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Abstract: Environmental pollutants such as heavy metals and fungicides pose a serious threat
to waterways worldwide. Toxicological assessment of such contaminants is usually conducted
using single compound exposures, as it is challenging to understand the effect of mixtures on biota
using standard ecotoxicological methods; whereas complex chemical mixtures are more probable in
ecosystems. This study exposed Simplisetia aequisetis (an estuarine annelid) to sublethal concentrations
of a metal (zinc) and a fungicide (boscalid), both singly and as a mixture, for two weeks. Metabolomic
analysis via gas and liquid chromatography-mass spectrometry was used to measure the stress
response(s) of the organism following exposure. A total of 75 metabolites, including compounds
contributing to the tricarboxylic acid cycle, the urea cycle, and a number of other pathways, were
identified and quantified. The multiplatform approach identified distinct metabolomic responses
to each compound that differed depending on whether the substance was presented singly or as a
mixture, indicating a possible antagonistic effect. The study demonstrates that metabolomics is able
to elucidate the effects and mode of action of contaminants and can identify possible outcomes faster
than standard ecotoxicological endpoints, such as growth and reproduction. Metabolomics therefore
has a possible future role in biomonitoring and ecosystem health assessments.
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1. Introduction

Identifying the potential toxicity associated with complex mixtures of chemicals continues to be a
major challenge for ecotoxicological assessments due to the underlying complexity of such exposures.
Understanding the effect caused by mixtures of chemicals to an individual species, population,
or community is, however, important to understand in order to conduct robust environmental risk
assessments and make effective management decisions [1,2]. The difficulty is due, at least in part,
to the fact that the toxicity of chemical mixtures is a result of unpredictable interactions between
individual components and other chemicals and biomolecules within the study system. For example,
exposure to a substance may induce biochemical changes that cause higher or lower sensitivity to
subsequent exposures [1]. Synergistic and antagonistic interactions can also cause changes in overall
toxicity compared to single-contaminant exposures [3]. It is essential, therefore, to develop new tools
to understand and predict mixture effects to strengthen environmental risk assessments [4].

Metabolomics (the study of small biological molecules in a system) is increasingly being used
as part of a weight-of-evidence approach for environmental assessments for two main reasons.
The first is the large amount of information that can be extracted, detecting particular pathways and
highlighting the modes of action a chemical can have within an organism. The second is the ability of
metabolomics to detect sublethal biochemical changes in an organism quickly and before irreversible
effects occur [5–7]. Development of molecular (e.g., genomic, proteomic or metabolomic) markers
of exposure can, potentially, provide an overview of contaminant exposure on systems before other
more commonly used ecotoxicological endpoints, such as growth, reproduction, or mortality [6].
For example, Jeppe et al. exposed Chironomous tepperi, a non-biting midge, to bifenthrin (a pyrethroid
insecticide) over a five-day period [5]. They did not detect changes in growth or behavior but observed
a change in molecular gene expression profiles. Similarly, Sinclair et al. identified metabolomic changes
in Simplisetia aequisetis (an estuarine annelid) following exposure to boscalid (a fungicide) and zinc (a
heavy metal) within 24 h of a sublethal exposure while not observing any physical changes in outward
appearance [8]. Omics data therefore have the potential to provide informative, contaminant-specific
biomarkers for environmental assessments, especially if more than one level of data is used.

While metabolomics can measure the biochemical stresses induced by individual compounds,
such as fungicides, in waterways [9–11], there is considerable concern that when contaminants occur
as a mixture different metabolomic pathways will be affected when compared to single exposures.
This could result in any chemical-specific indicators developed from single exposures becoming invalid
for mixture assessments [1,12]. This concern stems from the ability of contaminant mixtures to act
additively, synergistically, or antagonistically to influence metabolomic responses (or not interact at
all). For example, Vandenbrouck et al. studied Daphnia magna exposed to two polycyclic aromatic
hydrocarbons (pyrene and fluoranthene), both singly and as mixtures [13]. The results showed that
the biochemical changes induced by exposure to these pollutants were not the same when the two
compounds were applied singly compared to a mixture [13]. This meant that metabolites of exposure
developed in the single toxicant experiments did not apply to the mixture tests and were therefore not
useful environmental biomarkers.

The Vandenbrouck et al. study used NMR and Gas Chromatography–Mass Spectrometry (GC–MS)
based testing because the use of only one analytical approach has the potential to miss detecting
some metabolites due to the selectivity and sensitivity of the instruments. Similarly, the present study
explored the metabolomic changes in Simplisetia aequisetis following exposure to pollutants using a
multi-platform, GC–MS and Liquid Chromatography–Mass spectrometry (LC–MS) approach. The two
contaminants assessed (zinc and boscalid) were chosen because they are widely detected in estuarine
sediments in Victoria, Australia. Zinc may be both natural and anthropogenic in origin, while the
source of Boscalid (a fungicide) is predominantly agricultural run-off [14]. Both pollutants commonly
occur in ecosystems as mixtures, but the combined effect(s) of these two compounds on the environment
is not well understood [15–17]. A recent review by O’Brien et al. did however, highlight the necessity
for research on the effects of multiple stressors on estuaries and marine ecosystems [18]. O’Brien et al.
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noted that the effects of single contaminant stressors are evident from decades of research and that
research needs to now determine how these contaminants are affecting ecosystems in mixtures [18].
The results from this study shed new light on zinc and boscalid toxicology, adding to the limited
toxicological information available for estuarine ecosystems. The work illustrates the potential of
metabolomics to form connections from mixture exposure to biochemical responses of organisms in a
controlled setting of the laboratory to the more dynamic, real-world environmental field assessments.

2. Results and Discussion

2.1. Multivariate Analysis of Metabolites

Fifty-five metabolites were detected and quantified from the GC–MS, including compounds
involved in amino acid metabolism, the tricarboxylic acid (TCA) cycle and the urea cycle. Permutational
Multivariate Analysis of Variance Analysis (PERMANOVA), a statistical tool used for the analysis of
multivariate data on the basis of Euclidean distances dissimilarity measures, was used to assess data
from both GC–MS and LC–MS approaches. The PERMANOVA mirrors a standard analysis of variance
(ANOVA) but it is more suitable to complex experimental designs [19].

Surprisingly, the PERMANOVA indicated no significant difference in metabolites across the
four treatment groups when they were compared together (Table 1) although the lack of significance
was marginal (P = 0.069). A pairwise comparison between exposure groups showed a significant
biochemical difference between the zinc and mixture treatments (P = 0.03). Boscalid exposure,
in contrast, had no significant effect (P = 0.14–0.30). The data were later explored further, using
univariate methods.

Table 1. PERMANOVA, multivariate analysis for metabolite changes to treatment as main effect.
Pairwise comparison analysis for each treatment.

Source of Variation
GC–MS Metabolites LC–MS Metabolites

Df MS P df MS P

Treatment 3 72.14 0.0691 3 5.69 × 1015 0.0006 1

Residual 10 34.973 8 1.17 × 1015

Pairwise t P T P
Ctl, Bos 1.0406 0.3024 1.5462 0.2041
Mix, Bos 1.5246 0.2004 2.4663 0.0999
Zn, Bos 1.3158 0.1404 2.1502 0.0994
Ctl, Mix 1.5209 0.1722 1.8296 0.1028
Ctl, Zn 0.7768 0.7968 1.7654 0.1960
Zn, Mix 1.6489 0.0301 1 4.2502 0.0975

1 Values that had significant differences between treatments (P < 0.05). Ninety-five percent family-wise confidence
level. Permutational Multivariate Analysis of Variance Analysis (PERMANOVA).

A partial least squares (PLS) analysis was also undertaken to check for small changes that might
not be indicated by PERMANOVA. The PLS is a visualisation of multivariate analysis relationship
between metabolites and treatments as a variable following a cross-validation (CV) procedure detailed
in Szymańska et al. [20] (Figures S1 and S2, Tables S3 and S4)). The zinc and boscalid single exposure,
showed a clear separation in the PLS, using both GC–MS (Figure 1) and LC–MS (Figure 2) data.
The zinc and control treatments overlapped in the GC–MS data, but the mixture treatment did not
show separation from the other treatments. In contrast, the PLS analysis did show clear separation
between all treatments following the LC–MS approach (Figure 2), indicating that annelid metabolites
had trends in abundance unique to each treatment. This also highlights the information that can be
gained using metabolomics to investigate the initial effects contaminants may have on organisms.
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Forty-nine metabolites were identified using an LC–MS approach. These compounds again
included those contributing to the TCA cycle, the urea cycle, and several other metabolic pathways.
Metabolite systems are usually under tight regulatory control, so even a small change may induce
large biological effects. The observed changes in the TCA and urea cycle could therefore be biologically
relevant. The size of the effect caused by each treatment is difficult to equate to biological relevance, as
the molecular functioning of S. aequisetis is not yet defined, but even small disruptions in pathways can
lead to substantial changes in the overall health of organisms.

The univariate ANOVA analysis identified ten metabolites (Table 2) from the LC–MS data that
changed significantly. The multivariate PERMANOVA analysis identified this change to be likely
caused by the treatment variable (P = 0.0006) (Table 1). Interestingly, a pairwise comparison of the
treatments showed no significant effect between any comparisons (Table 1).
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Figure 1. A partial least squares discriminant analysis: separation of identified metabolites from whole
annelids (S. aequisetis) across treatment groups, following a GC–MS approach. Cross-validation data
can be found in the supplementary material (Figure S1 and Table S3).
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Figure 2. A partial least squares discriminant analysis: separation of identified metabolites from whole
annelids (S. aequisetis) across treatment groups, following an LC–MS approach. Cross-validation data
can be found in the supplementary material (Figure S2 and Table S4).

2.2. Univariate Analysis of Treatment Effects on Metabolites Responses

Univariate analysis was undertaken to assess the changes in the relative abundance of individual
metabolites from each treatment group. To identify metabolites that changed significantly (p < 0.05)
following exposure, a one-way ANOVA, using treatments as a factor, was run for each metabolite
(Table 2). Following the ANOVA, a Tukey’s multiple post hoc test revealed zinc and mixture treatments
caused the abundances of more metabolite to be significantly affected compared to the singular boscalid
treatment (Table 2). The ANOVA further highlighted 17 metabolites, from both analytical platforms,
that were significantly affected by treatments. There were three metabolites that were detected by
both platforms to change significantly due to toxicant exposures (p < 0.05). Two of these were serine
and threonine, which contribute to the TCA cycle. The third was ornithine, part of the urea cycle.
The reason for the differences between the metabolites identified as significant using each method is
unclear but demonstrate the importance of using a multiplatform approach wherever possible [21,22].
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2.3. GC–MS Data

Four metabolites were found to have been significantly affected by all treatment comparisons,
these were serine, threonine, hydroxyproline, and asparagine (Table 2). Serine and threonine are
non-essential amino acids that contribute to glycine metabolism, glycolysis, and the transsulfuration
pathway. Importantly, both serine and threonine contribute to the TCA cycle, the main form of energy
production in most organisms. Changes in TCA cycle metabolites are a very common response to
toxicant exposure or stress [23–25] so are not useful biomarkers for specific exposures. Serine is
also involved in fatty acid metabolism and the maintenance of immune system responses [26,27].
Hydroxyproline is the result of protein degradation. The most reported source of hydroxyproline is
collagen, which is the main structural protein in the extracellular space [28]. Asparagine is essential in
coordinating overall protein synthesis, cellular responses to amino acid homeostasis, and metabolic
availability during biological processes and disease development. For example, asparagine acts
as a metabolic regulator of TCA cycle intermediates and asparagine bioavailability is essential for
survival. [29]. The abundance of these metabolites after boscalid exposure was reduced compared to
the control, mixture, and zinc treatments (Figure 3). There was not any statistically significant change
detected in the mixture treatment of these metabolites. There also wasn’t any statistically significant
effect of zinc or mixture on aspartic acid, hydroxyproline, asparagine, and ornithine abundance
(Figure 3). Ribose, which is used in the synthesis of nucleic acids and metabolic intermediates
for biosynthetic processes that prevent oxidative stress [30], was significantly lower in the mixture
treatment; but at p = 0.045, this difference is unlikely to be truly significant and any potential impact
this change may be having on the organism’s health is likely small.

Table 2. One-way analysis of variance for individual metabolites, measured following exposure to
treatments (zinc, boscalid, and mix).

Metabolite MS Residual Treatment Comparison

GC–MS df 10 3 Ctl–Bos Mix–Bos Zn–Bos Mix–Ctl Zn–Ctl Zn–Mix
Valine 0.128 0.022 2 0.259 0.061 0.017 2 0.843 0.409 0.821

Leucine 0.062 0.043 2 0.161 0.034 2 0.103 0.837 0.999 0.873
Serine 0.076 0.003 2 0.003 0.008 2 0.023 2 0.780 0.387 0.862

Threonine 0.187 0.003 2 0.014 0.037 2 0.002 2 0.816 0.780 0.260
Aspartic acid 0.311 0.044 2 0.081 0.074 0.056 0.999 1.000 0.997

Hydroxyproline 0.086 0.005 2 0.009 2 0.012 2 0.008 2 0.957 0.995 0.992
Methionine 0.089 0.040 2 0.115 0.035 2 0.452 0.938 0.660 0.296

Ribose 1.006 0.034 2 0.629 0.317 0.764 0.045 2 0.988 0.052
Asparagine 0.178 0.006 2 0.0132 0.013 2 0.009 2 0.995 1.000 0.994
Ornithine 0.587 0.050 2 0.136 0.053 0.076 0.076 0.997 0.994

LC–MS df 8 3
Aminophenylacetic acid 0.043 2 0.014 2 0.983 1.000 0.024 2 0.973 0.039 2 0.022 2

Citrulline 0.053 0.046 2 0.997 0.999 0.074 0.985 0.099 0.061
Epinephrine 0.116 0.046 2 0.859 0.572 0.038 2 0.460 0.114 0.240
Homoserine 0.081 0.002 2 0.009 2 0.290 0.002 2 0.132 0.468 0.016 2

Normetanephrine 0.135 0.032 2 0.997 0.910 0.050 2 0.833 0.038 2 0.125
Ornithine 0.048 0.014 2 0.060 1.000 0.608 0.063 0.011 2 0.589

Proline 0.106 0.018 2 0.257 0.260 0.011 2 1.000 0.180 0.177
Serine 0.059 0.042 2 0.050 2 0.231 0.968 0.701 0.094 0.404

Threonine 0.083 0.002 2 0.010 2 0.300 0.002 2 0.138 0.473 0.017 2

Tyramine 0.156 0.047 2 0.321 0.401 0.0312 0.998 0.386 0.308
2 Values that had significant differences of metabolite abundance between treatments (P < 0.05). Ninety-five percent
family-wise confidence level.
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Figure 3. Line graphs of metabolites which significantly changed in abundance (p < 0.05) following
whole annelid (S. aequisetis) single exposure to zinc, boscalid and to their mixture. (A) Valine; (B)
Leucine; (C) Serine; (D) Threonine; (E) Aspartic acid; (F) Hydroxyproline; (G) Methionine; (H) Ribose;
(I) Asparagine; and (J) Ornithine. Y axis shows the peak area abundance for each metabolite from the
GC-MS analysis.
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Two metabolites (serine and methionine) increased in relative abundance following the
mixture exposure compared to the single treatments. Methionine is an α-amino acid described
in Deutz et al. as an important compound for protein synthesis, the formation of polyamines, and
its involvement in the synthesis of many metabolites, including homocysteine [31]. Methionine is
also involved in detoxification responses through the transsulfuration pathway and the production
of metallothionein [10]. Both serine and methionine decreased in relative abundance when annelids
were exposed to zinc as a single treatment (Figure 3). This result correlates with the responses seen in
Chironomus tepperi after being exposed to zinc at similar concentrations in Long et al. [10]. Since the
changes in serine and methionine abundance levels due to zinc exposure vary depending on whether
it is given as a single exposure or as a mixture, it is unlikely that these two metabolites will be useful as
field biomarkers for zinc exposure without further research [32–34].

The results of this study indicate that overall toxicity was reduced when compounds were applied
as a mixture exposure and that zinc had a slightly stronger effect than boscalid on certain metabolites.
Similar results were seen with the toxicity interactions of chlorpyrifos (insecticide) and nickel (heavy
metal) in a mixture exposure to marine bivalves, using a transcriptomic approach, investigated by
Dondero et al. [35]. Their results also demonstrated that the mixture treatment had unexpected
responses compared to the single exposures. They also found an overall decrease in toxicity when the
contaminants were presented as a mixture [35]. In both the current study and previous studies, the
changes in toxicity could be due to detoxification mechanisms being primed by the first exposure and
so later being able to deal with subsequent exposure to any toxicant [36–38].

2.4. LC–MS Data

Metabolomic analysis via LC–MS had a higher sensitivity and selectivity compared to
GC–MS-based screening. For example, ornithine was detected using both methods, but while
LC–MS analysis identified a significant change in abundance of this compound between treatments
(p = 0.014), GC–MS did not (p = 0.05) (Table 2). Ornithine is a main component of the urea cycle
(also known as the ornithine cycle) which produces urea from ammonia and is essential for survival.
Threonine abundance was trending higher following zinc exposure and lower following the boscalid
exposure compared to controls. Interestingly, the effect of the mixture exposure on threonine was
similar to the boscalid response, with decreasing levels compared to controls. Threonine, like serine,
is a major metabolite in the TCA cycle. Ornithine and serine had a reduced abundance following
exposure to all treatments, indicating that the urea cycle could have been disrupted by the organism’s
attempting to detoxify the contaminants (Figure 4) [39].

The metabolites from LC–MS, such as proline, tyramine, normetanephrine, epinephrine, and
aspartate, increased in abundance as a response to zinc and decreased following boscalid treatment
(Figure 4). Interestingly, the abundance of these compounds in the mixture exposures was the same
as in the controls. Citrulline levels were increased in the zinc treatments but remained the same as
controls following exposure to boscalid and the mixture treatment. Citrulline is a primary metabolite
in the urea cycle, which is consistent with the pathways suggested to be affected by exposure to a
heavy metal from the GC–MS. The difference in citrulline abundance in the mixture treatment may
indicate a faster detoxification response occurring when annelids are exposed to two contaminants
compared to that of single treatment of zinc.
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Figure 4. Line graphs of metabolites which significantly changed in abundance (p < 0.05) following
whole annelid (S. aequisetis) single exposure to zinc, boscalid and to their mixture using LC-MS data:
(A) Aminophenylactic acid; (B) Citrulline; (C) Epinephrine; (D) Homoserine; (E) Normetanephrine; (F)
Ornithine; (G) Proline; (H) Serine; (I) Threonine; and (J) Tyramine. Y axis shows the peak area for each
metabolite from the LC-MS analysis.
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2.5. Combined Metabolite Pathway Responses

The pathways affected in the current study are consistent with metal and fungicide exposure
responses described in previous research [8,10,14]. This indicates that the biochemical responses seen
may be common across species and thus have the potential to be indicators of zinc and boscalid exposure
generally. When the compounds were exposed as a mixture, the changes in the metabolites tended
to be similar to the controls or follow those of the stronger contaminant. For example, in the present
study, levels of serine increased following exposure to a mixture and decreased in response to the
zinc and boscalid exposure. Similarly, Jones et al. found that when nickel and the organophosphorus
insecticide, chlorpyrifos (Chlp) were mixed, the effect on the metabolic profiles resembled those due to
Chlp and the responses to nickel were not detected [40]. Interestingly, Jones et al. determined that
the biochemical changes that occurred in the mixture were also different from the single treatment
metabolic response [40]. Comparable results were seen by Baylay et al., using mixtures and single
exposures of thiacloprid and imidacloprid [12].

When an organism is under stress, the primary function of many compounds is altered [41].
The alteration of metabolite primary functions could explain changes in metabolite relative abundance
seen in this study. Alternatively, the differences in metabolite abundance could be due to the addition
of boscalid, following a week of zinc exposure. In the latter case, the allocation of resources by annelids
to respond to zinc exposure was already underway when the fungicide was added; therefore, the
response to boscalid was not as large as might be expected [36–48].

It is challenging to determine how the different responses of these metabolites may contribute to
the overall functioning of the organism. The current study analyzed steady-state metabolomics, so it
is therefore difficult to extrapolate the trending direction of the measured metabolites with absolute
confidence, whereas metabolomic flux studies could show metabolite changes that were lacking in
the mixture exposures. There are, however, many similarities between the present study and the
metabolite responses of invertebrates’ exposure to pollution documented in the literature, such as
the responses detected affecting the TCA, energy metabolism, and transsulfuration pathways [10,42].
The detected shifts in relative abundance of metabolites can be attributed to shifts in key metabolic
processes, such as energy synthesis and other signaling molecules. These molecules are involved in
the regulation of growth, metabolism, and stress responses. Disruption of normal cell function caused
by zinc and boscalid creates an increase in detoxification and energy production to continue regulation
via the TCA cycle and other metabolic processes [25,31].

3. Conclusions

This research has demonstrated how metabolomics can aid in understanding the interactions
occurring between pollutants and organisms in estuarine ecosystems. Metabolomic pathways were
shown to respond following exposures to single contaminants, and a mixture treatment and can,
therefore, be applied as a discovery tool for molecular markers of exposure. Several key metabolomic
pathway interactions were identified that might be considered when looking at mixtures, but these
were not specific to the contaminants used. Changes in the TCA cycle, intermediates of the urea
cycle, and the glycine, serine, and threonine cycle, are common responses to external stress seen in
many studies [38,43]. An assessment framework considering multiple stressors is critical for our
understanding of ecosystem responses within a stressed environment, and to inform appropriate
environmental management strategies [44]. Mixture toxicity is an ongoing global issue that requires
further investigation of molecular responses of organisms to complex chemical mixtures if we are to
effectively manage anthropogenic contamination occurring in environments such as urban estuaries.

This work has highlighted the need to be able to unravel the complex chemical and biological
interactions that occur in the environment in more depth. Future research should investigate long-term
exposure to chemical mixtures and include the effects of secondary doses of toxicants. Incorporating
other individual fitness measures, such as reproduction and weight changes, as well as population-level
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metrics [45], would provide a greater understanding on the overall effects of contaminants at an
ecological level.

Metabolomics can provide sensitive detection of initial early warning responses for ecotoxicology
experiments or field assessments. The current research highlights the importance of using a
multiplatform approach to enable the detection of a broader range of sensitive responses indicating the
overall health and functioning of Simplisetia aequisetis [10,20,21,27]. Incorporating, steady-state
metabolomics with metabolic flux studies using 13C/15N-labelled substrates to understand the
mechanisms and map the metabolic changes occurring within an organism in the future would provide
further information on the modes of action of specific chemicals [46]. Metabolomic technologies can
offer an understanding of the biochemical basis of toxicity and the mode of action chemicals take
within an organism [7,10,47,48]. The application of initial warning biomarkers for mixture exposures
can be used in conjunction with other biomonitoring tools to identify sources, toxicity, and uptake of
contaminants. Early indicators could enable prioritisation of major contamination issues to support
targeted conservation efforts for estuarine habitats around the world.

4. Materials and Methods

4.1. Test Species

Simplisetia aequisetis, an estuarine annelid, was collected from Little River, Victoria, Australia
(about 50 km south-west of the Melbourne central business district). Simplisetia aequisetis were chosen
for this study because they are abundant, easy to collect, an important food resource in estuarine
food webs (for example, for fish species and birds), and they spend their life cycle in the top layers
of the sediment, where exposure to contaminants is most prevalent. All annelids collected from the
environment were transported and maintained within the University of Melbourne marine laboratory,
where they were kept in a controlled environment with recirculating ambient seawater and Little River
sediment with the following experimental conditions: temperature (18 ± 1 ◦C), salinity (34.2 ppt), and
a 16:8 h light:dark photoperiod. All annelids were left to acclimatise for a minimum of seven days and
fed once a week with ground tropical fish flakes (Tetramin®, Tetra Werke, Melle, Germany) before
experiments began.

4.2. Mixture Exposure

Annelids were exposed to 12.5 mg/L of ZnCl for a week and were then dosed with 75 mg/L of
boscalid (applied as the commercial product Filan®, Nufarm, Melbourne, Australia, 500 g boscalid per
kg of product) for a total of two weeks. Filan® (Nufarm, Melbourne, Australia) was used instead of
pure compound as it is water soluble so reduces the need to use external solvents that might have
impacted the toxicology experiments. Eighteen grams of sieved (250 µm) frozen and thawed sediment
(to ensure no live organisms were indirectly included in the test sediment) collected from the Little
River site was used as substratum for each beaker, and 300 mL of each test solution was prepared with
marine water and zinc stock solutions. On the day of the experiment, S. aequisetis were counted, by
sieving the sediment with a 250 µm mesh, sorted by size, and placed into seawater to remove any
debris. Three randomly selected annelids (6 cm ± 1 cm in length) were added to each 600 mL beaker
and fed 0.5 mg of ground Tetramin® (Tetra Werke, Melle, Germany) per beaker at the beginning of the
experiment. Plastic cling-wrap was placed over the top of the beaker to prevent condensation and
changes in salt concentration. Gentle aeration using glass pipettes was provided over the course of the
experiment to maintain dissolved oxygen levels between 70% and 100%.

The beakers were randomly positioned in a temperature-controlled room at 18 ± 1 ◦C (reflecting
the environmental conditions from where the individuals were collected), with a photoperiod of
16:8 h, light:dark. A zinc-only exposure of 12.5 mg/L ran for one week (n = 10 replicate beakers) with
seawater-only controls (n = 10 replicate beakers). At the start of the second week, to simulate a ‘runoff

event’ [49], 75 mg/L of boscalid (Filan®) was added half a centimeter below the surface of five of the
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zinc treatments and five of the controls. Exposure concentrations were based on 10% of the acute
toxicity concentration (LC50) in sediment to S. aequisetis (Zinc chloride LC50 = 125 mg/L and boscalid
LC50 = 750 mg/L) (Table S1) [8]. The experimental concentrations were higher than the levels of zinc
and boscalid detected in wetlands and estuaries around Victoria, Australia, which range between 0.111
and 3.41 mg/L for zinc [10] and between 0.022 and 3.3 mg/L for boscalid [14], to increase the likelihood
of a metabolic response.

The experiment ran for 168 h in a temperature-controlled room. At the end of the experiment,
annelids were collected from the separate treatments of zinc (n = 5), boscalid (n = 5), the mixture
(n = 5), and the control (n = 5). Water quality parameters (dissolved oxygen, temperature, electrical
conductivity, and ammonia levels) were measured at the beginning and end of experiment to ensure
that no substantial changes in conditions had occurred (Table S2).

4.3. Sample Preparation

The annelids were gently rinsed in distilled water to remove debris and blotted dry on tissue
paper to remove excess water that could impact subsequent metabolomic analyses. Organisms were
pooled per replicate and placed in pre-weighed 2 mL microcentrifuge vials and frozen on dry ice within
30 s of removal from test beakers. Each sample contained pooled whole annelids, which were ground
to a fine powder under liquid nitrogen using a mortar and pestle. A total of 30 mg of the homogenised
sample was placed into pre-weighed and precooled 2 mL lysing tubes containing 1.4 mm ceramic
lysing beads (Bertin Technologies, Aix En Provence, France) and returned to −80 ◦C. The remaining
tissue was re-weighed and stored at −80 ◦C.

4.4. Metabolite Extraction

Metabolites were extracted using a modified Bligh–Dyer method, as described in Sinclair et al. [8].
Briefly, annelid tissue samples were first lysed at 6800 rpm (3× 45 s), using a Precellys bead-mill attached
to a Cryolys cooling unit (Bertin Technologies, Aix En Provence, France) that had been pre-chilled
with liquid nitrogen. The samples then had 600 µL aliquot of methanol:chloroform (9:1 ratio) solution
containing an internal standard (140 µM 13C5 -15N-Valine and 14 µM 13C6-Sorbitol) added to them)
The tubes were then thoroughly mixed and centrifuged at 14,000 rpm at 0 ◦C for 15 min to generate
upper (aqueous) and lower (organic) phases. A 400 µL sample of the upper phase was collected into a
clean microcentrifuge tube. A 100 µL aliquot from each sample was taken for GC–MS analysis and a
10 µL aliquot was taken for LC–MS analysis.

4.5. Gas Chromatography—Mass Spectrometry (GC–MS) and Liquid Chromatography–Mass Spectrometry
(LC–MS)—Amine Compounds

The metabolites identified from both analytical approaches, GC–MS and LC–MS, are listed in
supplementary material (Table S5).

The extracts for both GC–MS and LC–MS analysis followed the procedure detailed in
Sinclair et al. [8]. Briefly, a 25 µL aliquot was taken from all sample extracts and pooled to create a
biological quality control (PBQC), which was then aliquoted into five replicates. All samples were
dried and then derivatised online, using a Gerstel MPS2 XL autosampler robot (Mülheim an der
Ruhr, Germany) for the GC–MS analysis, as described in Sinclair et al. [8]. GC–MS analyses was
conducted using an Agilent (Agilent, Santa Clara, CA, USA) 7890A gas chromatograph coupled to an
Agilent 5975 C mass spectrometer (Agilent, Santa Clara, CA, USA) with a Gerstel Autosampler (MPS
2 XL) [10]. A semi-targeted profiling analysis as described in Overgaard et al. was performed with
Agilent MassHunter Quantitative Analysis software (B.07.0) to produce an integrated area matrix [50].
Metabolites were identified using an ‘in house’ standard list (Table S6) and abundance was used for
statistical analysis.

LC–MS amine analysis followed the method of Boughton et al. [51], which is also described in
Sinclair et al. [8]. Briefly, the supernatant was diluted with methanol and buffered by the addition
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of borate buffer [10], containing 13C3 -L-alanine (Sigma–Aldrich, St. Louis, MO, USA) as the
internal standard. AQC reagent (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, 10 mM in
100% acetonitrile) was added to each sample and then incubated for 10 min at 950 rpm at 55 ◦C in a
thermomixer. For A QC derivatisation, samples were centrifuged at 14,000 rpm at 0 ◦C [51]. The LC–MS
approach was undertaken on a Shimadzu 8060 series Triple Quad LC–MS system (Shimadzu Scientific
Instruments (SSI) Kyoto, Kyoto Prefecture, Japan). The column used was a 120 SB-C18 Poroshell
(2.1 × 100 mm, 2.7 micron). The method was set up using MRMs (multiple reaction monitoring) for
specific metabolites and the data were processed using Shimadzu Lab Solutions Version X (SSI). Relative
abundances were calculated by manual curation of all MRMs detected, and IDs were confirmed using
a standard mix (Table S7) of amine-containing metabolites analyzed alongside the samples.

4.6. Statistics

Statistical analysis followed the procedure described in Sinclair et al. [8]. GC–MS and LC–MS
metabolite values were normalised to the median value of each sample and then transformed
(log(natural)) to reduce variance between metabolite abundance. The data from each approach were
analyzed separately. Multivariate data were analyzed using a factorial permutational multivariate
analysis of variance (PERMANOVA) based on a Euclidean distance resemblance matrix, using PRIMER
software (Version 7, Massey University, Auckland, New Zealand) [52]. Principle component analysis
(PCA) was initially considered for visualisation of metabolomic separation, however, it was not used
due to the sensitive biological variables affecting metabolites between each individual annelid varying
more than the treatments. This created difficulties detecting differences across treatments. The use
of Partial least squares (PLS) and Partial least squares (PLS) discriminate analysis (PLS–DA) (with
appropriate validation) is a common method for determining separation in metabolomic data sets
due to treatments when biological natural variation outweighs treatment variation [20]. Partial least
squares (PLS) analysis was carried out using online Metaboanalyst software (Version 4.0, Xia Lab,
McGill University, Anne de Bellevue, Quebec, Canada) [53], using both GC–MS and LC–MS data sets
to visualise overall separation of treatments [54]. The PLS—DA method was run and cross-validated
according to Szymańska et al. [20]. For the cross-validation (CV), Q2 is an estimate of the predictive
ability of the model. In each CV, the predicted data are compared with the original data, and the sum of
squared errors is calculated. For more details on the CV method, please refer to Szymańska et al. [20].
Multivariate p-values are listed using capital ‘P’ and univariate as a lower case ‘p’.

Only metabolites that could be annotated as level 1 identifications (identified compounds by
chemical reference standards), as prescribed by Sumner et al., were used for statistical analysis [55].
Individual metabolites were also analyzed using one-factor analysis of variance with treatment as the
main effect.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/10/229/s1,
including a description of LC50 experiments, Table S1: Experiment and environment concentrations, Table S2:
Water Quality Parameters, Figure S1: Cross Validation results for PLS-DA on GC-MS data, Table S3: Cross
Validation table for GC-MS data, Figure S2: Cross-validation results for PLS–DA on LC–MS data; Table S4: Cross
Validation table for LC-MS data, Table S5: List of 49 metabolites detected from LC–MS, 55 metabolites from
GC–MS, and total list of metabolites detected and measured in the current study; and Table S6: Polar metabolite
reference library, Table S7: Amine metabolite identification reference library.
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