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Abstract.
BACKGROUND: Mental workload is one of the contributing factors to human errors in road accidents or other potentially
adverse incidents.
OBJECTIVE: This research probes the effects of mental workload on the electroencephalographic (EEG) and electrocardiogram
(ECG) of subjects in visual monitoring tasks, based on which a comprehensive evaluation model for mental workload is
established effectively.
METHODS: Three degrees of mental workload were obtained by monitoring tasks with different levels of difficulty. 20 healthy
subjects were selected to take part in the research.
RESULTS: The subjective scores showed a significant increase with the increase of task difficulty, meanwhile the reaction
time (RT) increased and the accuracy decreased significantly, which proved the validity of three degrees of mental workload
induced. For the EEG parameters, a significant decrease of θ energy was found in Frontal, Parietal and Occipital with the
increase of level of mental workload, as well as a significant decrease of α energy in Frontal, Central and Occipital, meanwhile
a significant increase of β energy occurred in Frontal and Occipital. There was a significant decrease of α/θ in Occipital,
and significant increases of θ/β and (α+ β)/θ in Frontal, Central and Occipital, meanwhile (α+ θ)/β and WPE decreased
significantly in Frontal and Occipital. Among the ECG parameters, it was shown that Mean RR, RMSSD, HF_norm and SampEn
decreased significantly with the increase of task difficulty, while LF_norm and LF/HF showed significant increases. These EEG
indictors in Occipital and ECG indictors were chosen and constituted a multidimensional original sample. Principal Component
Analysis (PCA) was used to extract the principal elements and decreased the dimension of sample space in order to simplify the
calculation, based on which an effective classification model with accuracy of 80% was achieved by support vector machine
(SVM).
CONCLUSION: This study demonstrates that the proposed algorithm can be applied to mental workload monitoring.
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1. Introduction

The modern man-machine system is highly automated with the development and application of
technology. Therefore, cognitive monitoring tasks are more and more common in systems, especially
in the actual production, power plant control, transportation, aerospace and other fields of work. As the
amount of information faced and processed by operators increases dramatically, the roles of humans in
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the human-computer system gradually begins to turn to monitoring and making decisions. It has been
shown that 80% of the information is obtained through vision, so the operators must be highly focused,
and thus bear great mental workload, which may easily cause safety accidents. Therefore, the study on
the assessment of mental workload draws great attention.

There is no consistent of definition for mental workload, and the definitions vary from field to field.
Eggemeier et al. [1] indicated that mental workload referred to the information processing ability of an
operator to complete a specific task in a man-machine interaction system. The assessment of mental
workload is very important and meaningful in ergonomic domain. Mehler [2] thought that mental workload
was the load imposed limited brain resources by a specific task. Some scholars proposed that mental
workload described the total amount of information that the brain could process in a certain time, namely
rate of information processing [3,4]. It is considered that mental workload is related to task requirement,
time pressure, individual ability, effort and performance [5]. There are three principal measurements for
the evaluation of mental workload: subjective measurement, behavior performance measurement and
physiological measurement [6]. Questionnaires are the main forms of subjective measurement, such as
Cooper-Harper, SWAT, and NASA-TLX [7,11]. However, the disadvantage of subjective evaluation is that
the measurement results are easily affected by differences between individuals, such as memory loss and
cultural difference. Performance evaluation mainly includes primary task measurement and secondary
task measurement based on indicators as reaction time (RT) and accuracy. However, the comparison of
workloads between different environments is unworkable by primary task measurement. Meanwhile, it is
easy to change the priority of primary and secondary tasks and lead to wrong conclusions in secondary
task measurement if the test design is improper. In comparison to the above two measurements, the
advantage of physiological evaluation is that it can measure the workload degree directly and continuously.
The electroencephalogram (EEG) and electrocardiogram (ECG) are the two mostly used signals for the
physiological evaluation of mental workload [12,14].

Numerous experiments have been conducted in the past to quantify the effects of mental workload
on the EEG and ECG, but the results have been mixed. Previous studies showed that alpha power
varied with mental workload, as it is associated with arousal level, idling and cortical inhibition [15,16].
Theta is shown to be mediated by intellectual efforts and task demands [17,18]. In addition, beta also
proved to be associated with mental workload [19,20]. ECG is another physiological signal that can
quantitatively reflect the effect of mental workload on the human body [21,22]. It was shown that the
heart rate (HR) increased when the mental workload increased [23]. Meanwhile, the HRV proved to
respond more quickly than HR to changes in momentary workload, i.e. the HRV decreased as the mental
workload increased [24]. However, the challenge for physiological measurement is its reliability, for it
is assumed that the changes of mental workload are the only factors causing changes of physiological
indicators, but in fact, many other factors unrelated to mental workload may also cause these changes.
Another limitation is that different work takes up different mental resources and thus produce different
physiological responses, i.e. one physiological indicator is applicable to one type of work and may not be
applicable to another type of work.

Considering the multi-dimension characteristics of mental workload, single measurement for mental
workload is limited. In contrast with previous studies, multiple measurements were combined to study
mental workload in the current study, i.e. various measurements complemented each other and avoided
their own shortcomings. Along with subjective and performance measurements, effective EEG and ECG
characteristic evaluation indicators of mental workload were obtained and an effective high-dimensional
vector was constructed. PCA was used to reduce the dimension of the data and a new set of samples was
formed, based on which the method of SVM was subsequently used to establish an effective model for
evaluating mental workload.
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Fig. 1. Interfaces of instrument-monitoring tasks with different difficulties.

2. Materials and methods

2.1. Subjects

Twenty healthy and young males (Mean age = 24.7, SD = ± 2.45) participated in the experiment
(compared with females, the scalp impedance for males with shorter hair is more easily reduced in order
to better collect EEG signals). All subjects had normal or corrected vision and were used to a computer
keyboard. All subjects had a normal sleep schedule and did not work night shifts. None of them reported
a history of prior neurological disorder, heart disease or other medical contraindications. Each subject was
required to sleep more than seven hours and keep off alcohol, tea, or other caffeinated substances, as well
as smoking the day before the formal experiment. All subjects were informed of their rights and provided
written informed consent prior to the experiment and were paid $50 after completion of the experiment.

2.2. Task design

The brain thinking mechanism, especially the process of information processing, thinking and decision-
making is analyzed by studying the process of human-computer interaction in modern systems and
extracting the corresponding cognitive model. According to the complex information processing process,
the monitoring task can be divided into three phases: perceiving, judging and decision-making, and
executing. Instrument monitoring is one of the most typical monitoring tasks, which covers the three
phases fully. According to the attention resource theory, when people are engaged in monitoring work,
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Fig. 2. Experiment procedure.

the more information sources they need to perceive, the more attention resources they will allocate [25].
Mental workload is the extent of attention resources occupied of the person at work. Therefore, an
instrument monitoring software with the amount of instruments settable was designed to induce three
different levels of mental workload. Figure 1a–c show the interfaces for the low difficulty (L), medium
difficulty (M) and high difficulty (H) instrument-monitoring tasks respectively. Each task is composed of
multiple trials, each trial is presented for 6,000 ms, and, at most, one target appears with one instrument
parameter beyond the normal range (ratio of target stimulus to non-target stimulus is 1:1). The normal
ranges of instrument parameters, and the corresponding operations when they are out of the range are
decided in advance. During the experiment, the subjects are required to observe and judge whether the
corresponding parameters of the instruments on the screen are in normal range and if not, they are asked
to respond with the corresponding button as quickly and correctly as possible, or otherwise to respond
by pressing the “spacebar” button. The software records the RT and accuracy during the experiment
automatically.

2.3. Experiment procedure

The experiment was carried out in an electrically shielded and soundproof room. The tasks were shown
on a high-resolution computer 70 cm in front of the subjects. Figure 2 shows the experiment procedure,
which is consisted by three tasks with different difficulties. To avoid the influence of single task sequence
on experiment results, the sequence of three tasks with different difficulties was shuffled and designed
according to Latin square design (e.g. the task sequence for the first subject was L-M-H, and then the
sequence for the second subject should be M-H-L, and so on). Each task lasted for 6 min. To avoid the
effect of fatigue induced by continuous task execution on experimental results, subjects were required
to take a break for 5 minutes after completing each task, and then proceeded with the next task. EEG
and ECG signals were recorded during the tasks, and the software recorded RT and accuracy of each
task automatically. Meanwhile subjects were asked to score their workload levels according to subjective
evaluation scale shown in Table 1 after completing each task.

2.4. Physiological signal recording and processing

2.4.1. EEG
The EEG signal was amplified and recorded with a Brain Products 32-channel System (ANT, Germany).

This system consisted of 32 Ag/AgCl active electrodes which are located on a scalp according to the
International 10–20 System. The vertical and horizontal channels of electrooculograms were recorded.
Linked-mastoid (M1 and M2) were used as reference electrodes. The electrode impedance was controlled
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Table 1
Subjective evaluation scale for mental workload

Descriptions for 1st index Descriptions for 2nd index Score
Difficulty level is acceptable Very easy 1

Easy 2
Normal 3

Difficulty level is a little high Low but annoying 4
Medium and objectionable 5
Very objectionable but endurable 6

Difficulty level is higher Requiring extreme effort to reduce the error to a medium level 7
Requiring extreme effort to avoid countless mistakes 8
Requiring extreme effort to complete task, but still with countless mistakes 9

Difficulty level is highest Unable to complete the task 10

Fig. 3. Schematic diagram of wavelet packet decomposition.

no more than 10 kΩ during the experiment. The EEG signals were digitalized continuously with a
sampling rate of 512 Hz with a 0.05–100 Hz band-pass filter and 50 Hz notched.

Considering different brain regions associated with different cognitive functions, 12 channels EEG
signals from 4 brain regions, i.e. Frontal (F3, Fz, and F4), Central (C3, C4, and Cz), Parietal (P3, P4, and
Pz), and Occipital (O1, O2, and Oz), were analyzed in the current study. Since there were many artifacts
in the raw EEG signals, of which the major contributor was ocular artifacts, Independent Component
Analysis (ICA) was adopted to suppress EEG artifacts in this study. Wavelet Packet Transform (WPT)
was chosen to detect EEG rhythms δ (0.5–4 Hz), θ (4–8 Hz), α (8–16 Hz) and β (16–32 Hz) and to
research on the varying of energy spectrum activities in different levels of workloads. The EEG signals
were processed by Wavelet packet analysis with six-octave wavelet decomposition, among which dB4
was used as the mother wavelet which was considered to be the most suitable function. The wavelet
packet decomposition tree and corresponding EEG rhythms are shown in Fig. 3. Then the energy for each
rhythm could be obtained by summing the squares of wavelet coefficients, based on which the relative
energy for EEG rhythms, four equations: α/θ, β/θ, (α+β)/θ and (α+ θ)/β could be obtained. Meanwhile
wavelet entropy (WPE) was also obtained, which is often used as a disorder quantifier in the wavelet
domain. These parameters were assumed as the indicators of mental workload and the validity would be
examined.

2.4.2. ECG
The ECG data were obtained through the Breath Wear-ECG device (wearable wireless heart patch).

Six channels were recorded by placing the electrodes on the designated locations of body. Raw ECG
signals were digitalized with a sampling rate 1000 Hz, and filtered by a low pass Gaussian filter with
cut-off frequency of 40Hz, while IIR Zero-Phase Filter was used to attenuate baseline wander with a
cutoff frequency of 0.5 Hz. Three methods, that is, time domain analysis, frequency domain analysis and
nonlinear analysis were used to process the preprocessed ECG signals. The HRV time domain parameters
(Mean RR, SDNN, SDANN, RMSSD, SDNNI, NN50 and PNN50), frequency domain parameters
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Fig. 4. Subjective scores and performance results.

(LF_norm, HF_norm, LF/HF) and SampEn were chosen in the current study as the assumed indicators of
mental workload for the later analysis. These parameters were obtained through the package software of
the ECG device.

3. Results

3.1. Subjective results

Mean subjective scores for the three degrees of mental workload can be found in Fig. 4a. One-way
ANOVA was chosen to analyze the subjective scores of mental workloads among the three tasks with
different mental workloads. The results showed a significant increase of scores with the increase of task
difficulty (F = 115.976, P < 0.01). Bonferroni corrected post-hoc tests were used and the results showed
significant differences between any two tasks with different degrees of difficulty (all P < 0.05).

3.2. Performance results

Mean performance indicators (RT and Accuracy) for the three levels of difficulty can been found in
Fig. 4b and c, from which it could be seen that the accuracy decreased when the task difficulty increased.
Meanwhile the correctly-hitting RT, correctly-denying RT and mean RT all increased when the task
difficulty increased, which were obviously due to the increase of the amount of perceived signal sources
when the task difficulty increased. One-way ANOVA was used to analyze the accuracy among the three
tasks with different difficulties. The results showed a significant decrease of accuracy when the task
difficulty increased (F = 11.641, P < 0.05). Bonferroni corrected post-hoc tests were chosen and the
results showed significant differences between any two tasks with different difficulty (all P < 0.05).
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Table 2
One-way ANOVA results of EEG parameters in different brain regions

EEG parameters/brain regions F C P O
θ < 0.05 / < 0.05 < 0.05
α < 0.05 < 0.05 / < 0.05
β < 0.05 / / < 0.05
α/θ / / / < 0.05
θ/β < 0.05 < 0.05 / < 0.05

(α+ β)/θ < 0.05 < 0.05 / < 0.05
(α+ θ)/β < 0.05 / / < 0.05

WPE < 0.05 / / < 0.05

3.3. EEG data

The artifact-removed EEG signals from the first 180 s of each task were chosen for analysis in order
to speed up data processing. The WPT and WPE were used to compute the previously assumed EEG
indicators for each 1-s interval, and then averaged these 180 1-s intervals and the final values were
considered as the parameters of the task. Therefore, the relative energies of α, θ, β, α/θ, β/θ, (α+ β)/θ,
(α+ θ)/β and WPE in four brain regions (F, C, P and O) were obtained.

One-way ANOVA was used to analyze each parameter in each brain region, and the results are shown in
Table 2. Figure 5 shows the histogram of comparisons of EEG parameters among three levels difficulties
in different brain regions. As shown in Table 2 and Fig. 5, significant decreases of the relative energy of θ
occurred in Frontal, Parietal and Occipital (all P < 0.05); the α relative energy decreased significantly in
Frontal, Central and Occipital (all P < 0.05); the relative energy of β increased obviously in Frontal and
Occipital (all P < 0.05); α/θ decreased significantly in Occipital (P < 0.05); θ/β and (α+ β)/θ showed
significant increases in Frontal, Central and Occipital (all P < 0.05), meanwhile (α + θ)/β and WPE
decreased significantly in Frontal and Occipital (all P < 0.05). Figure 6 shows the brain topography of
one subject who was chosen randomly, which indicates the activities of the three rhythms in the tasks
with three different difficulties levels, and blue denotes low activity and red denotes high activity. As
shown in the topography, the activity of θ decreased significantly in Parietal and Occipital; the activity of
α wave decreased significantly in Central, and also in downtrends in both Frontal and Occipital; the β
activity increased significantly in the Occipital. These results were consistent with the results of statistical
analysis of the data in Table 2, and were observed in most subjects (65%).

3.4. ECG data

One-way ANOVA was used to analyze the ECG parameters (Seven HRV time domain parameters and
four frequency domain parameters) obtained during the three tasks with different difficulties. For the
analysis results in P < 0.05, pairwise comparison was conducted through Bonferroni corrected post-hoc
tests. The analysis results are shown in Table 3, from which it can be seen that both Mean RR and RMSSD
decreased significantly with the increase of task difficulty (all P < 0.05), and pairwise comparison results
indicate that obvious differences existed between the tasks with low difficulty and high difficulty (all P <
0.05), but there were no obvious changes between the tasks with low difficulty and medium difficulty (all
P > 0.05), as well as tasks with medium difficulty and high difficulty (all P > 0.05); LF_norm showed a
significant increase when task difficulty increased (P < 0.01), and the difference between tasks with low
difficulty and high difficulty was significant (P < 0.01); HF_norm showed a significant decrease with
the increase of task difficulty (P < 0.01), and the difference between tasks with low difficulty and high
difficulty was significant (P < 0.01), as well as the tasks with medium difficulty and high difficulty (P <
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Fig. 5. The comparisons of EEG characteristic parameters among three tasks with different degrees of difficulty.

Fig. 6. One subject’s brain topography.

0.05); LF/HF increased significantly when the task difficulty increased (P < 0.01), and the difference
between tasks with low difficulty and high difficulty was significant (P < 0.01), as well as the tasks with
medium difficulty and high difficulty (P < 0.01); SampEn decreased significantly with the increase of
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Table 3
Statistical analysis results of ECG parameters

Parameters L M H P P (L-M) P (L-H) P (M-H)
863.75 (76.38) 850.05 (71.26) 846.84 (110.64) <0.05 0.11 < 0.05 1.0

SDNN 143.11 (36.45) 148.44 (35.88) 126.75 (36.40) 0.167 / / /
SDANN 133.77 (25.04) 136.31 (26.11) 124.52 (27.79) 0.355 / / /
RMSSD 42.47 (8.97) 35.40 (10.44) 33.28 (9.17) <0.05 0.078 < 0.05 1.0
SDNNI 26.46 (10.56) 25.73 (6.63) 30.12 (10.63) 0.436 / / /
NN50 38.00 (15.24) 27.65 (19.44) 36.00 (22.17) 0.767 / / /
PNN50 22.30 (6.58) 20.53 (7.02) 19.08 (6.05) 0.392 / / /
LF_norm 43.19 (12.65) 49.69 (13.02) 59.20 (11.89) <0.01 0.347 < 0.01 0.068
HF_norm 43.89 (7.49) 42.56 (8.36) 36.37 (5.03) <0.01 1.0 < 0.01 < 0.05
LF/HF 1.01 (0.33) 1.18 (0.23) 1.65 (0.38) <0.01 0.329 < 0.01 < 0.01
SampEn 2.55 (0.35) 2.30 (0.44) 2.18 (0.37) <0.05 0.068 < 0.01 0.353

task difficulty (P < 0.05), and pairwise comparison results showed significant differences between the
tasks with low difficulty and high difficulty in the both two parameters (P < 0.01). Therefore, Mean RR,
RMSSD, LF_norm, HF_norm, LF/HF, and SampEn proved to be effective indictors for the evaluation of
mental workload.

3.5. Multi-physiological classifier

It can be concluded from the above analysis results that EEG signals and ECG signals can effectively
evaluate mental workload. However, considering the reliability of physiological signals, the effectiveness
of using a single physiological signal to evaluate mental workload is low. Therefore, the EEG and ECG
indictors were combined to establish an effective classifier in the current study, which could be used to
classify three degrees: low difficulty, medium difficulty and high difficulty. There are many classification
algorithms, such as Bayesian Network, Neural Network, and Decision tree, etc., all of which need to
follow Empirical Risk Minimization principle, but need sufficient data guarantee. However, the sample
size of this study is small, therefore the above algorithms don’t apply here. Especially high-dimensional
feature inputs in this study, insufficient samples will result in the inability to obtain better generalization
ability. Therefore, Support Vector Machine (SVM) is proposed and used in this study as it is a classification
algorithm based on the Structural Risk Minimization (SRM) principle, which has advantages in solving
small sample, nonlinearity and high dimensions pattern recognition [25]. However, the resource for
calculating time and space will increase exponentially as the samples increase in numbers, which is a
disadvantage for SVM. Therefore, Principal Component Analysis (PCA) was used to eliminate correlation
of data, extract the principal elements and decrease the dimension of sample space in order to simplify
calculation and save resource space. Then the dimension-reduced data was used as the input of SVM
classification.

Eight EEG indictors [θ, α, β, α/θ, β/θ, (α + β)/θ, (α + θ)/β and WPE] in Occipital and six ECG
indictors (Mean RR, RMSSD, LF_norm, HF_norm, LF/HF, and SampEn) were chosen and constituted a
multidimensional original sample. After standardizing the original sample to unified dimension, SPSS
19.0 was used to conduct PCA analysis and the results indicated that the cumulative frequency of the first
five principal components were greater than 80%. Therefore, the final indictors were reduced from 14
to 5 dimensions, and a new sample set were developed as the input of SVM. The LIBSVM ToolBox of
Matlab was used to complete the classification for three degrees of workload. The kernel function plays a
key role in transforming input space into high dimensional feature space [26], Polynomial, Radial Basis
Kernel and Sigmoid Kernel Functions were chosen as kernel functions in the current study respectively.
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Table 4
Training results of the classification models

Kernel function Loss function parameter (c) Regularization parameter (g) Accuracy
Polynomial 5.773 0.608 89.2%
Radial basis 5.628 0.562 92.2%
Sigmoid 4.375 0.563 87.4%

Fig. 7. Optimization of radial basis kernel function parameters.

The SVM classification process was done as follows [27]:
1. Normalization of eigen vector sample. After PCA analysis, [20 × 5] set data were obtained for

each level of workload, and 75% data of each level was chosen for the training sample which
was expressed as train_data [15 × 5], meanwhile the corresponding classification was expressed
as train_group [15 × 5] (Low, Middle and High degrees were expressed by 1, 2, 3 respectively).
Similarly, the rest 25% data was considered as testing sample and expressed as test_data [5 × 5],
and the classification was expressed as train_group [5 × 5].

2. Preprocessing. For improving the model classification accuracy effectively, all samples were nor-
malized to [0, 1], and the processing method was as follows:

f : x→ y =
x− xmin

xmax − xmin
(x, y ∈ Rn)

3. Kernel parameter optimizing. Loss function parameter (c) and regularization parameter (g) are two
important parameters for kernel function, and the choice of them determines the classification effect
and performance [28]. In the study, the grid search algorithm was used for parameter optimization
(c, g), while the K-fold cross validation (K-CV) was used for cross validation, among which the
range of values for log2(c) and log2(g) were [−4, 4], K = 3.

4. Classifier training and testing. Based on the optimum parameters (c, g), the training sample was
trained and the optimum classifier was obtained. Then the testing sample was classified and predicted
by the classifier with a testing accuracy, which was considered as the measure of the performance of
the classification model.

The optimization results for the three classification models are shown in Table 4, from which it can be
seen that the model constructed by Radial Basis Kernel function obtained the best classification effect
(Best_ACC = 92.2%) with optimum parameters (Best_c = 5.628, Best_g = 0.562) comparing with
other classifiers, and the parameter searching results of the optimization process (contour map and 3D
view) are shown in Fig. 7. Based on these parameters, the SVM classifier was built and verified, and the
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Fig. 8. Actual and predictive classifications of test set.

classification testing result (Predict_ACC = 80%, 12/15) is shown in Fig. 8. Therefore, the established
classifier based on the fusion of EEG and ECG parameters in this paper has a good performance.

4. Discussion

Many studies have examined mental workload, and most of them indicated that the evaluation effect of
comprehensive assessment with multi-methods is superior to the assessment with single method [29,31],
which may be due to the multi-dimensional characteristics of mental workload. In the present study,
multiple measurements were combined to study mental workload. Subjective and performance evaluations
were combined to verify the validity of task difficulty degrees of classification. The subjective evaluation
results indicated that the mental workload of the subjective experience increased significantly when the
task difficulty increased. The RT increased and accuracy decreased significantly with the increase of task
difficulty. Therefore, it can be concluded that the instrument-monitoring tasks with different degrees of
difficulty induced different degrees of workload effectively.

EEG measurements have proved to be reliable for the evaluation of mental workload. Most previous
studies showed that EEG rhythms (θ, α, β) were all sensitive to the changes of mental workload [32,34],
that is, when persons were in a state of high vigilance, the activity of β rhythm was strengthened; however,
the activity of α would be motivated when they were in a waking state but with low vigilance; the θ
activity was strengthened when they were in sleepy state. In this study, with the increase of task difficulty
level, it was shown that θ activity showed a significant decrease in Frontal, Parietal significantly in Frontal
and Occipital. Obviously, the increase of task difficulty degrees would induce high vigilance and pressure
for operators to try to reduce the performance impaired. When the workload degrees induced are not
enough to induce obvious energy changes of the EEG rhythms, suitable combinations of these EEG
rhythms may magnify the energy variation for better distinguishing workload degrees. Therefore, four
formulas, α/θ, β/θ, (α+ β)/θ and (α+ θ)/β were proposed and studied. α/θ decreased significantly in
Occipital; θ/β and (α+ β)/θ showed significant increases in Frontal, Central and Occipital, meanwhile
(α + θ)/β decreased significantly in Frontal and Occipital. The WPE reflects the energy distribution
information of the signal frequency space [35]. WPE decreased significantly in Frontal and Occipital,
which indicated that the distribution of the four rhythms became increasingly narrow with lower disorder
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because of increasing slow wave energy and decreasing fast wave energy with the increase of mental
workload, which demonstrated that the brain activities would be restrained in high workload. It could
be found these EEG parameters all changed in the Occipital, and this might be due to the correlation of
Occipital and visual cognition function. In addition, the Occipital-Parietal junction is associated with
complex perception, attention, and thinking [35]. The instrument-monitoring tasks required a variety of
complex perception, and most information was obtained through vision. Therefore, Occipital was the
most sensitive region for mental workload comparing with other regions.

ECG is another physiological measurement for the evaluation of mental workload, which is used
frequently in previous studies. HRV is considered to be sensitive to mental workload, which is most
closely associated with autonomic nervous system (ANS) [36,37]. In the present study, it was shown that
Mean RR, RMSSD, HF_norm and SampEn decreased significantly when the task difficulty increased,
while LF_norm and LF/HF increased significantly. Even though the results of these indicators did not
show a positive correlation, it was found that mental workload caused a reduction of HRV in general.
Some researchers thought this might be because the heart’s sympathetic activity increased as the workload
increased [38]. Increased sympathetic activity could account for the decrease in Mean RR and the
increase in LF_norm and LF/HF. However, other studies reported that mental workload might inhibit
parasympathetic activity which can also cause reduction of HRV [39]. RMSSD that characterizes rapid
changes in RR time series, as well as HF_norm which reflects the activity of parasympathetic, decreased
with the increase of mental workload, which indicated the reduction of parasympathetic activity [40].
Therefore, Tobias Heine [41] speculated that mental workload, as well as concentration degrees, were
both characterized by growing sympathetic activity firstly, and then weakening parasympathetic activity
according to the degree of mental workload. Meanwhile, the decrease of SampEn indicated that the
complexity of HRV signal reduced when the task difficulty increased.

Considering the reliability of physiological signals, the EEG and ECG indictors were combined to
establish an effective evaluation model based on SVM. Before the classification, PCA was used to extract
the principal elements and decrease the dimension of sample space in order to simplify the calculation.
An effective classification model with accuracy of 80% based on SVM was achieved, which indicated
that the proposed algorithm can be applied for mental workload monitoring.

5. Conclusion

Our findings demonstrate that EEG and ECG could be effectively used to evaluate different levels
of mental workload in monitoring tasks. Three EEG rhythms (θ, α and β), four equations [α/θ, β/θ,
(α+ β)/θ, (α+ θ)/β] and WPE all changed sensitively when the mental workload changed in specific
brain regions. Meanwhile ECG parameters, Mean RR, RMSSD, HF_norm, SampEn, LF_norm and LF/HF
all showed significant changes with the changes of mental workload. Therefore, all these physiological
parameters proved to be effective indicators of mental workload. Based on these indicators, the method of
SVM based on PCA was used to establish an effective classification model with an accuracy of 80% for
three classes. This study demonstrated that the proposed algorithm could be applied to mental workload
monitoring.

However, there were some limitations to the current study. Firstly, the experiment was only conducted
during visual monitoring tasks, and whether the conclusions obtained apply to other types of tasks
(e.g. memory, calculation) needs further verification. Secondly, the research was still in the preliminary
stage, and how the online monitoring of mental workload should be realized needs further exploration.
Moreover, except for EEG and ECG, other physiological measurements, such as EMG and EOG, should
be included in the comprehensive assessment of mental workload.
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