t2 are two time points of

the process). The autocovariance of an AR(1) model

decays exponentially as a function of the lag time and

for an MA(1) model the autocovariance is zero for lag

s[ 1. Hence, such models are not suitable for modeling

periodicity and oscillations since these would require

autocovariances with periodic lags. Although autocovari-

ances or autocorrelations strictly speaking can only be used

for stationary time series, they can also convey information

from general time series. Figure 2 shows the autocorrela-

tion function of the LH-hormone data of Fig. 1. This

autocorrelation function shows clearly periodicity which

relates to the periodicity in the original signals.

Second-order time series models look like

xtþ1 ¼ h1xt þ h2xt�1 þ �tþ1; ð11Þ

and such models are capable of describing damped

oscillations. They are more versatile in describing

dynamics with periodic events. A more versatile class of

times series models are ARIMA models, where the capital

‘I’ stands for integrating. Such models are also able to

describe non-stationary behavior. There is a host of

literature on how to estimate parameters in AR, MA and

ARIMA models, see e.g., Box et al. (1994).

4.3 Correlations

A key feature of multivariate measurements is the covari-

ation of the individual variables, usually measured in terms

of covariance or correlation. Covariance is a measure of

association of two random variables and appears as a set of

parameters in the multivariate distribution function of the

two random variables. For a bivariate normal distribution,

this comes down to

x�Nðl;RÞ ð12Þ

with

x ¼ x1

x2

� �
; l ¼ l1

l2

� �
;R ¼ r11 r12

r21 r22

� �
; ð13Þ
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Fig. 2 An example of an autocorrelation function of the LH data

showing periodicity
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where rij is the covariance (or variance if i = j) of

variables xi and xj. In the context of dynamic

metabolomic data, consider the time sequences xt and

yt. If both metabolites are driven by, or probing, the same

underlying biological process, then they will show similar

behavior. Although this similarity can be described by a

covariance measure between xt and yt, this is, strictly

speaking, not a covariance (see, e.g., Anderson 2003).

The correct way of describing their mutual behavior is by

writing

xt ¼ cxnt þ mx;t

yt ¼ cynt þ my;t;
ð14Þ

where nt represents the underlying dynamic process, cx, cy

are parameters and mx,t, my,t are disturbances. Depending on

the variances of these disturbances relative to the variation

in nt and the sizes of cx, cy, the time series xt and yt show

similar behavior. From now on, we will use the concepts of

covariance and correlation for the association between xt

and yt, although this is a simplification.

4.4 Dimension reduction

When measuring many metabolites, a way to bringing

down the complexity of the data is using (linear) dimension

reduction of which there are essentially two classes of

methods: (common) factor analysis and principal compo-

nent analysis. The factor analysis model for the vector x

(J 9 1) containing the measured metabolites can be written

as

x ¼ Kyþ �þ l; ð15Þ

where KðJ � RÞ is a matrix of constants (loadings); y (R

9 1) and e(J 9 1) are random vectors. The elements of y

are called common factors and the elements of e specific or

unique factors. The vector l is a vector of means of x. This

model is a direct extension of model (14). Upon making

assumptions regarding distributions and independence of

terms, the parameters of model (15) can be estimated

(Mardia et al. 1979). In words, the factor analysis model

tries to model the covariance structure of the variables in x

by using common factors.

Principal component analysis (PCA) can be interpreted

in different ways: a transformation of the original variables

or as a subspace approximation method (see, Smilde et al.

(2004) for an extensive discussion). The transformation

comes down to z0 = x0P where z is an (R 9 1) vector of

scores and P a (J 9 R) matrix of loadings. This equation is

invertible for J = R resulting in x0 = z0P0 or x = Pz, and

upon deciding on the value of R (usually smaller than J,)

x = Pz becomes an approximation of x. This is usually

expressed in the equation

X ¼ ZP0 þ E; ð16Þ

where X is the T 9 J matrix containing the measured time

series; Z (T 9 R) contains the time series component

scores; P (J 9 R) is the loading matrix and E (T 9 J) the

matrix of residuals. The loading matrix P maximizes the

variance of the scores and minimizes the sum of squared

residuals. Hence, PCA focusses on the variance of x.

Both PCA and factor analysis models reduce the

dimensionality of the original problem (J) to R, where R

is usually much smaller than J. There are differences

between the models (Mardia et al. 1979; Jolliffe 1986),

e.g, PCA does not provide facilities for the unique factors

and the factors y are no linear combinations of the

x-variables (note that the z variables are indeed linear

combinations of the variables in X). If the unique factor

contributions are small relative to the common factor

contributions, PCA and factor analysis give similar

results.

The factors y and scores z are sometimes called latent

variables to distinguish them from the the manifest vari-

ables x. Although this nomenclature is somewhat sloppy in

the case of PCA, the term nicely illustrates the basic

assumption underlying the PCA and factor analysis mod-

els: the variation in x is summarized by a small set of

underlying and unobservable variables.

4.5 What are dynamic methods?

It is useful to give a precise definition of a dynamic met-

abolomics data analysis method. This will be done with the

example of PCA which is not a dynamic method in our

definition.

Suppose a metabolomics data set is available where ten

metabolite concentrations are measured at five time points.

The resulting matrix has five rows and ten columns rep-

resenting the measured metabolite values and can be

decomposed using PCA. For simplicity, only the first

principal component is considered. The PCA results in

score vector zorig and loading vector porig. Next, the ori-

ginal data are shuffled, such that the time evolution

between the rows is broken. The subsequent PCA of the

data the gives scores zshuffled and loadings pshuffled. After

this PCA, the zshuffled can be reshuffled thereby undoing the

initial shuffling. The resulting scores zreshuffled are exactly

equal to the original scores zorig, and it also holds that

porig = pshuffled = preshuffled. Hence, PCA is insensitive to

the evolutionary nature of the time axis and is thus not a

dynamic metabolomics method. The definition of a

dynamic metabolomic data analysis method is now simple:

that method should be sensitive to the evolutionary nature

of the time axis.

Dynamic metabolomic data analysis: a tutorial review 7
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5 Dynamic metabolomic data analysis

5.1 Fundamental models

When a time series for a single metabolite is measured

(denoted as xt) and the form of the difference equation is

known, then finding dynamics comes down to estimating

unknown parameters a in the difference equation

xtþ1 ¼ f ðxt; aÞ; ð17Þ

where an autonomous system is assumed (no explicit t in

(17)). Several methods exists for estimating the parameters

a. One of those methods is using least squares (or nonlinear

least squares), however, such problems can be very com-

plicated in terms of irregular error surfaces and very cor-

related parameter estimates. Moreover, they have the risk

of getting stuck in local minima. This can be avoided to

some extent by using natural computational methods such

as genetic algorithms or simulated annealing (Apostu and

Mackey 2008). A viable alternative is to use smoothness

constraints for regularization, thereby making the error

surface less rugged and the problem better solvable

(Ramsay et al. 2007).

An example of using a difference equation in practice

are hormone dynamics. A simple model describing mea-

sured dynamic hormone behavior in human blood is

xt ¼ xt�1e�k þ /t þ �t; ð18Þ

where t is the index for time points, the parameter k is the

first-order decay constant, /t is the pulsatility function and

et is the measurement error. The pulsatility function /t is

nonlinear and represents the secreted hormone. This

function can be defined in different ways (Vis et al. 2009).

Hence, Eq. 18 is an example of a nonlinear non-autono-

mous difference equation.

The measured hormone levels are shown in Fig. 3 as dots

in the upper panel. The pulsatility function was constrained

to have only a limited number of pulses (bars in middle

panel). The decay is clearly visible in the slopes of the

drawn line (upper panel) and the residual e is presented in

the lower panel. The model fits the data well, and gives a

decay rate and information about pulsatile behavior

important for endocrinologists to study normal physiology

and pathophysiology (including diseases).

The idea of using difference equations can be general-

ized to multiple metabolite measurements. When mea-

surements are available on J metabolites as a function of

time, then these can be symbolized as xt (J 9 1). A second-

order nonlinear difference equation for such a vector is then

xtþ1 ¼ Fðxt; xt�1; aÞ; ð19Þ

where an autonomous system is assumed, F : R2J ! RJ

is a vector valued function and a is a set of parameters.

The underlying biology or physiology dictates the specific

form of the function F and it comes down to estimating

parameters a. In principle, the same methods can be used as

in the univariate case, but the multivariate problem is

usually much harder to solve. An example for a system of

two genes can be found in the gene-expression literature

(Cao and Zhao 2008).

09:00 21:00 09:00

−1

0

1

0

2

4

6

8

Time

C
on

ce
nt

ra
tio

n

Pulse identification in 24−hr LH time series.Fig. 3 Measured and fitted

luteinizing hormone (LH)

during 1 day. Legend: dots
upper panel are original data;

drawn line upper panel is fitted

model; bars middle panel are

estimated hormone pulses; line

lower panel are residuals
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For a large number of metabolites and for high dimen-

sional a fitting a set of difference equations is difficult.

Moreover, in most cases the exact form of F is unknown

and alternative models have to be discriminated with a

limited set of samples. This poses a challenging experi-

mental design question: at which time points should the

samples been taken to optimally discriminate between

competing models?

An alternative to modeling simultaneously all measured

metabolites in one single set of equations is to first select the

most important metabolites and model only those. This

route was taken in the nutrikinetics example, where data

analysis preselected three metabolites of potential interest.

Subsequently, for each metabolite and each subject a set of

two coupled fundamental models were used: one describing

the behavior under placebo conditions and one the behavior

under treatment conditions. The power of this approach is

that each subject serves as her/his placebo thereby reducing

the inter-person variability dramatically. This is especially

important in nutritional studies because the effect sizes are

usually small (van Velzen et al. 2008). The equations to

describe the behavior of the cumulative excreted metabolite

in the placebo (xpla) and treatment (xtea) period are

xpla
np ¼ apla þ btnp þ �pla

np ð20Þ

xtea
nt ¼ atea þ btnt þ xtea

maxð1� e�keðtnt�sÞÞ þ �tea
nt ; tnt � s

ð21Þ

xtea
nt ¼ atea þ btnt þ �tea

nt ; tnt\s

where ‘pla’ abbreviates placebo; ‘tea’ abbreviates the

treatment with tea; tnp, tnt indicate the time points of

measurements for placebo and treatment periods, respec-

tively (these are not equal). The parameters to estimate are

s (lag time); apla, atea (off sets); b (linear cumulative

increase); xtea
max (maximum output of metabolite); and ke

(first-order rate constant). The sums of squared values of

epla
np and etea

nt are simultaneously minimized using a least

squares fit. The working of these equations is shown in

Fig. 4. After fitting the data, the estimated parameters can
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be used for phenotyping. For instance, the net cumulative

urinary excretion after 48 h can be calculated as

bxtea
net ¼ bxtea

maxð1� e�
bkeð48�bsÞÞ

and, subsequently, can be used to characterize individual

metabolic status (van Velzen et al. 2009).

5.2 Basis functions

If the underlying biology dictates a certain preset form or

basis function of the dynamics, then this form can be

fitted to the data. Some basis functions (e.g., monotonic

decreasing, monotonic increasing and unimodal profiles)

are shown in Fig. 5. Examples of the use of splines as

basis functions for dynamic data can be found in the

gene-expression literature (de Hoon et al. 2002; Storey

et al. 2005). No examples are available for similar

approaches in metabolomics. One of the reasons may be

that postulating basis functions for dynamic metabolomic

data is not that easy. Once the basis functions are chosen,

the approach is simple because it comes down to simple

regression steps. Usually, only few parameters are

required and hence the sample sizes can be small. After

fitting the individual metabolomic time profiles on the

basis functions, the best fitting ones are selected and

metabolites with a similar time course behavior are

clustered. Hence, a special type of correlation is found,

namely the covariation with basis functions. These basis

functions are guesses of underlying functions nt and,

hence, fit in the framework of (15). This procedure will

automatically give a dimension reduction because the

basis functions serve as ‘latent’ variables.

For periodic or oscillating time series, Fourier Analysis

or Wavelet transformations can be used. Fourier Analysis

requires large sample sizes and repeated patterns; in that

respect Wavelets are more flexible. For the analysis of

high-dimensional metabolomics data, forcing the latent

time variables to follow a wavelet or Fourier transform

structure is worthwhile. Combining wavelets with principal

component analysis is already done in chemical engineer-

ing (Bakshi 1998). A sophisticated way of using basis

functions is by means of hidden Markov models (Schliep

et al. 2003). The basis functions are implicitly defined in

the emission densities of the hidden nodes, thereby also

allowing for some flexibility and adaptation of the

functions.

5.3 Dimension reducing methods

Usually in metabolomics, many variables are measured,

this can range from 100 to 1000 (Bijlsma et al. 2006).

Clearly, finding underlying dynamics in such data has to

be simplified by reducing the number of variables. This

can be done in several ways: by selecting important

variables or by dimension reducing methods. The latter

class of methods is very broad and versatile: principal

component analysis, factor analysis, including all their

lagged and dynamic versions. Those will be discussed in

some detail.

Variable selection can be done in various ways. If

biological knowledge is available, then this should drive

the selection. However, in most metabolomics applica-

tions discovery of new biology is the goal and hence prior

information for selecting the most important variables is

by definition not available. Then data driven variable

selection techniques have to be used which is a risky

undertaking. Although there exist many methods for

variable selection in ‘classical’ statistics (e.g. for regres-

sion problems forward selection, backward elimination

and stepwise regression), the main problem in high-

dimensional data sets is overfitting. By testing (almost) all

combinations of variables in a high-dimensional problem,

this number becomes so high that overfitting cannot be

avoided. Hence, such a selection has always to be

accompanied with a good validation strategy to avoid the

so-called selection bias (Ambroise and McLachlan 2002).

The whole topic of variable selection, including proper

validation, deserves a critical review in itself. Obviously,

upon assuming that we have selected a number of rele-

vant variables, preferably using a priori biological

knowledge, we can use some of the dynamic methods as

exemplified in this paper.Fig. 5 Examples of simple basis functions

10 A. K. Smilde et al.
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Combining a priori knowledge of the underlying

dynamics with a dimension reduction approach is best

explained by using the factor analysis framework:

xt ¼ Kyt þ �t þ l

ytþ1 ¼ f ðyt; t; aÞ;
ð22Þ

where, again, a contains the (unknown) parameters. The

issue is the form of the functional relationship f. Either this

function is known or it has to be estimated from the data.

To the best of our knowledge, models like (22) have not

been explored in X-omics data analysis. Model (22) can be

simplified (dropping the term l for simplicity) by

postulating

xt ¼ Kyt þ �t

ytþ1 ¼ Hyt;
ð23Þ

where the dynamics are in the latent variables yt in a simple

way. This is a combination of dimension reduction and

time series analysis.

The idea of making factor analysis models dynamic can

also be implemented differently (dropping again the

term l). Dynamic factor analysis (Molenaar 1985) models

the data as

xt ¼
XL

l¼0

Klyt�l þ �t; ð24Þ

where yt contains the R factor scores at time t and these

factors scores are assumed to be generated by a white noise

process (uncorrelated). The index l stands for lag and, hence,

lags upto and including L are considered. All the dynamics in

xt is captured by the lagged loading matrices Kl .

Component models can also be made dynamic. Besides

the obvious extension of (16) where the scores zt are forced

to follow a predefined dynamic model, there are two

alternative ways of constructing dynamic PCA models,

called lagged-PCA and dynamic PCA. Lagged-PCA is a

simplified version of the more general Lagged Simulta-

neous Component Analysis (Timmerman 2001) for ana-

lyzing multiple data sets simultaneously. To explain the

idea of lagged-PCA, it is convenient to introduce the

backshift matrix Bl - where l = 0,…, L defines the time

lags - which is defined as follows

Bl ¼ ½0T�ðL�lÞjIT j0T�l�: ð25Þ

Using the scores Z ((T ? L) 9 R), the loadings P (J 9 R),

and residuals E (T 9 J), the lagged-PCA model becomes

X ¼
XL

l¼0

BlZP0l þ E: ð26Þ

A small numerical example for L = 2 is given to illustrate

the working of this model:

B0Z ¼

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0
BBBB@

1
CCCCA

1 2

3 4

5 6

7 8

9 10

11 12

13 14

0
BBBBBBBB@

1
CCCCCCCCA

¼

5 6

7 8

9 10

11 12

13 14

0
BBBB@

1
CCCCA; ð27Þ

which shows the implicitly defined zero shift matrix B0 and

scores Z. The first lag is modelled as

B1Z ¼

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0
BBBB@

1
CCCCA

1 2

3 4

5 6

7 8

9 10

11 12

13 14

0
BBBBBBBB@

1
CCCCCCCCA

¼

3 4

5 6

7 8

9 10

11 12

0
BBBB@

1
CCCCA; ð28Þ

and the second lag is modelled as

B2Z ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0
BBBB@

1
CCCCA

1 2

3 4

5 6

7 8

9 10

11 12

13 14

0
BBBBBBBB@

1
CCCCCCCCA

¼

1 2

3 4

5 6

7 8

9 10

0
BBBB@

1
CCCCA; ð29Þ

which results in the model of X:

X ¼ B0ZP00 þ B1ZP01 þ B2ZP03 þ E: ð30Þ

Clearly, the lagged-PCA model has three sets of loadings

(P0, P1 and P2) representing the relationships between

the variables in X and the scores Z at different lag-

times.

The backshift operator works on the scores in lagged-

PCA, this operator can also work directly on the X matrix,

resulting in dynamic-PCA (Ku et al. 1995). The idea is

shown using a simple example for X:
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X ¼

1 8

2 9

3 10

4 11

5 12

6 13

7 14

0
BBBBBBBB@

1
CCCCCCCCA

ð31Þ

in which the rows represent time points and columns

metabolites. Upon using backshift operators, the submatrices

B0X ¼

3 10

4 11

5 12

6 13

7 14

0
BBBB@

1
CCCCA;B1X ¼

2 9

3 10

4 11

5 12

6 13

0
BBBB@

1
CCCCA;B2X

¼

1 8

2 9

3 10

4 11

5 12

0
BBBB@

1
CCCCA; ð32Þ

can be concatenated to form eX
eX ¼ B0XjB1XjB2X½ � ð33Þ

which can then be subjected to an ordinary PCA. Hence,

the dynamics are in the manifest variables and subse-

quently, a PCA captures these dynamics. Note that the

covariance matrix of eX contains three types of covariances:

(i) those between variables (lag = 0), (ii) those within

different time points of the same variables (auto-covari-

ance) and (iii) those between different time points of dif-

ferent variables (cross-covariance). Hence, the subsequent

PCA-scores capture a mixture of these three, obscuring the

individual contributions.

In fact, matrix eX is a matricized three-way array (Kiers

(2000)) X of size T 9 J 9 L. Hence, an alternative would

be to analyze this array with PARAFAC or Tucker3

models (Smilde et al. 2004). It is difficult to say how many

samples are needed for stable results for the estimates of

the different dynamic factor analysis, lagged-PCA and

dynamic-PCA models. A disadvantage of dynamic-PCA is

that it ‘cuts off’ parts of X (the higher L the more severe

this cut-off is) thereby reducing the number of samples in

the time direction. This stability will depend on the mea-

surement error, the intrinsic dynamics and the complexity

(i.e., intrinsic rank) of X.

Dynamic-PCA also has a close cousin called dynamic-

PLS. There are three alternatives for dynamic-PLS. The

first version takes lagged x-variables and performs then an

ordinary PLS between the expanded (and lagged) X matrix

and the phenotype y. This procedure is based on Finite

Impuls Response models as used in systems identification

(Ljung 1987). An extension of this is to incorporate also

lagged y-variables in the new X-block (Qin and McAvoy

1996).This is a direct generalization of the ARMA mod-

eling strategy (see below). The drawback of both methods

is that the X matrix (which is already huge) is even

expanded with many lagged variables thereby aggravating

the problem of low sample-to-variables ratio’s. Hence, this

does not seem to be a viable route to take, despite the

dimension reduction capability of PLS.

An alternative is presented in the process control liter-

ature and consists of defining a dynamic filter to account

for the dynamics in X and, subsequently, building an

(static) model between the filtered X and y with PLS

(Kaspar and Ray 1993). Stated otherwise, the dynamics in

X are ‘whitened’ and then related to y. Although this

approach does not have the drawback of ‘blowing-up’ the

dimensions of X unfavorably, it is sensitive to the specified

form the filter. Tuning such a filter might not be a trivial

task in dynamic metabolomics.

Another way to account for dynamics is to use time as

an external variable. This is the approach taken by batch

modelling (Wold et al. 1998). The idea is building a PLS

model between X (T 9 J) and a y-vector containing either a

maturity variable or the time corresponding to the sampling

of the rows of X (see Fig. 6).

A maturity variable is a measured variable indicating the

progress of the biological process. In both cases, the PLS

model finds features in X related to a time axis and as such

is a dynamic approach. This approach has been used in

several metabolomics applications (Antti et al. 2002;

Jonsson et al. 2006), but has also some drawbacks. One of

the problems of this approach is that it will poorly describe

features in X that do not align with the imposed time axis

(Westerhuis et al. 1999). A new method has been published

based on OPLS models to describe successive differences

between two adjacent time points (Rantalainen et al. 2008).

The drawback of this method is that the time trajectory

information is given in a set of models hampering

interpretation.

5.4 Time series analysis

There exists a multivariate extension of time series models:

xtþ1 ¼ Hxt þ �t; ð34Þ

which is a multivariate AR(1) model (or a Vector AR(1)

model) with H an J 9 J matrix of coefficients and et a

J-valued vector of random shocks. Again, the matrix H has

to fulfill some regularity conditions. Extension to second-

order systems and moving average models also exist.

Estimating the model parameters H is possible, but

requires a lot of samples for stable results, especially if J is

rather large (Holtz-Eakin et al. 1988).

12 A. K. Smilde et al.
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For regression type problems, ARMAX models can be

used. An example of an ARMAX (1,1) model is

ytþ1 ¼ hyt þ u1xtþ1 þ u2xt þ �tþ1; ð35Þ

where h, u1 and u2 are parameters to be estimated. The

time lags used for x and y are both 1, hence the notation

ARMAX (1,1) model.

An alternative is to write the set of difference equations

in state-space notation,

xtþ1 ¼ Axt þ But

yt ¼ Cxt þ �t;
ð36Þ

where A is the J 9 J system matrix, C the K 9 J

measurement matrix, ut a M 9 1 vector of inputs and B an

M 9 J input transfer matrix and y (k 9 1) the vector of

measurements (Fortmann and Hitz 1977; Ljung 1987). For

generality, the forcing term B ut is introduced. In the case

of metabolomics experiments, this forcing term is usually

complicated. This forcing term can be a diet, a toxic

compound or an administered drug. Then B represents the

influence of such an intervention directly on the

metabolites, which is hard to estimate and is usually not

explicitly considered. Since we consider all measured

metabolites, C = I (the identity matrix). Then, by

rearranging (36) and solving for yt, we get

ytþ1 ¼ Ayt þ �tþ1 � A�t; ð37Þ

which is a multivariate ARMA (1,1) model, showing the

intimate relationship between time series models and state-

space models. Some application of state-space models are

reported in the gene-expression literature (Wu et al. 2004)

but to our knowlegde, no applications have been reported

in metabolomics.

State-space models can also be combined with dimen-

sion reduction when the state variables xt are regarded as

underlying (latent) variables and yt represent the measured

metabolites. The matrix C then relates the manifest to the

latent variables and the dimensionality of xt can be much

lower than yt. The dynamics are now imposed on the latent

variables. This approach differs from dynamic factor

analysis (see Eq. 3) because in the latter case the time

instances of the latent variables are considered as inde-

pendent gaussian.

5.5 ANOVA

A different way of tackling dynamic data is by using anal-

ysis of variance (ANOVA) models (Searle 1971). In such

models, the factor time can be accounted for in both a

qualitative and quantitative way. The qualitative analysis

pertains to modeling the factor ‘time’ at its different levels,

whereas the quantitative analysis models the factor ‘time’ in

terms (of mixtures) of linear, quadratic and/or cubic trends

(depending on the number of time points available). A

convenient way of quantitative modeling is by using

orthogonal polynomials, since the consecutive terms in such

polynomials are orthogonal thereby facilitating the estima-

tion process. In the gene-expression literature, there are

examples of both qualitative modeling (Storey et al. 2005),

as well as quantitative modeling (Conesa et al. 2006).

The multivariate extension of ANOVA is called Multi-

variate Analysis of Variance. This extension is not

straightforward (e.g., which test statistic to use (Stahle and

Wold 1990) and it is not clear how to use it for multivariate

time-resolved data (e.g., how to treat the factor time).

Moreover, high-dimensional data gives singular covariance

Fig. 6 Batch process modeling:

a PLS model is built between

time-resolved measured

metabolites (collected in X and

a y-variable measuring time.

The score vectors t1 and t2 are

obtained from the PLS

modeling
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matrices. One way to generalize ANOVA to the high-

dimensional case is by performing separate ANOVA’s on

the individual metabolite profiles thereby partitioning the

data according to sources of variation. Subsequent simul-

taneous component analysis (SCA) models on the different

parts of the data perform then the necessary dimension

reduction. These approaches, called multilevel-SCA

(MSCA) and ANOVA-SCA (ASCA), have been used

succesfully in psychometrics (Timmerman and Kiers

2003), metabolomics (Jansen et al. 2004, 2005; Smilde

et al. 2005; Vis et al. 2007), proteomics (Harrington et al.

2005), geneexpression (Nueda et al. 2007) and also in

process chemometrics (de Noord and Theobald 2005).

There exists also a multiway version: PARAFASCA

(Jansen et al. 2008). The ASCA methods do not assume

linear time behavior and is therefore a general method for

capturing nonlinear time behavior (Smilde et al. 2008).

An alternative - called SMART - is to apply special

preprocessing steps of the metabolomics data and perform

a subsequent PCA (Keun et al. 2004). SMART has some

drawbacks, notably its lack of orthogonal partitioning

hampering interpretation (Jansen et al. 2005). Moreover,

SMART is not a dynamic method according to our defi-

nition. ASCA is only a dynamic method if the factor time is

treated in a quantitative way in the ANOVA model.

A route taken in the gene-expression literature is to

perform single ANOVA’s per gene and then cluster the

results afterwards (Conesa et al. 2006). It is also possible to

combine both steps by using mixture modeling to find

genes with a similar time behavior and estimate the

dynamic behavior then for the whole cluster simulta-

neously (Rodriguez-Zas et al. 2006). This amounts to a

considerable reduction of parameters to estimate. This

procedure can also be used in metabolomics.

5.6 Smoothness

A very general approach to account for the consecutiveness

of time evolving processes is by using smoothness con-

straints. In terms of curve fitting of a single metabolite time

profile, this approach can be described as

min
y
jjx� yjj2 þ kjjDyjj2
h i

; ð38Þ

where x = (x1, ..., xT )0 is the vector of original time series

measurements, y contains the fitted (or smoothed) values

y = (y1, ..., yT )0, D is a matrix differentiating consecutive

elements of y and k C 0 is a metaparameter regulating the

constraint ||Dy||2 (Eilers 2003; Ramsay and Silverman

1997). There are also other constraints possible, e.g., pen-

alties on second-order differences in (38)

A way to combine ideas of consecutiveness with

dimension reduction in time-resolved high-dimensional

metabolomics data is to make the estimated principal

component scores ‘as autocorrelated as possible’. The

method Maximum Autocorrelation Factors (MAF) does

this for spatially resolved data, and can be used directly for

the time-resolved data (Larsen 2002). This method calcu-

lates components zr, r = 1,…, R for which the lag l entries

have a maximum autocorrelation, while being mutually

orthogonal across r = 1,…, R. The lag l has to be chosen

by the user. Interestingly, the MAF method is equivalent to

the Molgedy-Schuster version of Independent Component

Analysis (Larsen 2002). Hence, using Molgedy-Schuster

Independent Component Analysis on the time-resolved

data would also invoke consecutiveness.

Combining smoothness with dimension reduction can be

done by applying smooth-PCA (Westerhuis et al. 2008).

The smooth-PCA method models the data by solving

min
Z;P
jjX� ZP0jj2 þ kjjDZjj2
h i

; ð39Þ

where again D is a first-order or second-order difference

matrix and k� 0 is a penalty parameter. The higher the

value of k, the smoother the scores in Z will become.

An example will be shown for the monkey data and, for

simplicity, results will only be shown for a typical female

monkey, although an analysis using all ten monkeys (i.e.,

smooth-Simultaneous Component Analysis) would also be

possible. Prior to analysis, the data were mean-centered

across the time-mode. A smooth-PCA is compared to a

normal (non-smooth) PCA. To calculate the smooth-PCA,

a second-order penalty was used in (39) and a special

arrangement has to be made to accommodate for the non-

equidistant sampling scheme (Westerhuis et al. 2008).

The first score vectors are shown for different values of

k, see Fig. 7.
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Fig. 7 Scores of the first PC and smooth-PC. Legend: the numbers 0
and 3 refer to the value of k
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For k = 0, the PCA solution is obtained. Raising k
penalizes roughness more and makes the scores smoother.

It is hard to give objective criteria to select k, but a value of

3 seems reasonable, whereas a value of 30 (result not

shown) gives a too smooth solution. The first score vector

shows a rhythm with a period of 27–28 days which may be

due to the oestric cycle (Xu et al. 2007). The corresponding

loadings are shown in Fig. 8, and do not differ much

between normal PCA and smooth-PCA. The first score

explains 21.9% of the variation in the data, whereas the

solution with k = 3 explains 13.8%. Hence, the loss of

variance explained should be compensated by a better

interpretability. A detailed interpretation of these results is

outside the scope of this paper.

6 Discussion

It would be nice to end this paper with giving a scheme on

when to apply which method in what situation. As in all

statistical modeling situations, the dynamic modeling pro-

cess is also an art without predefined rules.

First, the type of biological question, the amount of

knowledge of the system and the availability of data is

important. If a phenotypic variable is available, then this

variable might steer the unravelling of the dynamics in the

metabolome data. Looking for specific rhythms with

known dynamics calls for different methods than exploring

dynamic patterns in metabolomics data of relatively

unknown organisms.

Second, the experimental design is important, the

number of time points, their spacing in time and the

number of metabolites measured. The design puts restric-

tions on the methods to use. Some of the methods require

many time-resolved samples (time series methods) whereas

other methods can do with a limited number (basis func-

tions). With high-dimensional data, it is worthwhile to

consider methods involving dimension reduction.

Third, the type of measurements performed is important.

For example, NMR and MS data have different charac-

teristics and these should be kept in mind when using

dynamic methods. Some of the methods are easily adapted

to accommodate nonhomogeneous errors. Such an adaption

might be profitable in terms of the quality of the estimated

parameters.

Preferably, the choices for measurement and data anal-

ysis are driven by the biological question, the data gener-

ating process, the experimental design and the assumptions

of the data analysis methods.
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Notation

x (vector) bold lowercase

X (matrix) bold uppercase

t = 1,…, T time index (T = number of time points)

j = 1,…, J variable index (J = number of

variables)

l = 0,…, L lagging index (L = number of time

lags)

r = 1,…, R principal component index (R =

number of principal components)

Bl (T 9 (T ? L)) back-shift operator for lag l

U (I 9 I) left singular vectors of X

S (I 9 I) diagonal matrix containing (in descend-

ingorder) the singular values of X

V (J 9 I) right singular vectors of X

U1 (I 9 R) R ‘largest’ left singular vectors ofX

S1 (R 9 R) R largest singular values of X

V1 (J 9 R) R ‘largest’ right singular vectors ofX

Z (T 9 R) scores in a PCA model of X

P (J 9 R) loadings in a PCA model of X

A (J 9 J) system matrix

D (T 9 T) difference matrix

K(T 9 R loading matrix in factor analysis

h parameter(s) in AR models

/ parameter(s) in MA models

u parameter(s) in the X part of ARMAX

models

a parameter(s) in DE’s and DFE’s

et (scalar) random shock, random error or

specific factor

k (scalar) penalty parameter in penalized

methods
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Fig. 8 Loadings of the first PC and smooth-PC. Legend: drawn line
is PCA and dotted line is smooth-PCA
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