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Abstract
In this review, I discuss the various methods researchers use to unfold proteins
in the lab in order to understand protein folding both  and  . Thein vitro in vivo
four main techniques, chemical-, heat-, pressure- and force-denaturation,
produce distinctly different unfolded conformational ensembles. Recent
measurements have revealed different folding kinetics from different unfolding
mechanisms. Thus, comparing these distinct unfolded ensembles sheds light
on the underlying free energy landscape of folding.
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Introduction
Ever since Anfinsen discovered that a protein can be reversibly  
folded and unfolded outside of a cell1, researchers have been  
investigating the folding process in vitro, confident in the knowl-
edge that they were trying to understand a physical process of how 
the polypeptide chain finds a lowest free energy state. The free 
energy of the folded state comprises a balance of enthalpy and 
entropy of the protein and the surrounding solvent. The success of 
structural biology methods over the past few decades has focused  
attention on the beautiful structures of the folded states that have 
been determined for many sequences. In contrast, the unfolded 
“state”, really an ensemble of disordered conformations, was gener-
ally regarded to be highly generic, completely random, and rapidly  
rearranging2,3. Recent advances in nuclear magnetic resonance 
(NMR) and optical methods have started to change this view and 
detail how different sequences and different solvent conditions  
can alter the ensemble4–9.

Since the unfolded state was treated generically, it seemed not to 
matter how one obtained it, especially if the goal was to leave it as 
quickly as possible, as is done in kinetic folding experiments. This 
review will discuss the various methods that are commonly used 
to unfold proteins and how similar are the resulting ensembles. I 
will conclude with a discussion of whether the choice of unfolding 
method then affects the subsequent folding process.

Chemical denaturants
It remains true that chemical denaturants, guanidine hydrochloride 
and urea, are the most generally applicable methods of completely 
unfolding proteins. Both of these molecules have a low molecular 
weight and are extremely soluble, such that 6–8 molar concentra-
tions will denature virtually any protein. Computational studies of 
polypeptides interacting with these molecules have revealed some 
aspects of their denaturing power10, although far more is under-
stood about urea. The molecular dynamics of an unfolded protein 
indicate that urea readily forms hydrogen bonds with the peptide  
backbone, disrupts native contacts, and makes extended conforma-
tions favorable11. Simulations comparing urea and guanidine on the 
same protein find that guanidine does not make many hydrogen 
bonds but does disrupt hydrophobic interactions within the native 
state, particularly between aromatic side chains12.

A number of studies of various proteins in high denaturant have 
shown that these chains are acting as self-avoiding random  
polymers13,14. Measurement of intramolecular contact of unstruc-
tured peptides in water with guanidine and water with urea showed 
that a wormlike chain with excluded volume is a better model 
than a freely jointed chain, but the persistence length (4–6 Å) and 
excluded diameter (4 Å) are sufficiently small that a freely jointed 
chain is a good model for proteins of any reasonable length15,16. 
The intramolecular diffusion coefficients measured by these same 
experiments reveal values in the 10-6 cm2/s range for all sequences 
in high denaturant, about the same as the translational diffusion 
coefficient for objects of this size17–20. Thus, the view of unfolded 
proteins as completely random, freely diffusing polymers appears 
to be justified in high denaturant.

The difficulty with using denaturant as an unfolding mechanism  
is the technical challenges with rapidly diluting it to prompt  
refolding in a kinetic experiment. The dilution or mixing time is a 
period in which the solution conditions are not in equilibrium and 
folding kinetics are not in response to a known set of conditions. 
Conventional stopped-flow mixers have “dead times”, the time  
during which measurement is not possible, of 1–5 ms that are  
determined by the turbulence induced in the mixing process, yet 
folding may still be occurring. Smaller turbulent mixers have 
pushed this dead time down to as low as 30 μs21,22. Laminar flow 
mixers developed in my lab have eliminated turbulence and mix as 
fast as 2–4 μs23–26.

Temperature
It has long been known that proteins generally unfold at tempera-
tures higher than the basal temperature of the organism in which  
it evolved. Therefore, the melting temperatures of proteins from 
thermophilic organisms are typically higher than their homologs 
from mesophilic organisms27–29. It has been predicted that cold 
denaturation, protein unfolding that occurs as the temperature is 
lowered30–36, is a feature of protein stability, but, practically, the 
lower melting temperature is rarely observable above 0°C, so water 
will freeze before the protein will unfold.

The appeal of using heat as a denaturant is that it is completely 
understood how it affects the protein on the atomic level. It is also 
the natural denaturant for computational studies, since heat is 
already accounted for in molecular dynamics simulations. In terms 
of the relative contributions to the change in the Gibbs free energy 
between the folded state and unfolded state, ΔG=ΔH-TΔS, as the 
temperature increases, ΔG will decrease until eventually it becomes 
less than zero and the unfolded state has a lower free energy than 
the folded state. However, the absolute free energy of the unfolded 
state need not remain constant with increasing temperature. In  
particular, the hydrophobic effect should get stronger with  
temperature37,38. Therefore, a protein that is unfolded at an elevated 
temperature may still have strong intramolecular interactions  
within the unfolded state that make the unfolded conformations  
less than completely random.

Temperature is also a natural control variable in experiments. About 
20 years ago, the development of laser temperature jump (T-jump) 
techniques allowed the first observations of protein folding on the 
ns–μs time scales by adding an IR pulse of light to a protein solution  
to rapidly raise the temperature ~10°C in ~10 ns39–41. However,  
temperature may be only increased because the laser pulse adds 
heat. Reducing the temperature generally requires a much slower 
diffusive process that takes milliseconds to equilibrate. Therefore, 
the kinetic process that is observed is usually dominated by the 
unfolding process. To extract direct folding rates, researchers have 
usually used a two-state model of the folding process in which the 
relative population at each temperature is known from equilibrium 
measurements42–45. However, it is possible that a two-state model is 
not a good approximation of the folding free energy landscape46. 
Furthermore, given that laser T-jump is limited to increases of  
~10°C and most proteins unfold at temperatures well above  

Page 3 of 8

F1000Research 2017, 6(F1000 Faculty Rev):1723 Last updated: 22 SEP 2017



physiological, neither the start nor the end of the experiment is  
typically under strong folding conditions (i.e. 37°C).

Pressure
While few organisms undergo significant changes in pressure 
over their lifetime, pressure is an attractive unfolding mechanism 
because, like temperature, it is completely understood physically 
and can be simulated computationally. Under very high pressures  
(1–3 kbar or 100–300 MPa), voids within a protein’s folded  
structure become unstable, causing the protein to unfold47. The  
contribution to the change in free energy due to pressure is given 
as pΔV. The change in partial molar volume upon unfolding, ΔV, 
is typically negative, making the free energy of the unfolded state 
lower than the folded state. The kinetics of unfolding are typically 
extremely slow, orders of magnitude slower than unfolding with 
denaturant or temperature48,49. This allows the use of careful NMR 
measurements to map which residues change structure first and can 
sometimes find complex folding dynamics. Often intermediates 
can be detected as well as complete unfolding50. As with T-jump, 
it is generally difficult to rapidly depressurize to induce refolding. 
One technique has been demonstrated recently by Dumont et al., in 
which the pressure cell is irreversibly broken for each measurement 
but achieves depressurization within 1 μs51,52.

Force
About 20 years ago, several groups demonstrated that individual 
molecules could be unfolded using an atomic force microscope  
or optical tweezers53–55. In early measurements, proteins were  
immobilized on a surface and were often constructed of multiple 
identical domains in tandem in order to confirm the signal was 
real56,57. Significant improvements over the past two decades have 
eliminated the need for a surface (though proteins are now attached 
to micron-sized beads) and made detection of single-domain  
unfolding routine, typically using laser tweezers to trap the  
bead58,59. At the state of the art, these instruments can detect forces 
of as low as a few pN of extensions as small as ~4 Å on time scales 
as short as 10 μs (these limits are convolved)60–62. Like temperature  
and pressure, this unfolding mechanism is well understood  
physically, though the time-range over which these experiments  
are typically performed (10–100 nm/s stretching speeds) is  
somewhat longer than typical simulation times. The appeal of 
these types of measurements is two-fold: 1) they are naturally  
single-molecule measurements, allowing the researcher to explore 
heterogeneity in folding pathways62–65, and 2) the unfolded 
conformation eventually reached is very well defined, a com-
pletely extended polymer65. However, like many single-molecule  
measurements, they are typically performed at forces near the 
folding midpoint to allow the observation of many folding and  
unfolding events. If folding is induced at a low force, the instrument 
typically has no resolution to observe the event.

Discussion
As the descriptions above have made clear, each of these unfolding 
mechanisms produces an ensemble of conformations that is distinct 
from the others. A logical question is, should this matter? While this 
question does not yet have a complete answer, there are tantalizing 
indications that it does. For example, Lin et al. measured folding/

unfolding kinetics after T-jump to the same final temperature from 
different initial temperatures66. For a fast two-state folder, tryp-
tophan zipper, the kinetics were the same regardless of the starting 
condition, but for a protein without a significant free energy barrier 
between folding and unfolding, BBL, the kinetics were distinguish-
able. My lab, in collaboration with Bill Eaton’s lab at the NIH, 
demonstrated that the folding rates of the villin headpiece sub-
domain (HP35), one of the fastest known folders, are 5-fold slower 
for folding after dilution of denaturant compared to laser T-jump67. 
We explained this discrepancy by the Thruway Search Model first 
described by Ghosh and Dill68, in which the number of paths to 
the native state is higher and the intrachain energy of the unfolded 
state is lower for the chemical-denatured ensemble compared to the 
heat-denatured ensemble. In a study of another fast-folding protein, 
lambda repressor, T-jump folding rates are about 2–3-fold higher 
than rapid mixing folding rates69. In a different mutant of lambda, 
T-jump and P-jump (dropping the pressure from 1 kbar to 1 bar) 
yield different kinetics that were attributed to a misfolded packing 
of one helix accessible only when exiting out of the high-pressure 
unfolded state52. These discrepancies are not a universal phenom-
enon: T-jump and P-jump of the Fip35 fragment of a WW domain 
yielded very similar kinetics, as does T-jump and rapid dilution of 
denaturant of a different WW domain, Pin170,71.

A comprehensive view of these comparisons between unfolded 
ensembles would suggest the complete ensemble of an unfolded 
protein is very broad and these various unfolding mechanisms are 
populating only a subset of the ensemble. Putting this in an energy 
landscape picture, as shown schematically in Figure 1, the top of 
the protein funnel is very wide and not entirely accessible by all 
methods. This also means that the approach to the native state from 
different sides of the funnel may yield different predominant path-
ways and folding kinetics.

Thus, from a physical perspective, the protein folding problem 
looks very different for any particular protein depending on how  
(or from where) you start the process. But from a biological per-
spective, should one care? The study of protein folding in vivo is 
still in its infancy, so we have very little idea what the unfolded  
ensemble looks like in a cell. Various studies have shown that  
thermal stability can shift up or down in crowded in vivo condi-
tions compared to dilute in vitro conditions, depending on the  
sequence72–74. Danielsson and colleagues have speculated that the 
devil is in the details: exactly how strongly the unfolded ensem-
ble prefers to interact with nearby proteins in a cell will determine 
how stability will shift75. Furthermore, it is easy to imagine that 
the conformational ensemble of a nascent chain emerging from the 
ribosome looks distinct from the ensemble achieved after unfold-
ing within a chaperone such as GroEL/GroES. Therefore, we may 
expect initial folding and refolding of the same protein to use  
different pathways. From the perspective of biology, we should 
very much care how a protein is unfolded.

In conclusion, until we have a completely predictive model of 
protein folding, in which all folding pathways and the final folded 
structure are predicted by primary sequence, we have to make  
educated guesses of what unfolded conformations are accessible 
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under certain conditions for a particular protein. It certainly seems 
sensible to continue to investigate the entire unfolded landscape 
under a variety of unfolding mechanisms to fully understand how 
protein folding depends on where you start.
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Figure 1. Schematic of the free energy landscape of folding of a protein. Unfolded ensembles by different techniques occupy distinct 
regions on the unfolded landscape.
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