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Abstract
Fingerprint recognition plays an important role in many commercial applications and is

used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image

segmentation is typically the first processing step of most fingerprint algorithms and it

divides an image into foreground, the region of interest, and background. Two types of

error can occur during this step which both have a negative impact on the recognition per-

formance: ‘true’ foreground can be labeled as background and features like minutiae can

be lost, or conversely ‘true’ background can be misclassified as foreground and spurious

features can be introduced. The contribution of this paper is threefold: firstly, we propose

a novel factorized directional bandpass (FDB) segmentation method for texture extraction

based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwo-

ven with soft-thresholding. Secondly, we provide a manually marked ground truth seg-

mentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a

systematic performance comparison between the FDB method and four of the most often

cited fingerprint segmentation algorithms showing that the FDB segmentation method

clearly outperforms these four widely used methods. The benchmark and the implementa-

tion of the FDB method are made publicly available.

Introduction
Nowadays, fingerprint recognition is used by millions of people in their daily life for verifying a
claimed identity in commercial applications ranging from check-in at work places or libraries,
access control at amusement parks or zoos to unlocking notebooks, tablets or mobile phones.
Most fingerprint recognition systems are based on minutiae as features for comparing finger-
prints [1]. Typical processing steps prior to minutiae extraction are fingerprint segmentation,
orientation field estimation and image enhancement. The segmentation step divides an image
into foreground, the region of interest (ROI), and background. Two types of error can occur in
this step and both have a negative impact on the recognition rate: ‘true’ foreground can be
labelled as background and features like minutiae can be lost, or ‘true’ background can be
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misclassified as foreground and spurious features may be introduced. It is desirable to have a
method that controls both errors.

The Factorized Directional Bandpass Method, Benchmark and
Evaluation
In order to balance both errors we take the viewpoint that—loosely speaking—fingerprint
images are highly determined by patterns that have frequencies only in a specific band of the
Fourier spectrum (prior knowledge). Focusing on these frequencies occuring in true fingerprint
images (FOTIs), we aim at the following goals:

1. Equally preserving all FOTIs while attenuating all non-FOTIs.

2. Removing all image artifacts in the FOTI spectrum, not due to the true fingerprint pattern.

3. Returning a (smooth) texture image containing only FOTI features from the true fingerprint
pattern.

4. Morphological methods returning the ROI.

In order to meet these goals we have developed a factorized directional bandpass (FDB) seg-
mentation method.

The FDBmethod. At the core of the FDB method is a classical Butterworth bandpass filter
which guarantees Goal 1. Notably Goal 1 cannot fully be met by Gaussian based filtering meth-
ods such as the Gabor filter. Obviously, due to the Gaussian bell shaped curve, FOTIs would
not be filtered alike. Because straightforward Fourier methods cannot cope with curvature (as
could e.g. curved Gabor filters [2]) we perform separate filtering into a few isolated orientations
only, via directional Hilbert transformations. The composite directional Hilbert Butterworth
bandpass filter (DHBB) incorporates our prior knowledge about the range of possible values of
ridge frequencies (between 1/3 and 1/25 pixels) or interridge distances (between 3 and 25 pix-
els) [2], assuming a sensor resolution of 500 DPI and that adult fingerprints are processed. In
the case of adolescent fingerprints [3] or sensors with a different resolution, the images can be
resized to achieve an age and sensor independent size—not only for the first segmentation step,
but also for all later processing stages. Our parameters can be tuned to reach an optimal trade-
off between treating all realistic frequencies alike and avoiding Gibbs effects. Moreover we use
a data friendly rectangular spectral shape of the bandpass filter employed which preserves the
rectangular shape of the spatial image.

A second key ingredient is the factorization of the filter into two factors in the spectral
domain, between which a thresholding operation is inserted. After preserving all FOTIs and
removing all non-FOTIs in application of the first factor, all FOTI features not due to the true
fingerprint pattern (which are usually less pronounced) are removed via a shrinkage operator:
soft-thresholding. Note that albeit removing less pronounced FOTI features, thresholding
introduces new unwanted high frequencies. These are removed, however, by application of the
second factor, which also compensates for a possible phase shift due to the first factor, thus
producing a smoothed image with pronounced FOTI features only.

At this stage, non-prominent FOTI features have been removed, not only outside the ROI,
but also some due to true fingerprint features inside the ROI. In the final step, these “lost”
regions are restored via morphological operations (convex hull after binarization and two-scale
opening and closing).

The careful combination of the above ingredients in our proposed FDB method yields seg-
mentation results far superior to existing segmentation methods. The procedure of the FDB
method is illustrated in Fig 1.

The FDBMethod for Fingerprint Image Segmentation
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Fig 1. Overview over the segmentation by the FDBmethod: In the analysis step, the original image (top row, left) is transformed into the
Fourier domain (second column) and filtered by the first DHBB factor obtaining 16 directional subbands (third and fourth columns).
Next soft-thresholding is applied to remove spurious patterns (second row, third and fourth columns). In the synthesis step, the feature image
(second column) is reconstructed from these subbands using the second DHBB factor. Finally, the feature image is binarized and the ROI is
obtained by morphological operations. The estimated ROI (third row, left) is compared to manually marked ground truth segmentation (third row,
right) in order to evaluate the segmentation performance.

doi:10.1371/journal.pone.0154160.g001

The FDBMethod for Fingerprint Image Segmentation

PLOS ONE | DOI:10.1371/journal.pone.0154160 May 12, 2016 3 / 31



Benchmark. In order to verify this claim, because of the lack of a suitable benchmark in
the literature, we provide a manually marked ground truth segmentation for all 12 databases of
FVC2000 [4], FVC2002 [5] and FVC2004 [6]. Each databases consists of 80 images for training
and 800 images for testing. Overall this benchmark consists of 10560 marked segmentation
images. This ground truth benchmark is made publicly available, so that other researchers can
evaluate segmentation algorithms on it.

Evaluation against existing methods. We conduct a systematic performance comparison
of widely used segmentation algorithms on this benchmark. In total, more than 100 methods
for fingerprint segmentation can be found in literature. However, it remains unclear how these
methods compare with each other in terms of segmentation performance and which methods
can be considered as state-of-the-art. In order to remedy the current situation we chose four of
the most often cited fingerprint segmentation methods and compared their performance: a
method based on mean and variance of gray level intensities and the coherence of gradients as
features and a neural network as a classifier [7], a method using Gabor filter bank responses [8],
a Harris corner response based method [9] and an approach using local Fourier analysis [10].

Related Work
Early methods for fingerprint segmentation include Mehtre et al. [11] who segment an image
based on histograms of local ridge orientation and in [12] additionally the gray-level variance is
considered. A method proposed by Bazen and Gerez [7] uses the local mean and variance of
gray-level intensities and the coherence of gradients as features and a neural network as a classi-
fier. Similarly Chen et al. [13] use block based features including the mean and variance in com-
bination with a linear classifier. Both methods performmorphology operations for
postprocessing. A method by Shen et al. is based on Gabor filter bank responses of blocks [8]. In
[2], all pixels are regarded as foreground for which a valid ridge frequency based on curved
regions can be estimated. Wu et al. [9] proposed a Harris corner response based method and
they apply Gabor responses for postprocessing. Wang et al. [14] proposed to use Gaussian-Her-
mite moments for fingerprint segmentation. The method of Zhu et al. [15] uses a gradient based
orientation estimation as the main feature, and a neural network detects wrongly estimated ori-
entation and classifies the corresponding blocks as background. Chikkerur et al. [10] applied
local Fourier analysis for fingerprint image enhancement. The method performs implicitly fin-
gerprint segmentation, orientation field and ridge frequency estimation. Further approaches for
fingerprint enhancement in the Fourier domain include Sherlock et al. [16], Sutthiwichaiporn
and Areekul [17] and Bartůněk et al. [18–20]. Segmentation methods for latent fingerprints
were proposed, see Zhang et al. [21], Nimkar andMishra [22], Cao et al. [23], and the references
therein. It would be of interest to see how these methods aiming at latent fingermarks perform
on a benchmark of plain fingerprint images. Recently, Ferreira et al. [24] have proposed a
method based on range filters and fuzzy C-means clustering for segmentation and binarization.

Setup of Paper
The paper is organized as follows: in the next section, we describe the proposed method begin-
ning with the design of the DHBB filter for texture extraction in Section Filter Design for Fin-
gerprint Segmentation. Subsequently, the extracted and denoised texture is utilized for
estimating the segmentation as described in Fingerprint Segmentation which summarizes the
FDB segmentation procedure. In Section Evaluation Benchmark and Results, the manually
marked ground truth benchmark is introduced and applied for evaluating the segmentation
performance of four widely used algorithms and for comparing them to the proposed FDB seg-
mentation method. The results are discussed in Section Conclusions.

The FDBMethod for Fingerprint Image Segmentation
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Fingerprint Segmentation by FDBMethods

Our segmentation method uses a filter transforming an input 2D image f ð�Þ 2 L2ðR2Þ into a
feature image

~f ðxÞ :¼
XL�1

l¼0

X
x6¼m2Z2

T hf ð�Þ; �g;n
l ð� �mÞipvL2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cl ½m�

; b

8><
>:

9>=
>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dl ½m�

� �g;n
l ðx�mÞ: ð1Þ

Due to our filter design, the L2 product above as well as all convolutions, integrals and sums are
understood in the principal value sense

lim
�!0

Z
ky�mk��

f ðyÞ � �g;n
l ðy�mÞdy ¼ hf ð�Þ; �g;n

l ð� �mÞipvL2 ¼ ðf �pv�
g;n;_
l ÞðmÞ :

Having clarified this, the symbol “pv” will be dropped in the following. At the core of Eq (1) is
the DHBB filter conveyed by �g;n

l (l counts directions, n and γ are tuning parameters providing

sharpness). In fact, we suitably factorize the filter conveyed by �g;n
l � �g;n;_

l in the Fourier

domain where �g;n;_
l ðxÞ :¼ �g;n

l ð�xÞ with the argument reversion operator “_” and apply a
thresholding procedure T “in the middle”. Underlying this factorization is a factorization of
the bandpass filter involved. The precise filter design will be detailed in the following. Note that
the directional Hilbert transform is also conveyed by a non-symmetric kernel. Reversing this
transform (as well as the factor of the Butterworth) restores symmetry. It is inspired by the
steerable wavelet [25–27] and to some extend similar in spirit to the curvelet transform [28],
[29] and the curved Gabor filters [2]. We deal with curvature by analyzing single directions l
separately before the final synthesis.

Via factorization, possible phase shifts are compensated and unwanted frequencies intro-
duced by the thresholding operator are eliminated, yielding a sparse smoothed feature image.
This allows for easy binarization and segmentation via subsequent morphological methods,
leading to the ROI.

Note that Eq (1) can be viewed as an analog to the projection operator in sampling theory
with the analysis and synthesis steps (e.g. [30]). In this vein we have the following three steps:

Forward analysis (prediction): A first application of the argument reversed DHBB filter to a fin-
gerprint image f corresponds to a number of directional selections in certain frequency
bands of the fingerprint image giving cl[m] above.

Proximity operator (thresholding): In order to remove intermediate coefficients due to spurious
patterns (cf. [31]) we perform soft tresholding on the filtered grey values yielding dl[m]
above.

Backward synthesis: Subsequently we apply the filter (non-reversed) again giving ~f assembled
from all subbands. A numerical comparison to other synthesis methods, summation (corre-
sponding to a naive reconstruction) and maximal response in the appendix Comparison of
the Operator in the FDB Method with the Summation and Maximum Operators, shows the
superiority of this smoothing step.

Due to the discrete nature of the image f ½k� ¼ f ðxÞjx¼k2Z2 , we work with the discrete version

of ~f ðxÞ at x ¼ k 2 Z
2 in Eq (1).

The FDBMethod for Fingerprint Image Segmentation
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Filter Design for Fingerprint Segmentation
The features of interest in a fingerprint image are repeated (curved) patterns which are concen-
trated in a particular range of frequencies after a Fourier transformation. In principle, the fre-
quencies lower than these range’s limits correspond to homogeneous regions and those higher
to small scale objects, i.e. noise, respectively. Taking this prior knowledge into account, we
design an algorithm that captures these fingerprint patterns in different directional subbands
in the frequency domain for extracting the texture.

In this section, we design angularpass and bandpass filters. The angularpass filter builds on
iterates of the directional Hilbert transformation, a multidimensional generalization of the Hil-
bert transform called the Riesz transform. It can be represented via principal value convolution
kernels. The bandpass filter builds on the Butterworth transform which can be represented
directly via a convolution kernel. We follow here a standard technique designing a bandpass fil-
ter from a lowpass filter which has an equivalent representation in analog circuit design.

The nth Order Directional Hilbert Transform of a Butterworth Bandpass
Although a fingerprint image

k ¼ ½k1; k2� 7! f ½k�; f�M; . . . ;M� � f�N; . . . ;Ng ! f0; . . . ; 255g

is a discrete signal observed over a discrete grid,M;N 2 N we start our considerations with a
signal

x ¼ ðx1; x2Þ 7! f ðxÞ; D :¼ ½�a; a� � ½�b; b� ! ½0; 1�

assuming values in a continuum a, b> 0. The frequency coordinates in the spectral domain

will be denoted by ω ¼ ðo1;o2Þ 2 R
2.

As usual, the following operators are defined first for functions f in the Schwartz Space of
rapidly-decaying and infinitely differentiable test functions:

SðRdÞ ¼ f 2 C1ðRdÞ j sup
x2Rd

ð1þ jxjmÞ dn

dxn
f ðxÞ

����
���� < þ1 ; 8m; n 2 Zþ

( )
;

and continuously extended onto

L2ðRdÞ ¼ f 2 SðRdÞ j k f kL2
¼

Z
Rd
j f ðxÞj2dx < þ1

� �
:

In our context we only need d = 1, 2. Further, we denote the Fourier and its inverse transforma-
tions by

F ½f �ðωÞ ¼
Z
R
d
f ðxÞ e�jhω;xi dx ¼ f̂ ðωÞ ; F�1½ f �ðωÞ ¼ 1

ð2pÞd
Z
R
d
f̂ ðωÞ ejhω;xi dx

where j denotes the imaginary unit with j2 = −1.
Butterworth bandpass. For g 2 N and frequency bounds 0< ωL < ωH, setting Δ = ωH −

ωL, p
2 = ωH ωL, the one-dimensional (d = 1) Butterworth bandpass transform is defined via

B½f �ðxÞ ¼ F�1 o 7!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðoDÞ2g
ðoDÞ2g þ ðo2 � p2Þ2g

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼b̂ðoÞ

f̂ ðoÞ

2
66664

3
77775ðxÞ ;

cf. [32]. It is easy to verify that b̂ðoÞ tends to zero for ω! 0 and ω!1 and has unique

The FDBMethod for Fingerprint Image Segmentation

PLOS ONE | DOI:10.1371/journal.pone.0154160 May 12, 2016 6 / 31



maximum at the geometric mean p with value 1. In consequence, for high values of γ, this filter
approximates the ideal filter

b̂ idealðoÞ ¼
1 if oL � o � oH

0 else

(
:

The ideal filter, however, suffers from the Gibbs effect. Letting t ¼ ðjoÞ2þp2

joD , we factorize the

bandpass Butterworth as

b̂2ðoÞ ¼ 1

ð�1Þgðt2Þg þ 1
¼ 1

ð�1Þg Qg
k¼1ðt2 � t2kÞ

¼
Yg

k¼1

1

t � tk|fflfflfflfflffl{zfflfflfflfflffl}
HðtÞ

�
Yg
k¼1

1

�t � tk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Hð�tÞ

;

with tk = eπj(γ + 2k − 1)/2γ (k = 1, . . ., γ), the negative squares of which representing the γ different

complex roots of (−1). Then, with the below complex valued factor of 0 � b̂2ðoÞ ¼
BðjoÞ � Bð�joÞ called the transfer function,

HðtÞ ¼ H
ðjoÞ2 þ p2

joD

� �
¼

Yg

k¼1

DðjoÞ
ðjoÞ2 � DtkðjoÞ þ p2

:¼ BðjoÞ ;

we use the approximation: jo ¼ log ejo 	 2 ejo�1
ejoþ1

to obtain

BðjoÞ 	
Yg

k¼1

2Dðe2jo � 1Þ
4þ p2 � 2Dtkð Þe2jo þ 2p2 � 8ð Þejo þ 4þ p2 þ 2Dtkð Þ :¼ BgðejoÞ:

This approximation is often called the bilinear transform, which turns out to reduce the fre-
quency bandwidth of interest, cf. Fig 2.

The 1D filter Bγ(eiω) is then generalized to a 2D domain. The McClellan transform [33–36],
would be one favorable method. Also, recently, bandpass filtering with a radial filter in the Fou-
rier domain has been proposed by [37], [38] and [39] et al. for enhancing fingerprint images.
However, for a simpler reconstruction of 2D filter and a data-friendly alternative to the polar
tiling of the frequency plane, a Cartesian array is used instead (see [28], [29], [40], [41]).

Thus, on a rectangular domain D = [−a, a] × [−b, b] with common cuttoff frequencies 0<
ωL < ωH and the two characteristic functions

whðo1;o2Þ :¼
1 if bjo1j � ajo2j
0 else

(
; wvðo1;o2Þ :¼

1 if bjo1j � ajo2j
0 else

(

(see Fig 3), define

ĝ gðo1;o2Þ ¼ Bgðejo1Þwhðo1;o2Þ þ Bgðejo2Þwvðo1;o2Þ ð2Þ

as the spectrum of our two-dimensional Butterworth filter gγ(x). Note that since

ĝ gðωÞ 2 L2ðR2Þ, there is a well defined ggðxÞ ¼ F�1½ĝ gðωÞ�ðxÞ:
Fig 4(b) and 4(c) show an example of the 1D and 2D Butterworth bandpass filters.
n-th order directional Hilbert transformations. For more detail on the Hilbert transform

H and the Riesz transformR, we refer the reader to the literature for an in-depth discussion
[25], [27], [42], [43], [44], [45–47], [48], and [49].

The FDBMethod for Fingerprint Image Segmentation
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Consider a vector u 2 R
d and set and compute, respectively, for x 2 R

d

R½f �ðxÞ :¼ F�1 ω 7!�j
ω

k ω k|fflfflfflfflffl{zfflfflfflfflffl}
:¼ ĥðωÞ

f̂ ðωÞ

2
6664

3
7775ðxÞ ð3Þ

Hu½f �ðxÞ :¼ hu;R½f �ðxÞi ¼ F�1 ω 7!�j
hu;ωi
k ω k|fflfflfflfflffl{zfflfflfflfflffl}

:¼ ĥuðωÞ

f̂ ðωÞ

2
6664

3
7775ðxÞ

Hu . . .Hu|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�times

½f �ðxÞ ¼ Hn
u½f �ðxÞ ¼ F�1 ω 7! ð�jÞn hu;ωin

k ω kn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ĥnuðωÞ

f̂ ðωÞ

2
6664

3
7775ðxÞ; n 2 N ð4Þ

The first line Eq (3) called the Riesz transform has a representation as a principal value integral

R½f �ðxÞ ¼ ðf �pvhÞðxÞ ¼ lim
�!0

Z
ky�xk��

f ðx� yÞ hðyÞ dy

Fig 2. Image (a) displays a 1D Butterworth bandpass filter (blue) and its approximation (red). Image (b)
shows the 2D Butterworth bandpass filter ĝgðωÞ at n = 20, θ = 0, γ = 2, and the corresponding DHBB filter in
the Fourier and spatial domains (c, d) for the approximation by the bilinear transform. Image (e) visualizes the
2D version of the original filter and the corresponding DHBB filter (f, g).

doi:10.1371/journal.pone.0154160.g002

The FDBMethod for Fingerprint Image Segmentation
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where

hðyÞ :¼
y

k y kdþ1

G
d þ 1

2

� �

p

d þ 1

2

for d > 1

1

py
for d ¼ 1

8>>>>>>><
>>>>>>>:

Setting hu(y) = hu, h(y)i and hn
uðyÞ ¼ ðhu�pv . . . �pvhuÞðyÞ we haven for the third line Eq (4)

called the n-order directional Hilbert transform that

Hn
u½f �ðxÞ ¼ f �pvhn

uðxÞ :

Fig 3. The indicator functions in the horizontal direction (a) and vertical direction (b).

doi:10.1371/journal.pone.0154160.g003
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Since�1 � hu;ωi
kωk � 1 and high powers preserve the values near ±1 while forcing all other values

in (−1, 1) towards 0, this filter gives roughly the same result as an inverse Fourier transform of
a convolution of the signal’s Fourier transform with

Aa;uðωÞ ¼
1 if

jhu;ωij
k ω k � cos a

0 else

8<
:

for small α> 0. The directional Hilbert transform, however, suffers less from a Gibbs effect
than this sharp cutoff filter.

In 2D, the direction vector is u = [cos(θ), sin(θ)]T with the discretized y ¼ pl
L
2 ½0; pÞ and

l = 0, 1, . . ., L − 1, where L 2 N is the total number of orientation. Rewrite the impulse response

Fig 4. Image (a) displays the angularpass filter ĥn
l ðωÞ with θ = 13π/16, n = 20. Images (b-c) show the 1D and

2D Butterworth bandpass filters ĝgðoÞ and ĝgðωÞ withωL = 0.3,ωH = 1, γ = 2, (d) the spectrum of the DHBB
filter �̂g;n

l ðωÞ. Images (e-f) visualize the real and imaginary part of the DHBB filter �g;n
l ðxÞ. Images (g-h) display

the squared magnitude of the spectrum of the DHBB in the frequency and spatial domains which acts
somewhat like a Gabor filter.

doi:10.1371/journal.pone.0154160.g004

The FDBMethod for Fingerprint Image Segmentation
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of the n�th 2 N order directional Hilbert transform in Eq (4) as

ĥn
uðo1;o2Þ ¼ �j cos tan �1

2

o2

o1

� �
� pl

L

� �	 
n

:¼ ĥn
l ðo1;o2Þ: ð5Þ

Putting together (Eqs (2), (4) and (5)), for a fixed bandpass ωL < ωH and L directional sub-
bands we have thus the DHBB filter of order γ, n:

Hn
u½gg�ðxÞ ¼ F�1 ω 7! ĥn

l ðωÞ � ĝ gðωÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
:¼�̂

g;n
l

ðωÞ

2
664

3
775ðxÞ :¼ �g;n

l ðxÞ: ð6Þ

Thresholding. For given β> 0, soft-thresholding is defined as follows

x 7!Tðx; bÞ ¼ x
jxj � max jxj � b; 0ð Þ: ð7Þ

Thus, the thresholded coefficients are dl [m] = T{cl [m], β}. Note that dl[m] is a solution of the
ℓ1-shrinkage minimization problem

min
u

b k uk‘1 þ
1

2
k u� cl k2‘2

� �

yielding soft-thresholding (cf. [50]). Fig 5 visualizes the effect of the soft-thresholding and the
comparison with the others (such as: hard [50], semi-soft [51] and nonlinear [52] thresholding
operators).

Fingerprint Segmentation
After having designed the FDB filter, let us now ponder on parameter selection, image binari-
zation and morphological processing.

Parameter Choice for Texture Extraction. A fingerprint image will be rescaled such that
its oscillation pattern stays in a specific range in the Fourier domain, the coordinates of which
are ωi = [−π, π], i 2 {1, 2}. For choosing the cutoff frequencies ωL and ωH, we incorporate our
prior knowledge about adult fingerprint images at resolution of 500 DPI: Valid interridge dis-
tances remain in a known range approximately from 3 to 25 pixels [2]. This corresponds
exactly to ωH = 1 as a limit for high frequencies. A limit of ωL = 0.3 for low frequencies of the
Butterworth bandpass filter corresponds to an interridge distance of about 12 pixels. The range
|ωi| 2 [ωH, π] contains the small scale objects which are considered as noise. The range |ωi| 2
[0, ωL] contains the low frequency objects, corresponding to homogeneous regions.

The number of directions L in and the order n of the directional Hilbert transform involves
a tradeoff between the following effects. We observe that with increased order n the filter’s
shape becomes thinner in the Fourier domain. Although this sparsity smooths the texture
image in the spatial domain, in order to fully cover all FOTIs, L needs to grow with n. However,
a disadvantage of choosing large n and L is that errors occur on the boundary due to the over-
smoothing effect as illustrated in Fig 6 (o).

The next parameter to select is the order of the Butterworth filter γ. An illustration of the fil-
ter for different orders γ 2 {1, 2, 3, 10} and with cutoff frequencies ωL = 0.3 and ωH = 1 is
shown in Fig 7, its bilinear approximation in Fig 2. As γ increases the filter becomes sharper.
For very large values of γ, it approaches the ideal filter which is known to cause the unfavorable
Gibbs effect.

The FDBMethod for Fingerprint Image Segmentation
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Fig 5. Four typical thresholding functions (red: hard, black: soft, green: semi-soft, magenta: nonlinear) are compared
(top left). The following six pairs show an image and the visualization of the corresponding 1D cross section along the red line. F.l.
t.r and top to bottom: the original image f[k], the coefficient cl[k] and the thresholded coefficients dl[k] for the soft, hard, semisoft
and nonlinear thresholding operators. Comparing the four cross sections in the bottom row, we observe that soft-thresholding
achieves the sparsest solution.

doi:10.1371/journal.pone.0154160.g005
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Fig 6. Angular bandpass ĥn
l ðoÞ at y ¼ 7p

16 ; g ¼ 3 and different orders n 2 {3, 20, 100} and their responses (last
row).

doi:10.1371/journal.pone.0154160.g006
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The thresholding value β separates large coefficients corresponding to the fingerprint pat-
tern (FOTIs) (which are slightly attenuated due to soft-thresholding) from small coefficients
corresponding to non-FOTIS and FOTIs which are not features due to the fingerprint pattern
(these are eliminated). On the one hand, if β is chosen too large, more prominent parts of true
fingerprint tend to be removed. On the other hand, if β is chosen too small, not all all unwanted
features (as above) are removed which may cause segmentation errors.

In order to find good trade-offs, as described above, n, L, γ and β are trained as described in
Section Experimental Results. In fact, since different fingerprint sensors have different proper-
ties, β is adaptively adjusted to the intensity of coefficients in all subbands as

b ¼ C �max
l;m

fcl½m�g: ð8Þ

Thus, instead of β, C is trained for each sensor.

Fig 7. Butterworth bandpass filter ĝgðωÞ atωL = 0.3,ωH = 1 and different γ, angular bandpass filter with
n ¼ 20;L ¼ 16; y ¼ 5p

16, and their responses. 1st row: 1D Butterworth, 2nd row: 2D Butterworth, 3rd row:

�̂g;n
l ðωÞ, 4th row: j�g;n

l ðxÞj, 5th row: ð�g;n
l � �g;n;_

l ÞðxÞ, 6th row: their responses.
doi:10.1371/journal.pone.0154160.g007
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Texture Binarization. In the first step, the texture is decomposed by the operator Eq (1)

to obtain the reconstructed image ~f ½k�. Then, ~f ½k� is binarized using an adaptive threshold

adjusted to the intensity of ~f ½k�. Thus, the threshold is chosen as C �max
k

ð~f ½k�Þ, with C from Eq

(8). If ~f ½k� is larger than this threshold, it will be set to 1 (foreground), otherwise, it is set to 0
(background) as illustrated in Fig 1.

~f bin½k� ¼
1; ~f ½k� � C �max

k
ð~f ½k�Þ

0; else

(
; 8k 2 O

Morphological Processing. In this final phase, we apply mathematical morphology (see
Chapter 13 in [53]), to decide for each pixel whether it belongs to the foreground or back-

ground. Firstly, at each pixel ~f bin½k1; k2� 2 f0; 1g, we build an s × s block centered at (k1, k2)
and 8 neighboring blocks (cf. Fig 8). Then, for each block, we count the white pixels and check

whether their number exceeds the threshold s2

t
with another parameter t> 0. If at least b blocks

are above threshold, the pixel [k1, k2] is considered as foreground.

~f dilate½k1; k2� ¼
1; #

P
B½k1þm;k2þm� �

s2

t
;m 2 f�s; 0; sg

� �
� b

0; else

8><
>: ð9Þ

Then, the largest connected white pixel component is selected by a region filling method. Its
convex hull is then the ROI. For better visualization we have inverted white and black, i.e. dis-
play the background by white pixels and the ROI by black pixels, cf. Fig 1. Fig 9 illustrates the
effect of the morphological operator.

Evaluation Benchmark and Results
The databases of FVC2000, 2002 and 2004 [4–6] are publicly available and established bench-
marks for measuring the verification performance of algorithms for image enhancement and
fingerprint matching. Each competition comprises four databases: three of which contain real
fingerprints acquired by different sensors and a database of synthetically generated images (DB
4 in each competition).

It has recently been shown that real and synthetic fingerprints can be discriminated with
very high accuracy using minutiae histograms (MHs) [54]. More specifically, by computing the
MH for a minutiae template and then computing the earth mover’s distance (EMD) [55]
between the template MH and the mean MHs for a set of real and synthetic fingerprints. Clas-
sification is simply performed by choosing the class with the smaller EMD.

Fig 8. Themorphological element.

doi:10.1371/journal.pone.0154160.g008
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The nine databases containing real fingerprints have been obtained by nine different sensors
and have different properties. The fingerprint image quality ranges from good quality images
(especially FVC2002 DB1 and DB2) to low quality images which are more challenging to pro-
cess (e.g. the databases of FVC2004). Some aspects of image quality concern both the segmenta-
tion step and the overall verification process, other aspects pose problems only for later stages of
the fingerprint verification procedure, but have no influence on the segmentation accuracy.

Aspects of fingerprint image quality which complicate the segmentation:

• dryness or wetness of the finger

• a ghost fingerprint on the sensor surface

• small scale noise

• large scale structure noise

• image artifacts e.g. caused by reconstructing a swipe sensor image

• scars or creases interrupting the fingerprint pattern

Aspects of fingerprint image quality which make an accurate verification more difficult, but
do not have any influence on the fingerprint segmentation step:

• distortion, nonlinear deformation of the finger

• small overlap area between two imprints

Each of the 12 databases contains 110 fingers with 8 impressions per finger. The training set
consists of 10 fingers (80 images) and the test set contains 100 fingers (800 images). In total
there are 10560 fingerprint images giving 10560 marked ground truth segmentations for train-
ing and testing.

Experimental Results
Segmentation Performance Evaluation. Let N1 and N2 be the width and height of image f

[k] in pixels. LetMf be number of pixels which are marked as foreground by human expert and
estimated as background by an algorithm (missed/misclassified foreground). LetMb be num-
ber of pixels which are marked as background by human expert and estimated as foreground
by an algorithm (missed/misclassified background). The average total error per image is

Fig 9. The ground truth segmentation (a) and the binarized texture image (b) for an example fingerprint.
Applying a standard morphology operation like closing (dilation followed by erosion) instead of the proposed
method connects in this example the white fingerprint texture with structure noise close to the margin of the
texture and the result is a defective segmentation (c). The proposed morphology avoids this undesired effect
by considering neighborhoods on two scales: cells of size s × s pixels and blocks of 3 × 3 cells.

doi:10.1371/journal.pone.0154160.g009
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defined as

Err ¼ Mf þMb

N1 � N2

: ð10Þ

The average error over 80 training images is basis for the parameter selection. In Table 1, we
report the average error over all other 800 test images for each database and for each
algorithms.

Parameter Selection. Experiments were carried out on all 12 databases and are reported
in Table 1. For each method listed in Table 1, the required parameters were trained on each of
the 12 training sets: the choice of the threshold values for the Gabor filter bank based approach
by Shen et al. [8], and the threshold values for the Harris corner response based method by Wu
et al. [9]. The parameters of the method by Bazen and Gerez are chosen as described in [7]: the
window size of the morphology operator and the weights of the perceptron which are trained
in 104 iterations due to the large number of pixels in the training database. For the method of
Chikkerur et al., we used the energy image computed by the implementation of Chikkerur, per-
formed Otsu thresholding and mathematical morphology as explained in [53].

For the proposed FDB method, the involved parameters are summarized in Table 2 and the
values of the learned parameters are reported in Table 3. Also, the mirror boundary condition
with size 15 pixels is used in order to avoid boundary effects. In a reasonable amount of time, a
number of conceivable parameter combinations were evaluated on the training set. The choice
of these parameters balances the smoothing properties of the proposed filter attempting to
avoid both under-smoothing and over-smoothing. The response of a fingerprint image by FDB
is illustrated in Fig 10.

This systematic comparison of fingerprint segmentation methods clearly shows that the fac-
torized directional bandpass method (FDB) outperforms the other four widely used segmenta-
tion methods on all 12 databases. An overview of visualized segmentation results by the FDB
method is given in Fig 11. A few challenging examples for which the FDB method produces a

Table 1. Error rates (average percentage of misclassified pixels averaged over 800 test images per database) computed using the manually
marked ground truth segmentation and the estimated segmentation by thesemethods: a Gabor filter bank (GFB) response basedmethod by Shen
et al. [8], a Harris corner response (HCR) based approach byWu et al. [9], a method by Bazen and Gerez using local gray-level mean, variance and
gradient coherence (MVC) as features [7], a method applying short time Fourier transforms (STFT) by Chikkerur et al. [10] and the proposed
method based on the factorized directional bandpass (FDB).

FVC DB GFB [8] HCR [9] MVC [7] STFT [10] FDB

2000 1 13.26 11.15 10.01 16.70 5.51

2 10.27 6.25 12.31 8.88 3.55

3 10.63 7.80 7.45 6.44 2.86

4 5.17 3.23 9.74 7.19 2.31

2002 1 5.07 3.71 4.59 5.49 2.39

2 7.76 5.72 4.32 6.27 2.91

3 9.60 4.71 5.29 5.13 3.35

4 7.67 6.85 6.12 7.70 4.49

2004 1 5.00 2.26 2.22 2.65 1.40

2 11.18 7.54 8.06 9.89 4.90

3 8.37 4.96 3.42 9.35 3.14

4 5.96 5.15 4.58 5.18 2.79

Avg. 8.33 5.78 6.51 7.57 3.30

doi:10.1371/journal.pone.0154160.t001
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flawed segmentation are depicted in Fig 12. Moreover, a comparison of all five segmentation
methods and their main features for five example images are shown in Figs 13 to 17.

Conclusions
In this paper, we designed a filter specifically for fingerprints which is based on the directional
Hilbert transform of Butterworth bandpass filters. A systematic comparison with four widely
used fingerprint segmentation showed that the proposed FDBmethod outperforms these meth-
ods on all 12 FVC databases using manually marked ground truth segmentation for the perfor-
mance evaluation. The proposed FDBmethod for fingerprint segmentation can be combined
with all methods for orientation field estimation like e.g. the line sensor method [56] or by a
global model based on quadratic differentials [57] followed by liveness detection [58] or finger-
print image enhancement [2, 59]. It can also be used in combination with alternative
approaches, e.g. as a preprocessing step for locally adaptive fingerprint enhancement in the Fou-
rier domain as proposed by Bartůněk et al. [20] or before applying structure tensor derived sym-
metry features for enhancement and minutiae extraction proposed by Fronthaler et al. [60].

Notably, the filter �n;g
l � �n;g;_

l is similar to the Gabor filter which could have been used
instead of the DHBB filter. Similarly, Bessel or Chebbychev transforms as well as B-splines as

Table 3. Overview over the parameters learned on the training set. The other four parameters are n = 20,
L = 16, s = 9 and b = 6 for all databases.

FVC DB C γ t

2000 1 0.06 4 5

2 0.07 2 5

3 0.06 4 4

4 0.03 1 5

2002 1 0.04 1 4

2 0.05 1 7

3 0.09 1 5

4 0.03 1 6

2004 1 0.04 1 7

2 0.08 2 5

3 0.07 1 6

4 0.05 1 5

doi:10.1371/journal.pone.0154160.t003

Table 2. Overview over all parameters for the factorized directional bandpass (FDB) method for finger-
print segmentation.

Parameters Description

C a constant for selecting the threshold β in Eq (8) which removes small coefficients
corresponding to noise.

n the order of the directional Hilbert transform which corresponds to the angularpass filter in
Eq (4).

L the number of orientations in the angularpass filter in Eq (4).

γ the order of the Butterworth bandpass filter in Eq (2).

s the window size of the block in the postprocessing step in Eq (9).

t a constant for selecting the morphology threshold T in Eq (9).

b the number of the neighboring blocks in Eq (9).

doi:10.1371/journal.pone.0154160.t002
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generalizations ([61]) could replace the Butterworth. We expect, however, for reasons elabo-
rated, relying on the DHBB filter gives superior segmentation results.

The manually marked ground truth benchmark is available for download at http://dx.doi.
org/10.6084/m9.figshare.1294209 and the Matlab implementation of the FDB method is avail-
able for download at http://dx.doi.org/10.6084/m9.figshare.1294210.

Fig 10. Visualization of the coefficients in the 16 subbands of the DHBB filter for n = 20, γ = 3,ωL = 0.3,
ωH = 1.

doi:10.1371/journal.pone.0154160.g010
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In doing so, we would like to facilitate the reproducibility of the presented results and pro-
mote the comparability of fingerprint segmentation methods. Recently, this implementation of
the FDB method has been applied to improve the performance of fingerprint liveness detection
by the convolution comparison patterns [62] and fingerprint alteration detection [63]. The
manually marked benchmark has been used by Thai and Gottschlich [64] and by Bartůněk
[65] for evaluating a new fingerprint segmentation methods. The G3PD method [64] follows a
variational approach to decompose a fingerprint image into three parts and obtains the ROI
based on the texture component. The further advanced and more general DG3PD method [66]

Fig 11. Segmented fingerprint images and the corresponding reconstructed texture images by the
FDBmethod for FVC2000 (first and second row), FVC2002 (third and fourth row) and FVC2004 (fifth
and sixth row). Columns f.l.t.r correspond to DB1 to DB4.

doi:10.1371/journal.pone.0154160.g011
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Fig 12. Examples of incorrectly segmented fingerprint images due to: (a) a ghost fingerprint on the
sensor surface, (b) dryness of the finger, (c) texture artifacts in the reconstructed image, (d) wetness
of the finger. The first row shows the segmentation obtained by the FDBmethod, the second row displays
the reconstructed image and the last row visualizes the manually marked ground truth segmentation.

doi:10.1371/journal.pone.0154160.g012
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has also been applied to latent fingerprint segmentation. The method by Bartůněk [65] relies
on normalisation and local kurtosis estimation as a novel feature for segmentation.

Supplementary Appendix

Comparison of the Operator in the FDBMethod with the Summation and
MaximumOperators
We briefly illustrate the differences between the proposed FDB filter Eq (1) and the maximum
and summation operators for the coefficients in all directional subbands. Fig 18 compares the
results of these operators for a low-quality and a good quality example. The functions are
described as follows

Fig 13. Segmented fingerprint images and their features of different methods for FVC2002_DB3_IM_15_1. (a)
ground truth; (b, g) FDB, (c, h) Gabor, (d, i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.

doi:10.1371/journal.pone.0154160.g013
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Fig 14. Segmented fingerprint images and their features of different methods for FVC2004_DB1_IM_24_7. (a) ground truth;
(b, g) FDB, (c, h) Gabor, (d, i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.

doi:10.1371/journal.pone.0154160.g014
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• The maximum operator without and with the shrinkage operator Eq (7) (depicted in the sec-
ond and third row in Fig 18)

~f ½k� ¼
max

l
cl½k� � ðcl½k� > 0Þf g þmin

l
cl½k� � ðcl½k� < 0Þf g without ð7Þð Þ

max
l

dl½k� � ðdl½k� > 0Þf g þmin
l

dl½k� � ðdl½k� < 0Þf g with ð7Þð Þ;

8<
:

with l = 0, 1, . . ., L − 1.

Fig 15. Segmented fingerprint images and their features of different methods for FVC2000_DB3_IM_17_3. (a) ground
truth; (b, g) FDB, (c, h) Gabor, (d, i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.

doi:10.1371/journal.pone.0154160.g015
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Fig 16. Segmented fingerprint images and their features of different methods for FVC2004_DB2_IM_56_8. (a) ground truth;
(b, g) FDB, (c, h) Gabor, (d, i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.

doi:10.1371/journal.pone.0154160.g016
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Fig 17. Segmented fingerprint images and their features of different methods for FVC2004_DB2_IM_65_7. (a) ground truth;
(b, g) FDB, (c, h) Gabor, (d, i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.

doi:10.1371/journal.pone.0154160.g017
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Fig 18. Comparison of five image reconstruction strategies and their effect on the resulting segmentation. 1st, 2nd

columns: segmented images (error in percent) and reconstructed images for a low-quality image and 3rd, 4th columns for a good
quality image. 1st row: the proposed operator. 2nd, 3rd rows: maximum operator without and with the shrinkage operator Eq (7),
respectively. 4th, 5th rows: summation operator without and with the shrinkage operator Eq (7), respectively.

doi:10.1371/journal.pone.0154160.g018

The FDBMethod for Fingerprint Image Segmentation

PLOS ONE | DOI:10.1371/journal.pone.0154160 May 12, 2016 27 / 31



• The summation operator without and with the shrinkage operator Eq (7) (displayed in the
fourth and fifth row in Fig 18)

~f ½k� ¼

XL�1

l¼0

cl½k� without ð7Þð Þ

XL�1

l¼0

dl½k� with ð7Þð Þ:

8>>>><
>>>>:
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