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The decline of CD8" T cell functions contributes to deteriorating health with
aging, but the mechanisms that underlie this phenomenon are not well
understood. We use single-cell RNA sequencing with both cross-sectional and
longitudinal samples to assess how human CD8" T cell heterogeneity and
transcriptomes change over nine decades of life. Eleven subpopulations of
CDS8" T cells and their dynamic changes with age are identified. Age-related
changes in gene expression result from changes in the percentage of cells
expressing a given transcript, quantitative changes in the transcript level, or a
combination of these two. We develop a machine learning model capable of
predicting the age of individual cells based on their transcriptomic features,
which are closely associated with their differentiation and mutation burden.
Finally, we validate this model in two separate contexts of CD8* T cell aging:
HIV infection and CAR T cell expansion in vivo.

CDS8" T cells are a heterogeneous population that collectively fulfills
the antigen-specific cytotoxic function in the immune response. After
first encountering an antigen presented by dendritic cells, antigen-
specific naive CD8" T cells proliferate and differentiate to become
effector cells and memory cells'”. Differentiation is associated with
epigenetic and transcriptomic changes leading to the gain of distinct
functions such as rapid cytokine production, cytotoxicity by effector
cells during recall response, and longevity in memory cells®>. The
characterization of human CD8' T cells by flow cytometry has identi-
fied naive, effector, and various types of memory cells, providing the
framework to understand the composition and function of CD8"
T cells®®. However, the extent of CD8" T cell heterogeneity and its

implication in the aging of immune function has not been fully
examined.

Aging alters the composition and functions of CD8" T cells*°. In
older adults, reduced numbers of circulating naive CD8" T cells and
increased numbers of terminally differentiated memory CD8" T cells
are frequently observed" ™. As a result, the functional decline of the
CD8" T cell response to infectious agents or cancerous cells has been
reported™. This decline is attributed to two broad age-related changes:
extrinsic changes related to the microenvironment where CD8" T cells
are maintained and the immune response is initiated, and intrinsic
changes related to the capability of CD8" T cells to respond to
stimulation-induced proliferation, differentiation, and delivery of
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effector molecules™". Intrinsic changes characterized by comparative
transcriptomic analyses of CD8" T cells from young and old study
participants using microarray and RNA sequencing (RNAseq) methods
have shown altered gene expression related to T cell receptor signal-
ing, the cytokine/chemokine network, cytotoxicity, and metabolic
preference’”?. These age-related transcriptomic changes reflect
average differences between younger and older study participants,
and therefore lack details about whether age-related changes are due
to a change in the percentage of cells expressing a given gene, a change
in the expression level in individual cells or both. The recent devel-
opment of the single-cell RNA sequencing (scRNAseq) method enables
the characterization of transcriptomic profiles at the individual cell
level and can indicate potential heterogeneity overlooked by bulk cell
approaches®. Using scRNAseq, Mogilenko et al. showed increased
expression of two granzymes (GZMK and GZMB) in CD8' T cells from
older compared to younger individuals® However, the rates and
mechanisms behind such age-related gene expression changes remain
unknown.

Determining a person’s biological age has research and clinical
application* and is currently assessed at the cell level by measures that
include telomere length®, alterations of DNA methylation patterns**?’
and number of somatic mutations™”. Recently, age-related tran-
scriptomic changes in blood cells have been explored to estimate cell
age and have showed a close correlation with chronological age®’'.
These transcriptome-based age predictions rely on predominantly
altered genes with age, but recent applications of machine learning
(ML) algorithms have integrated more subtly changed genes to suc-
cessfully predict the age of individuals from the transcriptomic profiles
of dermal fibroblasts®. Biological age estimates based on the tran-
scriptomic features of study participants are often informed by sam-
pling at a single time point, which results in a high degree of individual
variation. Longitudinal analysis of age-related changes by sampling the
same measures over time from the same participants overcomes this
weakness and offers a more accurate measure of biological aging.
Using flow cytometry and RNAseq, Alpert et al. analyzed a longitudinal
cohort and showed a high-dimensional trajectory of immune system
age®. However, heterogeneity in the biological age of individual
immune cells from individuals of different ages has not been examined.

In this study, we analyze individual CD8" T cells from three
cohorts of healthy human participants using high dimensional flow
cytometry (4,600,000 cells from 165 donors) and scRNAseq (120,418
cells from two cohorts of healthy participants: 16 who made a single
blood donation and 8 who made 2-3 donations over an average of 9
years). We identify 11 subpopulations of CD8" T cells and their shared
age-related changes in gene expression. These age-related gene
expression changes display three distinct modes: a change in the
number of expressing cells, a change in expression level within single
cells, or both. We also develop a mixed-effect elastic net (MEEN) ML
algorithm to predict the age of single CD8" T cells based on their
transcriptomes with strong correlation with chronological age in
cross-validation. Predicted cell ages indicate that naive cells were
younger than memory cells, positively correlated with the number of
somatic mutations in single cells and indicate the changes in CD8" T
cell aging that occur in HIV infection and CAR T cell expansion in vivo.
Overall, our findings identify subpopulations of CD8" T cells and their
precise changes with age in both composition and transcriptional
profiles. Our results show highly predictive transcriptional features of
single cells that can be used to accurately estimate cell age.

Results

Identification of CD8" T cell subpopulations by scRNAseq and
high-dimensional flow cytometry

To investigate the heterogeneity of circulating CD8" T cells in humans,
we used two single-cell approaches - scRNAseq and high-dimensional
flow cytometry - to analyze three human cohorts (Fig. 1a). Using

scRNAseq, we analyzed cells from 24 donors in two cohorts: the first
consisted of 16 individuals (8 males and 8 females) ranging from
newborn to 90 years. The second cohort was 8 individuals (4 males and
4 females) ranging from age 30 to 69 years at first donation with an
average of 9 years from first to last donation (Supplementary Fig. 1a).
CD8" T cells were isolated from peripheral blood mononuclear cells
(PBMC) with approximately 3000-6000 cells used for droplet-based
scRNAseq that constructed and sequenced single-cell gene expression
libraries to greater than 80% saturation, for a total of 120,418 individual
CD8" T cells analyzed after filtering (Fig. 1a and Supplementary Fig. 1b).
By flow cytometry, we analyzed cells from 165 donors (83 males, 82
females), from newborn to 96 years (Supplementary Fig. 1a). PBMCs
were stained with a panel of 15 antibodies and a viability dye. CD3"CD8"
T cells were manually gated and a total of 4.6 million CD8" T cells were
analyzed after filtering.

Using scRNAseq data, 120,418 CD8" T cells were divided into 10
clusters that were further annotated by expression of known marker
genes into 6 known CD8" T cell subsets, primarily naive cells, including
two subpopulations: adult naive (Ty,) and cord blood naive (Ty,), plus
four memory subsets including memory stem cell (Tscy), central
memory (Tcy), three subpopulations of effector memory (Tgpy-3), tWo
subpopulations of terminally differentiated effector memory cells
(Temra1-2), and an effector cell subset (Tgrr) (Fig. 1b and Supplementary
Table 1). Ty, and Ty, cells shared common naive T cell markers such as
CCR7, but Ty cells additionally expressed fetal development-related
genes such as HBA2 (Fig. 1c Supplementary Data 1). Three Tgy sub-
populations were identified by the shared expression of cytotoxic
factors (GZMA, CCLS5 and KLRBI) but each subpopulation preferentially
expressed specific genes (Fig. 1c, Supplementary Fig. 1d, Supplemen-
tary Data 1). Finally, two Tgyra subpopulations (confirmed by CD45RA
surface expression by a barcode antibody) expressed GZMB and KLRG1
(Fig. 1c and Supplementary Fig. 1c). All clusters contained cells from
multiple donors (Supplementary Fig. 2a, b), eliminating the possibility
that the identified cell types and expression patterns resulted from
donor-specific or batch effects. Collectively, this scRNAseq analysis
implicated heterogeneity in naive and memory CD8" T cells, including
their distinct gene expression and potential functions (Supplementary
Fig. 3, Supplementary Data 2, Supplementary Table 2).

High-dimensional flow cytometry analysis of 4.6 million CD8"
T cells from 165 donors showed 10 clusters based on 15 antibody
staining profiles using the FlowSOM algorithm (Fig. 1d and Supple-
mentary Fig. 1e)**. Clusters were assigned as two naive subpopulations:
Tna and Ty, (for older), Tscm, Tem, Temr-a Temraz-2 and Teeg (Fig. 1e and
Supplementary Fig. 1e). We computed Spearman’s rank correlations
between the mean fluorescent intensity of 15 protein markers from
flow cytometry and the average expression levels of the corresponding
genes from scRNAseq for each subpopulation. We found that good
correlations between subpopulations identified by the two methods in
six subpopulations (Fig. 1f). Two subpopulations (Nc and No) only
found by scRNAseq and Flow cytometry method, respectively; and
three subpopulations (Em1, EM3, and EFF) did not have good corre-
lations between these two methods.

Common age-associated transcriptome changes in CD8" T cell
subpopulations

To investigate how CD8" T cell subpopulations changed with age, we
analyzed correlations between age and the proportions of sub-
populations and their gene expression. We calculated the percentage
of cells belonging to each subpopulation identified by the two single-
cell methods for each donor and used linear regression to identify
subpopulation changes with aging. The overall age-associated changes
in CD8" T cell subpopulations were quite comparable between the two
methods (Fig. 2a, Supplementary Table 1, Supplementary Data 2a). Ty,
cells significantly decreased in percentage of CD8" T cells with age,
whereas several memory subpopulations (Tscm, Tems, Temrar and
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Temraz) increased in percentage with age. The percentages of Tcy, Tem,
and Tggr remained stable over time. The age-related changes were all
significant in all subpopulations except Tcy in the flow cytometry
analysis, whereas only changes in Ty, and Tscm Were significant in
scRNAseq analysis. This difference in statistical significance was likely
due to the difference in cohort size (flow cytometry cohort had 165
participants) while the scRNAseq cohort had only 24 participants). The
consistency between the percentage change with age in subpopula-
tions identified by both approaches further supported their utility as
analogous techniques to study heterogeneity within CD8" T cells.

Next, we investigated how the transcriptome changed with age
in the CD8" T cell subpopulations. We used MELR analysis (see Eq. 1
in method) to identify genes whose expressions changed sig-
nificantly with age in each subpopulation (Fig. 2b, Supplementary
Fig. 4, Supplementary Data 2b). In most subpopulations, more
genes increased expression with age (1590 unique genes across nine
subpopulations) than decreased (953 unique genes across nine
subpopulations). We defined a significantly age-changed gene using
beta coefficient (CO) > 0.0019, representing an expression change
of 10% across the span of the donors’” age range in either direction,
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Fig. 1| Identification of CD8" T cell subpopulations in humans by scRNAseq and
high-dimensional flow cytometry. a Experimental design. Fasting blood samples
were from 24 individuals in two cohorts: 16 (aged newborn to 90) for cross-
sectional and 8 (aged 30 to 69 at first donation, average 9 years to second donation)
for longitudinal analysis for single-cell RNAseq (scRNAseq); and 165 (aged newborn
to 96) for multicolor flow cytometry. CD8" T cells were used for gene expression
analysis. Peripheral blood mononuclear cells were used for flow cytometry with
CDS8' T cells gated by antibodies and dyes. b t-SNE projection of 120,418 CD8"

T cells clustered by gene expression patterns. CD8" T cell subpopulations were by
comparing differentially expressed genes to previous analyses** and our unpub-
lished microarray data. ¢ Heatmap depicting differentially expressed genes by
cluster (selected by log2FC > 0.1, FDR < 0.05; full gene list, Supplementary Data 1).
d FlowSOM map of CD8' T cell subpopulations from flow cytometry. Node sizes

represent relative number of cells with similar expression patterns. Nodes are
arranged into populations®; proximity indicates similar expression. Number of
nodes is proportional to number of the population’s cells. Clusters were assigned
using canonical markers. e Expression histograms for 14 markers per CD8" T cell
cluster from flow cytometry. f CD8" T cell subpopulations identified by gene
expression with matched counterparts from flow cytometry identified by Spear-
man’s rank correlation of markers and associated genes between flow cytometry
and scRNA-seq clusters. Clusters within major subsets (N, CM, EM, RA) were further
classified by correlation of change in percentage with age in each donor (Fig. 2a, b).
F female, M male, UMI unique molecular identifier, Nc naive cord blood, Na naive
adult, SCM stem cell memory, CM central memory, EM1 2, 3, effector memory
subpopulations, EMRAL 2 terminally differentiated effector memory cell sub-
population, EFF effector cells, t-SNE t-distributed stochastic neighbor-embedding.

and false discovery rate <0.05. Gene set enrichment analysis (GSEA)
for age-related gene expression changes identified three core
enriched functional sets shared by the four major subsets of CD8"
T cells (Tna, Tscm/em, Temr-s, and Temrai2): 1) antigen presentation
and cellular cytotoxicity, 2) activation and exocytosis, and 3) tran-
scription and translation (Fig. 2c). Our findings showed genes
important for one functional group overlapped with the other two
groups. Collectively, these findings implicated common age-
associated transcriptome changes in CD8" T cells and their poten-
tial functional consequences in aging cells.

Three distinct modes of age-associated gene expression changes
and related functions in CD8" T cell subpopulations

After identifying average age-associated changes in gene expression in
nine CD8" T cell subpopulations, we examined how these changes
were mechanistically achieved at the individual cell level as recently
described®. We investigated if age-associated gene expression chan-
ges at the population level could be classified further into three dis-
tinct modes: 1) a change in the percentage of cells that express a gene
in a population without alteration of its expression level in individual
cells; 2) a change in the expression level of a gene in cells without a
change in the total percentage of expressing cells; and 3) a combina-
tion of changes in both percentage and expression level. We analyzed
genes that significantly changed across aging and observed all three
modes (Fig. 3a and Supplementary Fig. 5a). Next, we grouped genes by
whether they changed by a magnitude of at least 5% in either percen-
tage or expression level. Using these criteria, of genes whose expres-
sion increased with age in nine subpopulations, 46% increase in
percentage, 12% in expression level, and 14% in both (Fig. 3b, Supple-
mentary Fig. 5b, Supplementary Data 3), with 28% of genes not meeting
either classification.

To investigate if mode changes at the mRNA level also translated to
the protein level, we analyzed protein level changes in granzyme A and
32-microglobulin by flow cytometry and found the parallel changes in
proteins (Fig. 3c). To understand the functional changes associated with
these distinct age-related modes of change, we performed GSEA for
age-related gene expression changes in four major subsets of CD8"
T cells. We found genes that increased in percentage were related to
exocytosis, oxidant detoxification, and oxidative phosphorylation.
Genes that increased in expression level were associated with antigen
processing and presentation as well as mRNA catabolic processes
(Fig. 3d, Supplementary Data 3d).

The three distinct modes of gene expression changes were also
observed in age-related reduced gene expressions (Fig. 4a). However,
of all genes whose expression decreased with age in nine subpopula-
tions: only 3% decreased in percentage, 24% in expression level, 20% in
both, and 42% did not meet either classification (Supplementary
Data 4). Functionally, genes that decreased in aging by mode of
expression change were associated with reduced DNA replication and
chromatin remodeling (Fig. 4c). Together, these findings implied three
distinct modes of gene expression changes with age observed in

individual CD8" T cells and diverging functional consequences asso-
ciated with each mode of change.

Prediction of cell age based on the transcriptome by a mixed
effect ML algorithm

Bulk cell transcriptome-based age prediction has been recently
reported®. Therefore, we investigated if ML models could use single-
cell transcriptome data to report a biological age for a single cell that
correlated with the chronological age of its donor. We applied mixed-
effect modeling to integrate both longitudinal changes and cross-
sectional differences into a unified aging model. To estimate the age
of single CD8" T cells we tested two types of ML models, mixed effects
elastic net (MEEN) as a linear model and mixed-effects random forest
(MERF) as a nonlinear model. We found that ages of individual CD8*
T cells displayed a distribution around the chronological age of the
donors by MEEN (Fig. 5a, Supplementary Fig. 5a, b, Supplementary
Data 5a) and MERF models (Supplementary Fig. 5c, e). Furthermore,
both models predicted cell age with a significant average difference
between cells from older and younger donors using both a cross-
validation prediction dataset and an independent dataset (see
Methods for details) (Fig. 5b MEEN, Supplementary Fig. 5d MERF).
Among the two models, MEEN model had a lower root mean square
error than the MERF model with the independent dataset, which
represented higher accuracy on unseen data. The relative contribu-
tions of genes in each ML model were identified using a permutation-
based method (methods) (Supplementary Data 5b). We then com-
pared the top 300 age-associated genes identified by MELR across all
CD8 cells with those identified by MEEN or by MERF models.
Noticeably, the overlaps were relatively low at 21% (10% of increased
plus 11% of decreased genes of top 300 genes) between MELR and
MEEN (Fig. 5c, Supplementary Data 5c) and 4% between MELR and
MERF (Supplemental Fig. 7, Supplementary Data 5c). Further analysis
showed that unique genes identified by the MEEN model had smaller
changes in magnitude of expression level (average CO =+/-0.001)
than genes only identified by MELR model (average CO =+ /-0.011)
which required a minimum change of expression level (CO) > 0.0019)
for us to call a gene significant (Fig. 5d).

Age-related transcriptome changes associated with differentia-
tion and cell divisions

To explain the underlying mechanism by which the transcriptome-
based cell age was distributed around the chronological age of the cell
donors, we hypothesized that the range of estimated cell ages reflected
the heterogeneous nature of their true biological age. Since this het-
erogeneity is rooted in the proliferation of T cells, we hypothesized it
would be reflected in differentiation state and mutation burden. Dif-
ferentiation of CD8" T cells is associated with cell division, and we
found that naive T cells were consistently predicted to be younger than
memory cells for all donors (Fig. 6a, Supplementary Data 6a, b). Next,
we developed a unique molecular identifier (UMI) correction-based
single-cell variant calling pipeline using the genome analysis toolkit
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(GATK) mutect2 program® to investigate if mutation burden was
increased in cells with older predicted age. We used scRNAseq data
based on an individual’s own exome sequences to call mutations, and
mutations were further adjusted and rescaled to remove differences in
coverage and UMI count in both single cells and each donor’s exome
sequencing (Supplementary Fig. 6a-e). We compared predicted cell
ages to the mutation burden in single cells and found significant
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positive correlations between mutation burden and predicted cell age
in all four major CD8' T cell subsets (Fig. 6b, Supplementary Data 6a, b).

Aging of CD8" T cells under clinical conditions quantified by the
ML algorithm

Next, we examined if our MEEN model could quantify known biological
changes in CD8" T cells associated with HIV infection and CAR-T cell
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Fig. 2 | Age changes in distribution and gene expression in CD8' T cell sub-
populations. a Percentages of 9 subpopulations in 24 donors as a function of age
based on scRNA-seq (top panel). Trend lines were from a mixed-effect linear
regression (MELR) model. Percentages of clusters for 165 donors as function of age
from flow cytometry (bottom panel). Trend lines were from the MELR model for
which the t distribution with n-2 degrees of freedom was used to evaluate if a slope
was significant for a particular variable (2 sided t-test). b Expression heatmap of the
top 50 most-changed genes with age shared by at least 5 of 9 subpopulations of
CDS8' T cells based on scRNA-seq. Top panel, age-increased genes (35 genes);

bottom panel, age-decreased genes (15 genes). Full gene list is in Supplementary
Data 2b and each data point was the average of 10 cells. c. Network plot of func-
tional changes associated with age and associated genes (Yellow dot, functional
gene set; gray dot, core enriched gene in gene set). Genes belonging to a functional
set are connected by edges to that function. Nc naive cord blood, Na naive adult,
SCM stem cell memory, CM central memory, EM], 2, 3, effector memory sub-
populations 1, 2, 3, EMRAL1 2 terminally differentiated effector memory cell sub-
population 1, 2, EFF effector cells.
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Fig. 3 | Modes of age-associated increased gene expression in CD8' T cell sub-
populations. a Three distinct modes of gene expression increase with aging in
CDS8' T cells. A representative gene is shown for each mode. From top to bottom,
GZMA increases in the number of expressing cells (represented by percentage in a
donor); B2M increases by expression level in cells (represented by percentage
increase in UMI counts); and SI00A4 increases by number of expressing cells and
by expression level. Trend lines were from the lineage regression model for which
the t distribution with n-2 degrees of freedom was used to evaluate if a slope was
significant for a particular variable (2 sided t-test) used here and in c.

b Classification of significant age-related increases in gene expression into three
modes in each CD8' T cell subpopulations (Na, naive adult; SCM, stem cell memory;
CM central memory, EMLI, 2, 3, effector memory subpopulations 1, 2, 3; EMRAL, 2

terminally differentiated effector memory cell subpopulation 1, 2, and EFF, effector
cells) based on magnitude of change in percentage of detectable cells or average
expression change in positive cells. The number and percentage of genes belonged
to three modes were shown. Full gene list is in Supplementary Data 3. ¢ Age-related
mode of change at the protein level by flow cytometry. d Shared functional gene
sets enriched in genes increasing with age in each of the three modes by gene set
enrichment analysis (GSEA). The average significance defined by adjusted p-value
(q) of each GSEA functional gene set analysis is represented in the heatmap in each
cluster of CD8' T cells by color scale. NES, normalized enrichment score. The scale
of the magnitude of significance is 0 to 107°. GO, gene ontology.
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Fig. 4 | Modes of age-associated reduced gene expression in CD8' T cell sub-
populations. a Scatter plots showing examples of gene expression that decrease
across aging in each of three modes (EEF2 - percentage, KLRBI - expression,
NUCB?2 - both). Trend lines were from the lineage regression model for which the t
distribution with n-2 degrees of freedom was used to evaluate if a slope was sig-
nificant for a particular variable (2 sided t-test). b Scatter plots categorizing genes

decreasing across age into three modes of change in nine clusters identified by
scRNA-seq (Full gene list is in Supplementary Data 4). c. Bubble plot showing
functional gene sets enriched for each of three modes of change across age.
Representative genes for each gene set shared across clusters shown. NES, nor-
malized enrichment score. The scale of the magnitude of significance is 0 to 107,
GO, gene ontology.

immunotherapy, as both are involved the proliferation of CD8'
T cells®?®. Kazer et al. showed that HIV-1 infection induces high pro-
liferation of CD8" T cells*” and our MEEN model found one year of HIV-1
infection-associated CD8' T cell proliferation caused an average
increase of 3.9 years in the predicted age of naive CD8" T cells (Fig. 7a,
Supplementary Data 7a, b). Sheih et al. reported that infused CAR-CD8"
T cells in vivo undergo early rapid expansion and later stable
maintenance*°. We found a parallel rapid aging of CAR-CD8" T cells at
the expansion phase (28.6 + 5.8 years) followed by a slowed pace of
aging at the maintenance stage (5.2 + 4.2 years) (Fig. 7b, Supplemen-
tary Data 7a, b). Collectively, these findings showed that the core age-
related transcriptome changes in CD8" T cells were influenced by cell
divisions, as evidenced by the differentiation status and accumulation
of mutations recognized by our MEEN model. Furthermore, predicted
CDS8' T cell age was able to quantify aging as the in vivo proliferation of
CD8' T cells under different clinical conditions.

Discussion

In this study, heterogeneity of human CD8" T cells and their changes
with age were analyzed by two single-cell methods (scRNAseq and
high-dimensional flow cytometry) using both cross-sectional and
longitudinal data. Our analyses identified 11 CD8" T cell subpopula-
tions and indicated previously unknown subpopulations within Tgy

and Tgmgra and their distinct changes with age. By integrating long-
itudinal and cross-sectional data using mixed-effect modelling to
remove confounding person-to-person variation, we observed that
most subpopulations of CD8" T cells underwent substantial changes
with age. Intriguingly, proportions of some subpopulations of
memory (Tcy and Tgwz) and effector (Tgrr) cells were stable over 7
decades of life. How these age-associated changes for CD8' T cells
are modulated and what are their physiological significance remains
to be determined.

Our analysis of the intrinsic changes in the transcriptome with age
in subpopulations of CD8" T cells showed some common changes,
with more genes increasing than decreasing with age. GSEA analysis
showed a range of altered functions associated with these changed
gene expressions in T cell activation, antigen processing and pre-
sentation, and cytotoxicity. These data provide a basis for further
studies to investigate the precise functional differences of these CD8"
T cell subpopulations and changes with age. Previous studies analyzing
age-related gene expression changes in immune cells primarily
reported average differences in population of cells between young and
older adults. They lacked details about heterogeneity at the individual
cell level. Based on these earlier studies, distinguishing the mechan-
isms by which these age changes occur at the individual cell level is not
possible.
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(MEEN) model. Distribution of predicted cell ages for each donor is shown by violin
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Data 5a. b Left, cross validation of predictions for donors older than 70 years (Old)
and younger than 30 years (Young). Right, test predictions for an independent
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are presented.

Here our analysis implicated age-related gene expression changes
that could be regulated by three distinct mechanisms that could be
associated with functional changes with aging. A change in the number
of expressing cells suggests that aging may work as an on-off switch,
while a change in the expression level within individual cells suggests
that some genes are more finely tuned over time. Limited protein
expression analysis by flow cytometry confirmed these modes of age-
associated changes in CD8" T cells. Furthermore, different modes of
age-associated changes in gene expression appeared to be linked to
distinct functions: increasing gene expression levels was linked to
antigen presentation, whereas increasing numbers of cells expressing
a gene was associated with cellular functions such as regulated exo-
cytosis and oxidative phosphorylation. Investigating the regulators
that cause these precise age-associated gene expression changes and
their consequential alteration of functions in individual CD8" T cells
will lead to a better understanding of how age mechanistically alters
the function of individual CD8" T cells, paving the way for developing
future novel therapeutic targets.

ML methods have recently been used to track biological aging®*'.
These approaches have used both supervised and unsupervised
models, leveraging multiple collected datasets such as plasma protein
content, bulk RNAseq, and flow cytometry. The advantages of these
methods include the ability to relate age predictions to clinical
comorbidity and mortality. However, these methods have focused on
understanding the overall age of the immune system. Here, we
developed a MEEN model that predicts the age of single CD8" T cells
using the rich transcriptomic data of scRNAseq. We achieve a high
correlation with chronological age assigned to cells by donor age in
both our study and an independent dataset using both longitudinal
and cross-sectional data. This transcriptome changes in biological
aging at the cell level are strongly related to cell division because: 1)
predicted cell age correlated with differentiation (T, cells were con-
sistently predicted to be younger than the more differentiated Tgy and
Temra Subpopulations); and 2) mutation burden positively correlated
with predicted cell age within CD8" T cells. It is of great interest to
further understand whether the mutation rates differ between the
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and used for scRNAseq analysis**). Predicted CD8" CAR T cell age prior to infusion
and in post-infusion early phase (mean 14, range 12-21 days) and late phase (mean
95, range 83-112 days) based on Sheih et al.*’, N = 4. The box-whisker plots in a and
b, the center line is the median, the box is from the 25th to the 75th percentile. The
upper or lower whisker extends from the hinge to the 10% and 90% from the hinge
for up and low, respectively. P values were calculated by two-sided T-test. The data
are in Supplementary Data 7a, b.

processes of T cell development and differentiation, and between
young and aged donors. Finally, the predicted cell ages of CD8" T cells
derived from clinical data under in vivo settings showed a good cor-
relation with progressive HIV-1 infection and the degree of CAR T cell
expansion during therapy as how rapid aging of CD8" T cells can
inform the clinical outcomes. These results demonstrate the ability of
our ML model to detect biological changes in vivo. Most important, the
power to predict the age of CD8" T cells opens further possibilities for
using transcriptomic cell age as a surrogate marker for aging of
immune cells at the single cell level and the possibility of predicting
clinical outcomes for which the function of CD8" T cells is a deter-
mining factor.

Methods

Human participants

All studies on humans were approved by the National Institutes of
Health Institutional Review Board and the Johns Hopkins Bayview
Institutional Review Board. Written informed consent was obtained
from all participants and complied with all relevant ethical regulations.
Three cohorts were enrolled in this study: 1) A cross-sectional cohort of
14 healthy adults and 2 newborns with matched sexes in specific age
ranges, and an overall age range from newborn to 90 years old. 2) A
longitudinal cohort of 8 individuals with matched sexes. From this
cohort, each participant made two or three visits to donate blood and
the age range at first visit was 30-69 years old with an average of 9 years

Nature Communications | (2022)13:5128



Article

https://doi.org/10.1038/s41467-022-32869-x

between the first and second visit. Samples from the first and second
cohorts were used for scRNAseq (Supplementary Table 1). 3) A cross-
sectional cohort of 165 individuals ranging in age from 0 to 96 years
(Supplementary Fig. 1a, Supplementary Data 1).

Isolation of CD8" T cells

Peripheral blood mononuclear cells (PBMCs) were isolated from
human blood by Ficoll density gradient centrifugation. For adult
donors in the cross-sectional cohort, CD8" cells were enriched from
PBMCs using an EasySep Human CD8 Positive Selection Kit I (STEM-
CELL Technologies) according to the manufacturer’s instructions.
Cells were resuspended in phosphate-buffered saline (PBS) containing
0.04% bovine serum albumin (BSA). Purity was over 95% for all sam-
ples. PBMCs from cord blood were cryopreserved and thawed on the
day of use in warm media for 1h, washed once with BSM (HBSS con-
taining 0.2% BSA, 1X HEPES, 1X penicillin-streptomycin-glutamine),
and stained with fluorescent antibodies against CD3, CD4, and CDS8.
CD8’ cells were sorted as CD8'/CD4 cells into PBS containing 0.04%
BSA. For longitudinal cohort samples, cryopreserved PBMCs were
thawed on the day of use in warm media for 1 h, washed once with BSM,
and stained with antibody cocktails containing fluorescent antibodies
against CD8 and CD4, and DNA barcoded antibodies against CD28 and
CD45RA (Supplementary Fig 1c). CD8" cells were sorted as CD8"/CD4
cells into PBS containing 0.04% BSA. Purities of CD8" T cells ranged
from 97% to 98%. For scRNA-seq library construction, cells were dilu-
ted to -1 x10%/mL in 100 uL PBS containing 0.04% BSA and processed
within hours after they were obtained.

Single-cell RNA-seq library construction and sequencing
ScRNAseq libraries were constructed using Single Cell 3’ library and gel
bead kits (10X Genomics) following the manufacturer’s protocol.
Freshly enriched/sorted CD8" T cells were kept on ice before proces-
sing. Viable cells were counted and ~8700 cells were used for gel bead-
in-emulsion (GEM) generation (targeted recovery ~5000 cells). After
template-switching reverse transcription within GEMs, cDNA was
amplified in bulk. Amplification was followed by fragmentation, end
repair, A-tailing, adaptor ligation, sample index PCR-generated P5- and
P7- capping, and cell- and sample-indexing to complete the single-cell
3’ gene expression libraries. For antibody (anti-CD45RA and CD28)-
derived tag (ADT) libraries, cDNA was amplified for two rounds using
KAPA HiFi PCR master mix (Roche) and indicated primers (Supple-
mentary Table 3). PCR product was purified using 1.6X AmpureXP.
Libraries were quantified using both a bioanalyzer machine (Agilent)
and a Kapa library quantification kit (Roche) before sequencing.
Sequencing was performed on an Illumina HiSeq 3000/4000 flow cell.
Read 1, Read 2, and the sample index were sequenced to 28, 91, and 8
base pairs, respectively. Sample sequencing depth is summarized in
Supplementary Table 1.

scRNAseq data analysis

Raw data processing. Software (10x Genomics Cell Ranger 4.0) was
used to analyze raw base calls**. Cell Ranger MKFASTQ was used to
demultiplex raw base calls by sample index. Cell Ranger COUNT was
used to align sequencing reads to the reference genome (10X refer-
ence 2020-A, GRCh38/Ensembl 98) and obtain unique molecular
identifier (UMI) counts for each individual sample after merging mul-
tiple sequencing runs for the same library. Last, Cell Ranger AGGR was
used to pool individual samples, and no-depth normalization was
performed at this step. Analysis of these data was conducted using R
3.6.2. The output from Cell Ranger AGGR was analyzed by the R
package Seurat V3.0.0* as a gene by cell barcode matrix. To remove
low-quality cells and doublet cells, barcodes with UMI counts above
2500 and below 500 were removed. To remove broken and lysed cells,
barcodes with mitochondrial DNA content greater than 20% were
removed. Cells were clustered and projected onto UMAP components

1 and 2. Cell clusters with positive CD14, CD4, and CD19 or with no
expression of CD3E, CD8A, and CD8B were filtered out.

Integration of scRNAseq datasets. Data were log,-normalized sepa-
rately for cross-sectional and longitudinal sample datasets. The results
were then integrated — or batch-corrected — applying the standard
integration pipeline implemented in Seurat** with the cross-sectional
study as the “reference” dataset due to its larger size. Since cord blood
was not present in the longitudinal study, cord blood samples were
removed from the integration. Cord blood samples were replaced in
the dataset after integration, as integration did not change expression
values in the reference dataset. This integrated dataset was used for all
further analysis.

Clustering. For clustering purposes, the integrated dataset was further
integrated between cells from males and females to remove sex dif-
ferences. The 2000 most variable genes were chosen using the Find-
VariableFeatures function in Seurat using the “vst” method. Clustering
was performed in Seurat with 15 principal components at 0.9 resolu-
tion using the Louvain Algorithm. Cord blood samples clustered
separately from adult cells in the dataset, creating two integrated
clusters. These two clusters were merged and labelled “cord blood
naive” cells (N¢) and another six smaller clusters were also merged
using a method similar to ‘split-and-merge’ methods*. Briefly, smaller
clusters were merged based on gene expression similarity determined
by hierarchical clustering and identified marker genes. A t-distributed
stochastic neighbor-embedding (t-SNE) plot was used to represent
cells in the dataset in two dimensions and identified cell clusters were
labelled by color.

Differential expression. Differential expression analysis was per-
formed in each cluster using Seurat using unintegrated data, while
retaining the cluster identity. Genes with at least at an average 0.1 log2
fold-change (log2FC) in expression were considered differentially
expressed at a threshold of 5% false discovery rate (FDR) generated
from p-values using the Student’s t-test. Heatmaps for expression of
identified differentially expressed genes in each cluster were gener-
ated in the JMP statistical program (SAS) using a gene-by-cell-barcode
matrix including selected genes from differential expression analysis,
with cells ordered by cluster and age. Cell identities were assigned
based on a combination of canonical marker genes and unpublished
microarray studies performed on isolated CD8" T cell subsets.

Isoform identification and protein quantitation from ADT libraries.
CD45RA expression was confirmed by UMI counts in cells using ADT
libraries for the CD45RA isoform of the CD45 gene that were generated
for longitudinal samples. The mean CD45RA UMI count was calculated
for each cluster. CD28 expression was quantitated using the same
method.

Multicolor flow cytometry analysis and subpopulation correla-
tion analysis

The 15-color panel of antibodies (Supplementary Table 4) was against
CD3, CDS8, CD45RA, CD62L, CD95, CD27, CD28, CD69, CD2, CD127,
GZMB, KLRG1, perforin, EOMES, and PD-1. Fixable Viability Stain 780
(BD Biosciences) was used to gate viable cells and 2 x10° PBMCs were
stained with the surface antibody cocktail in 100 pl Brilliant Stain
Buffer (BD Biosciences) for 30 min at 4 °C in the dark. After washing
once with a FACS buffer (HBSS containing 0.2% BSA and 0.05% NaNs),
cells were fixed and permeabilized in Fixation/Permeabilization solu-
tion (BD Biosciences) for 20 min at 4 °C in the dark. Following fixation/
permeabilization, cells were washed twice with 1x Perm/Wash buffer
(BD Biosciences). Intracellular staining was in 1x Perm/Wash buffer for
30 min at 4 °C in the dark. Samples were washed twice with 1x Perm/
Wash buffer and resuspended in 1% paraformaldehyde in PBS. Data

Nature Communications | (2022)13:5128

10



Article

https://doi.org/10.1038/s41467-022-32869-x

were acquired on a BD FACSymphony flow cytometer (BD Biosciences)
and results were analyzed with FlowJo (10.3), which includes a plugin
for FlowSOM software*. The Spearman’s correlation coefficient for 13
marker genes (SELL, FAS, CD28, CD27, PDCD], IL7R, KLRG1, CD2,
EOMES, GZMB, PRF1, CD3E, and CD69) was calculated between clus-
ters identified by FlowSOM and clusters identified by Seurat were
computed to generate a correlation matrix**. This matrix was sorted by
hierarchical clustering to match the most similar clusters between
datasets.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed using the R
packages clusterProfiler and ReactomePA on genes ordered by indi-
cated measures in defined analyses*’. GSEA annotation sets with nor-
malized enrichment scores (NES) above 1.5 and g-value (FDR) below
10% were considered significant.

Cluster distribution across age

The percentage of each cell cluster was determined for each donor
sample. Linear mixed-effect regression (described below) was per-
formed to fit the relationship between cell percentage of each donor
and their chronological age while controlling for sex by including it as a
covariate in the model.

Gene expression changes across age

Linear mixed-effect modeling was used to identify upregulated and
downregulated genes for each cluster across aging using the R package
Ime4*¢. This modeling method performs linear regression with a fixed-
effect term and a random-effects term. The fixed-effect term measures
how an independent variable affects an outcome. The random-effect
term controls for differences inherent between multiple groups of
data - in this case grouping cells by donor to isolate the longitudinal
age-related changes for each donor. In our model, the age of each
donor was used as a numerical independent variable and the log2-
normalized UMI counts for each gene in each cell as dependent vari-
ables (outcomes), with the following Eq. 1:

UMI_Expression ~ Age + Sex + (1|group) (o))

In this formula, Age was treated as a fixed-effect term and Sex was
included as a covariate to control for sex differences. The (llgroup)
term represents a random-effect term, with cells grouped by the donor
in the longitudinal study. Cells from all samples in the cross-sectional
study were grouped into one group to remove longitudinal random
effects. Genes that increased or decreased with a fixed effect magni-
tude larger than 0.0019 (10% per cell across the age range of the
cohort) and FDR less than 5% were considered significant.

Analysis of modes of gene expression changes. Significantly upre-
gulated or downregulated genes across age for each subpopulation
were analyzed for the mode by which gene expression changed. The
set of all genes with significant expression changes was classified by
linear mixed-effect regression analysis using two different measures:
the percentage of cells for each donor that expressed a particular gene,
and the average expression of the gene in cells that measured positive
for that gene. The fixed effect terms were age and sex, while the ran-
dom effects term was one grouped by the donor as above. Positive
cells were identified using the raw UMI counts matrix. Gene changes
were labeled as either percent change, expression change, or both, if
they exceeded a threshold value of 5% across the age range of the
donors in either one measure or both. Genes that did not change by a
magnitude of at least 5% in either measure were excluded from the
analysis.

Cellular age estimation

Models to estimate - or potentially predict - cellular age were con-
structed using linear and nonlinear approaches. For all models, a
mixed-effect machine learning strategy was used based on Hajjem,
Bellavance, and Larocque®. In these models, cells from cross-sectional
donors were treated as one group and cells from longitudinal donors
were grouped by the donor as above. This grouping allowed the
models to integrate both cross-sectional and longitudinal patterns in
gene expression when estimating cellular age.

To generate a linear model to predict cell age, the linear mixed-
effect approach was used with elastic net-penalized multivariate
regression in the R package glmnet*® using all log2-normalized gene
expression values as predictors of each cell’s age. Elastic net-penalized
regression was chosen based on its performance with sparse data in
which the number of features (genes) is much larger than the number
of observations (cells)*’. Cross-validation was performed across 10
folds and for each fold, a random 90% of cells were used as a training
set and 10% were used as a testing set across 100 lambda values; this
step determined how many variables were removed from each model.
The lambda value yielding the lowest mean square error was chosen
for the linear model penalty value.

The nonlinear mixed-effects approach used the R package ranger
to generate a random forest using the same input covariates as the
linear model*. The model was generated using 500 iterations with a
bootstrapping method to select training and cross-validation sets for
each individual tree. Briefly, the bootstrapping method involved
selecting the same n number of cells as in the dataset with the repla-
cement for each iteration. Individual trees were trimmed to have a
minimum of 100 observations per node split in each tree. Sex was
included in all models generated as a one-hot encoded covariate, i.e.,
as 1s (male) and O s (female) to control for sex differences.

For testing our mixed-effect predictive models on unseen data,
two datasets were downloaded: CD8" T cell and PBMC scRNAseq data
from 10X genomics and data from the European Genome-Phenome
Archive (accession EGAD00001006000)*. Data in the 10X genomics
datasets was parsed, and using UMAP projections, clusters were
identified that expressed CD8B, CD8A, and CD3E. Cells were filtered
from this dataset using the strategy above. Data were log2-normalized,
and no further changes were made before generating predictions. The
scRNAseq datasets from HIV-1 infection®® and CAR T cells** were
downloaded from the Gene Expression Omnibus (GEO). Predictions
were generated by extracting CD8A +and CD8B + cell clusters using
the provided metadata in the deposition on GEO. Cell identity was
verified by the expression of CD8A, CD8B, and CD3E. Cells were fil-
tered from this dataset using the strategy above. Data were log2-
normalized. Predictions were made directly on these data using the
models generated above with no further changes to the dataset.

To estimate the importance, or relative contribution, of genes to
the predictions made by our models, we used the R package DALEX to
generate variable importance values for each gene. Briefly, the DALEX
package has a permutation-based algorithm that permutes the value of
each variable and assesses the increase in error compared to the
baseline prediction®’.

Exome sequencing
Cryopreserved PBMCs were thawed, and genomic DNA was prepared
from 1-2 million PBMCs using the DNeasy Blood & Tissue Kit (QIA-
GEN). More than 0.5mg genomic DNA was used for whole exome
sequencing at Novogen using an exome sequencing kit (Twist Bios-
ciences). Briefly, the protocol enriched sequences in the defined CCDS
region®® and targets were reverse transcribed and sequenced.
Sequencing was on an Illumina NovaSeq 6000 with paired-end 150 bp
reads and effective sequencing depth above 50X.

Preprocessing of raw exome sequencing files was performed by
aligning reads to the reference genome (GRCh38) using BWA mem.
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Single nucleotide polymorphisms (SNPs) for each donor were gener-
ated using GATK haplotypecaller and hard filtered using the criteria in
the recommended best practices. The reference genome was modified
for each donor to include that donor’s SNPs in the consensus refer-
ence. These donor-specific references were used in our variant-calling
pipeline.

Variant calling and UMI correction

Variant calling was performed on each cell using our custom pipeline
developed to remove errors in the scRNAseq dataset using a UMI-based
correction strategy®. This pipeline uses the GATK mutect2 program
and is modified to use donor-specific references that include SNPs for
each donor. This pipeline is available for use on GitHub (https://doi.
org/10.5281/zenodo.4924437 https://github.com/Weng-lab-NIH/
USCMD). Coordinate-sorted STAR-aligned reads from Cell Ranger
AGGR output were separated into individual BAM files for each cell for
each donor sample. Variant calling was performed using GATK Mutect2
to call somatic mutations, following the best practices for somatic
variant calling® using the donor-specific references for the reference
option. Single cells were considered tumor samples in the pipeline and
exome sequencing reads for individual donors were used as normal
samples in a BAM file. Variants for each single cell were filtered for
those with tumor log-odds ratio (TLOD) > 5.3 (default for Mutect2) and
depth in exome sequencing files >10X. Raw variants were filtered for
SNPs, removing indels. UMI-based correction was performed by ana-
lyzing if SNPs called were represented by at least three supporting
reads within a UMI barcode and if the percentage of supporting reads
was more than 50% for a variant within a UMI barcode. Positions with
more than 2 mutations that passed the filters were removed since we
only expected up to two mutated alleles. To calculate each single cell’s
normalized mutation number, the number of mutations within each
cell was log2 transformed. Then, a negative binomial model was gen-
erated, using the UMI number in a cell, coverage in a cell, and coverage
in the associated donor’s exome as covariates to control for these
factors in the cell's mutation count. Adjusted mutation counts were
then scaled from O to the maximum number of raw mutations detected
in a cell in the dataset to restore the original range of values.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The scRNAseq data are available at NCBI: GSE136184 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136184), and EGADOO
001006000 (https://ega-archive.org/datasets/EGAD00001006000).
Source data are provided with this paper.

Code availability

The script https://doi.org/10.5281/zenod0.4924437 files to perform all
analysis to reproduce the data/results in the paper as well as recreate
all figures are deposited at GitHub (https://zenodo.org/badge/
latestdoi/364361401), https://doi.org/10.5281/zenodo.6473570, and
the somatic mutation identification pipeline (USCMD) is deposited at
https://zenodo.org/badge/latestdoi/390409912 and https://doi.org/
10.5281/zenodo.5705233.
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