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SUMMARY

A large and diverse set of proteins, including CST
complex, nonsense mediated decay (NMD), and
DNA damage response (DDR) proteins, play impor-
tant roles at the telomere in mammals and yeast.
Here, we report that NMD, like the DDR, affects
single-stranded DNA (ssDNA) production at uncap-
ped telomeres. Remarkably, we find that the require-
ment for Cdc13, one of the components of CST, can
be efficiently bypassed when aspects of DDR and
NMD pathways are inactivated. However, identical
genetic interventions do not bypass the need for
Stn1 and Ten1, the partners of Cdc13. We show
that disabling NMD alters the stoichiometry of CST
components at telomeres and permits Stn1 to bind
telomeres in the absence of Cdc13. Our data support
a model that Stn1 and Ten1 can function in a Cdc13-
independent manner and have implications for the
function of CST components across eukaryotes.
INTRODUCTION

Telomeres are complex nucleoprotein structures that protect

chromosome ends from DNA damage responses (DDR). The

most terminal DNA on a chromosome is typically G-rich 30

single-stranded DNA (ssDNA), resembling a DNA double-

strand break (DSB) in the process of repair by homologous

recombination. In budding yeast, CST (Cdc13, Stn1, and

Ten1), proteins are proposed to form a heterotrimeric telomeric

ssDNA-binding complex, that helps cap telomeres and is anal-

ogous to the heterotrimeric RPA complex that binds nuclear

ssDNA during the process of transcription, DNA replication,

and repair (Gao et al., 2007; Sun et al., 2009, 2011). Cdc13

binds telomeric ssDNA strongly via an oligonucleotide/

oligosacccharide binding (OB) fold (Lewis et al., 2014). Stn1

and Ten1 also bind telomeric ssDNA but with lower affinity

than Cdc13 and are thought to be recruited to DNA via

Cdc13 (Gao et al., 2007; Qian et al., 2009, 2010). So far, the

budding yeast CST complex has not been purified, but recent

evidence from the distant yeast Candida glabrata suggests
C

that in this organism CST functions as a 2:4:2 or 2:6:2 complex

(Lue et al., 2013).

Orthologs of CST components have recently been identified in

mammals, plants, and fission yeast. The human components of

CST (CTC1, STN1 [OBFC1], and TEN1) can be purified as a

trimeric complex (Chen et al., 2012; Giraud-Panis et al., 2010;

Miyake et al., 2009; Surovtseva et al., 2009). Mutations in

CTC1 are associated with human diseases and have been

associated with cellular telomere defects (Chen et al., 2013;

Anderson et al., 2012). Interestingly, CTC1 and STN1 were

originally identified when copurified with human DNA poly-

merase alpha and named alpha accessory factor (AAF) (Casteel

et al., 2009). The interaction of CST with DNA polymerase alpha

is conserved because budding yeast Cdc13 and Stn1 also bind

to DNA polymerase alpha components (Qi and Zakian, 2000;

Grossi et al., 2004).

In budding yeast, where CST was first identified, there is

evidence that CST subunits perform different functions. For

example, Cdc13 helps recruit telomerase via interaction with

the telomerase subunit Est1 (Nugent et al., 1996; Qi and Zakian,

2000; Mitton-Fry et al., 2004). In contrast, Stn1 interferes with

telomerase activity because Stn1 and Est1 have overlapping

binding sites on Cdc13, and Stn1 inhibits telomerase activity

by competing with Est1 for Cdc13 binding (Puglisi et al., 2008;

Chandra et al., 2001). Another example is that Stn1, when over-

produced, acts as a checkpoint inhibitor (Gasparyan et al.,

2009). However, because Cdc13, Stn1, and Ten1 are each

essential proteins in budding yeast, and there is clear homology

to RPA, it is suggested that CST proteins function together to

provide the essential function of capping the telomere (Gao

et al., 2007).

In yeast and human cells, nonsense mediated mRNA decay

(NMD) proteins play important roles at telomeres. NMD de-

grades transcripts containing premature termination codons

(PTCs) to reduce the risk that potentially harmful truncated pro-

teins (or RNA) are made in cells (Isken and Maquat, 2008). It is

estimated that about 10% of human diseases are associated

with PTCs (Bidou et al., 2012). In human cells, the key NMD pro-

teins UPF1, UPF2, and UPF3 bind to telomeres, and telomere

loss occurs in UPF1 and UPF2-depleted cells (Lew et al., 1998;

Azzalin et al., 2007). Consistent with the telomere effect in human

cells, budding yeast nmdD mutants show a short telomere

phenotype. Interestingly, in yeast nmdDmutants overexpression
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Figure 1. Deletion Mutations that Suppress or Enhance cdc13-1

(A) cdc13-1 or CDC13 strains were combined with the yeast knockout

collection and fitness (maximum doubling rate3maximum doubling potential)

determined at 27�C (Addinall et al., 2011). Each spot corresponds to the

position of a single gene deletion. cdc13-1 suppressors (red) or enhancers

(green) are indicated, as are deletions known to affect telomere length (blue) or

the DNA damage response (purple).

(B) Saturated cultures, grown at 23�C, were serially diluted in water and

spotted onto YEPD plates. Strains were grown at the temperatures indicated

for 2 days before being photographed.
of Stn1 and Ten1 is largely responsible for the short telomere

length phenotype (Dahlseid et al., 2003). This is presumably

because Stn1/Ten1 inhibits telomerase activity by interfering

with Est1-Cdc13 interaction.

We have previously reported that disabling NMD (NAM7,

NMD2, and UPF3) or DDR genes such as EXO1, encoding a

nuclease, or RAD24, encoding the checkpoint sliding clamp

loader, suppresses temperature sensitivity of telomere-defective

cdc13-1 strains to similar extents (Addinall et al., 2011). Given

the important roles played by CST, NMD, and DDR proteins at

mammalian and yeast telomeres, we wanted to better under-

stand the interplay between NMD and DDR at uncapped

telomeres. Remarkably, we find that deleting NMD2 with either

EXO1 or RAD24 completely bypasses the requirement for

Cdc13. However, the same genetic interventions do not bypass

the need for either Stn1 or Ten1. These and other molecular

experiments indicate that CST does not always function as an
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RPA-like trimeric protein in yeast. Instead, our data show that

Stn1 and Ten1 are critical for cell viability in conditions when

Cdc13 is not, and this suggests that Stn1 and Ten1 can cap

telomeres, or perform other essential functions, in the absence

Cdc13.

RESULTS

cdc13-1 Can Be Strongly Suppressed by nmd2D with
exo1D and/or rad24D
The Cdc13-1 protein becomes increasingly defective at capping

the telomere as temperatures increase. At high temperatures,

cdc13-1 cells accumulate telomeric ssDNA, activate checkpoint

pathways, and arrest before anaphase (Garvik et al., 1995). To

begin to systematically define the proteins and pathways that

are important for telomere function, cdc13-1 was combined

with the yeast genome knockout collection to identify sup-

pressors and enhancers of the temperature-sensitive telomere

defect (Addinall et al., 2011). We found that deletions of NMD

genes (nam7D, nmd2D, and upf3D), which cause short telomere

phenotypes, suppress the cdc13-1 defect strongly. The effects

of nmdDmutations were as strong as deletions affecting aspects

of the DNADamage Response (DDR), including deletions of DNA

damage checkpoint genes (ddc1D, rad9D, rad17D, and rad24D)

or exo1D, affecting a nuclease that attacks uncapped telomeres

(Figure 1A). Interestingly, other deletions affecting the DDR or

telomerase cause a short telomere phenotype but enhanced

the cdc13-1 defect; such proteins include the Ku complex

(Yku70, Yku80), the MRX complex (Mre11, Rad50, Xrs2), or

telomerase (Est1 and Est3 regulatory subunits). Therefore,

nmdD mutations are somewhat unusual in that they result in

short telomeres but suppress cdc13-1.

To better understand the role of NMD at telomeres, we inves-

tigated the overlap betweenNMDand the DDR.We generated all

possible combinations of nmd2D, exo1D, and rad24Dmutations

in cdc13-1 strains. We observed strong synergistic interactions

between nmd2D and exo1D or rad24D mutations. Specifically,

deleting nmd2D in combination with exo1D or rad24D in

cdc13-1 strains significantly increased strain fitness compared

to each single gene deletion (Figure 1B). In contrast, exo1D

rad24D double deletions only marginally improved growth

compared to exo1D or rad24D single deletions. We conclude

that NMD inhibits the growth of cdc13-1 mutants by a mecha-

nism that is distinct to the effects of Exo1 and Rad24, which

are more similar in effect. The nmd2D rad24D exo1D cdc13-1

strain was most fit, growing robustly at 36�C, demonstrating

that Nmd2, Rad24, and Exo1 each perform different functions

to inhibit growth of cdc13-1 mutants. The synergistic genetic

interactions between NMD and the DDR indicate that that

NMD functions in parallel to the DDR proteins Exo1 and Rad24

to inhibit growth of cdc13-1 mutants.

nmd2D Affects ssDNA Accumulation in cdc13-1 Strains
Exo1 and Rad24 inhibit growth of cdc13-1 strains at least in part

by generating single-stranded DNA (ssDNA) at uncapped telo-

meres (Zubko et al., 2004). To test the effect of Nmd2 on ssDNA,

we measured ssDNA near telomeres in nmd2D cdc13-1 and

nmd2D rad9D cdc13-1 strains. The checkpoint protein Rad9,



Figure 2. Nmd2 Affects ssDNA Generation

at Uncapped Telomeres

(A) Schematic representation of chromosome arm

VI-R.

(B–E) Quantitative amplification of single-stranded

DNA (QAOS) isolated from synchronous cultures

of cells containing bar1D, cdc13-1, cdc15-2, and

other mutations indicated. Error bars show 95%

confidence interval values.

(F) Cells dividing exponentially at 23�C were

incubated at 36�C and ssDNA in the telomeric

repeats was measured. SYBR Safe was used as a

loading control. ssDNA was quantified using

ImageJ and normalized relative to the loading

control. The final fold change is relative to the 0 hr

time point of each strain.

(G) Yeast strains indicated were grown to satura-

tion at 23�C before being spotted on two plates.

One plate was incubated at 23�C for 3 days, the

other plate was incubated for three 4 hr cycles at

36�C, separated by 4 hr at 23�C, before colonies

were allowed to form at 23�C.
See also Figure S1.
like its mammalian ortholog 53BP1, inhibits ssDNA accumulation

and was used to sensitize some strains to the accumulation of

ssDNA (Lazzaro et al., 2008; Bunting et al., 2010). We used quan-

titative amplification of single-stranded DNA (QAOS) to measure

ssDNA accumulation at the DUG1 and RET2 loci on the right arm

of chromosome VI-R (Holstein and Lydall, 2012) (Figure 2A).

Deleting NMD2 reduced the amount of ssDNA generated in

cdc13-1 or cdc13-1 rad9D-strains at loci 20 or 30 kb from uncap-

ped telomeres (Figures 2B–2E). We further investigated the effect

ofdeletingNMD2on telomeric ssDNAbyusingafluorescentnative

in-gel assay to measure ssDNA in telomeric repeats in nmd2D

cdc13-1 strains, grown at a restrictive temperature. Consistent

with the QAOS data, we observed reduced ssDNA accumulation

in the telomeric repeats of nmd2D cdc13-1 strains after 4 hr at

36�C (Figure 2F). To obtain independent evidence that NMD2

affects ssDNA, we measured the effect of nmd2D on cell viability

of cdc13-1 and cdc13-1 rad9D strains subjected to restrictive

and permissive temperature cycles in an ‘‘up-down’’ assay (Fig-
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ures 2G and S1A). Deleting NMD2 in a

cdc13-1 or cdc13-1 rad9D background

increased cell viability assessed by spot

tests after growth at 36�C, similar to the ef-

fect of deleting EXO1 in the same back-

grounds (Figure 2G). This spot test

result was confirmed by determining cell

viability after incubation at restrictive

temperature: nmd2D cdc13-1 rad9D

cultures contained nearly 8% viable cells

compared to around 1% of cdc13-1

rad9D cultures at the 240 min time point

(Figure S1B). We conclude that Nmd2,

like Rad24 and Exo1, affects ssDNA levels

in cdc13-1mutants.

nmd2D rescued loss of viability caused

by rapid accumulation of ssDNA in
cdc13-1 mutants, similar to the previously reported effects of

exo1D and rad24D mutations (Zubko et al., 2004). It is known

that disabling NMD pathways increases the levels of many telo-

mere related proteins and RNAs, including the Ku complex, telo-

merase, Telomeric Repeat Containing RNA (TERRA), and the

Cdc13 partner proteins Stn1 and Ten1 (Guan et al., 2006; Azzalin

et al., 2007; Dahlseid et al., 2003; Addinall et al., 2011). It is likely

therefore that disabling the NMD pathway increases the levels of

one or more of these telomere related proteins or RNAs and

thereby reduces resection of telomeric ssDNA. Alternatively,

NMD may regulate an unidentified nuclease that attacks telo-

meric DNA, play a direct role in resection, or affect the stability

of ssDNA generated in cdc13-1 strains.

The Requirement for CDC13 Can Be Bypassed
The robust growth of nmd2D rad24D exo1D cdc13-1mutants at

36�C suggested that cells deficient in NMD and DDR might be

able to divide in the absence of any Cdc13 function. To test
9, May 22, 2014 ª2014 The Authors 1261



Figure 3. Bypass of cdc13D

(A) NMD2/nmd2D EXO1/exo1D RAD24/rad24D

CDC13/cdc13D diploids were sporulated. Tetrads

were dissected onto YEPD plates, and spores

were allowed to form colonies for 5 days at 23�C
before being photographed.

(B) Following germination of spores in (A), micro-

colonies were photographed using a 203 objec-

tive on a Microtec microscope and reproduced

at the same scale. A representative subset of

microcolonies is shown.

(C) Strains of the genotypes indicated were

repeatedly passaged by toothpick every 4 days at

23�C. At the indicated times, 2 ml liquid cultures

were grown overnight, serially diluted, spotted

onto YEPD plates, and incubated for 2 days before

being photographed.

(D) Genomic DNA was isolated from the yeast

strains indicated, and telomere structures were

analyzed by Southern blotting using a Y0 and TG

probe. SYBR Safe was used as a loading control.

See also Figures S2 and S3.
this, we deleted CDC13 in a diploid strain that carried heterozy-

gous deletions of UPF1, EXO1, and RAD24. We sporulated the

diploid, dissected tetrads, and germinated the spores. Consis-

tent with our hypothesis, 100% of nmd2D rad24D cdc13D,

nmd2D exo1D cdc13D, and nmd2D rad24D exo1D cdc13D

spores formed visible colonies, whereas all other cdc13D geno-

types did not (Figures 3A and S2A). Inviable cdc13D strains

formed microcolonies, and the sizes of microcolonies were

increased by nmd2D, exo1D, or rad24D mutations (Figures 3B

and S2B), just as the deletions improved fitness of cdc13-1

cells at semipermissive temperatures (Figure 1B). Therefore,
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combining disruptions affecting NMD

with those affecting EXO1 and RAD24

can permit cell division in the absence

of Cdc13.

Because some cdc13D genotypes

form visible colonies, whereas other

cdc13Dgenotypes formonlymicroscopic

colonies, we wondered whether cells in

large cdc13D colonies might eventually

stop dividing. To examine fitness over

time, we subcultured viable cdc13D

strains for many passages and measured

fitness by spot test. Fitness of the cdc13D

strains increased rather than decreased

with time (Figure 3C), similar to telome-

rase-deficient strains (tlc1D), which

escape senescence and maintain telo-

mere length bymechanisms independent

of telomerase (Lundblad and Blackburn,

1993; Wellinger and Zakian, 2012).

Consistent with this similarity, when we

examined telomere structures of cdc13D

strains they were altered by passage 9

and showed rearrangements like telome-

rase-deficient survivors (Figure 3D). We
conclude that cdc13D cells are viable indefinitely and rearrange

their telomere structures like telomerase-deficient cells.

Given that cdc13D cells rearranged telomeres like telomerase-

deficient tlc1D cells, we wondered if they needed functional telo-

merase in order to divide, as cdc13D pif1D exo1D have been

demonstrated to depend on telomerase for survival (Dewar

and Lydall, 2010). We germinated spores derived after intro-

ducing a tlc1D disruption into a diploid strain containing hetero-

zygous deletions of CDC13, NMD2, RAD24, or EXO1. We found

viable cdc13D tlc1D strains when nmd2D and exo1D, rad24D, or

exo1D rad24D were present (Figure S3A). Furthermore such



strains could be cultured for many passages, showed increased

fitness over time and altered telomere structure like telomerase-

deficient survivors (Figures S3B and S3C). We conclude that

nmd2D cdc13D strains use telomerase-independent mecha-

nisms to maintain telomere length.

The Requirement for STN1 and TEN1 Cannot Be
Bypassed
To test whether yeast cells survive without the Stn1 or Ten1, the

other components of the CST complex, we introduced stn1D or

ten1D disruptions into the diploid strain containing heterozygous

deletions of NMD2, RAD24, or EXO1. In contrast to what was

found with cdc13D, we could not identify any visible stn1D or

ten1D colonies (Figures 4, S4A, and S4B). Interestingly, germi-

nated stn1D and ten1D spores often formed microcolonies like

some of the cdc13D genotypes (Figures 4 and 3B). Therefore,

stn1D and ten1D cells sometimes undergo a limited number of

cell divisions but cannot divide indefinitely, irrespective of the

status of NMD2, RAD24, or EXO1. Similarly, cdc13D, nmd2D

cdc13D, exo1D cdc13D, rad24D cdc13D, and exo1D rad24D

cdc13D cells sometimes undergo a few cell divisions before

stopping division (Figure 3B). We note that others have reported

that stn1D rad24D microcolonies are smaller than cdc13D

rad24D microcolonies, which is consistent with our data (Pa-

schini et al., 2012). In summary, all these microcolony patterns

suggest that stn1D and ten1D strains have similar but more se-

vere growth defects than cdc13D strains.

One explanation for the fitness differences between cdc13D

and stn1D or ten1D strains was that fitness differences were

not due to CST defects per se but instead because important

genes adjacent to STN1 and TEN1 were affected in deletion

strains (Ben-Shitrit et al., 2012). However, this is not the case

because the essential functions missing in stn1D and ten1D

strains could be rescued by expressing the missing STN1 or

TEN1 genes on plasmids (Figure S4C). Furthermore, the strains

relying on plasmid-borne STN1 or TEN1 could not lose such

plasmids (Figure S4D). Given that several defined genetic

backgrounds allow growth of cdc13D but not of stn1D or

ten1D strains, this strongly implies that Stn1 and Ten1 are

more critical for cell viability than Cdc13.

Our experiments show that budding yeast cells defective in

NMD and Exo1 or Rad24 can grow indefinitely without Cdc13

and telomerase, but that in such cells telomere function is

compromised. However, cells with otherwise identical genetic

backgrounds cannot grow in the absence of Stn1 or Ten1. The

simplest explanation for these observations is that Stn1 and

Ten1 play additional roles to Cdc13 in maintaining budding yeast

cell viability. Consistent with this data, other experiments have

shown that truncated and overexpressed versions of Stn1/

Ten1 can bypass the need for Cdc13 (Petreaca et al., 2006,

2007; Gasparyan et al., 2009).

It has been shown that the nmd2D telomere phenotype is

due, at least in part, to elevated Stn1 levels. Specifically, over-

expression of STN1, or simultaneous overexpression of STN1

and TEN1, leads to short telomeres of a similar length

to nmd2D mutants (Dahlseid et al., 2003). Therefore, we

wondered whether growth of cdc13D cells depended on

Stn1 and/or Ten1 overproduction. To test this hypothesis, we
C

examined a different genetic background that was not

expected to affect Stn1 levels.

Pif1 is a helicase that is active at telomeres and deletion of

PIF1 and EXO1 also permits deletion of CDC13 (Dewar and

Lydall, 2010). We repeated previous experiments and were

able to generate viable strains from germinated cdc13D pif1D

exo1D spores. However, we were unable to generate equivalent

stn1D or ten1D strains (Figures 5A–5C and S5), reproducing

what was found in other genetic backgrounds (Figure 4). These

results strongly suggested that overexpression of Stn1 was not

necessary to bypass Cdc13 function. However, it remained

possible that pif1D or exo1D mutations caused increased Stn1

or Ten1 levels. Therefore, we measured Stn1 and Ten1 RNA

expression levels in pif1D, exo1D, and pif1D exo1D strains, using

quantitative RT-PCR (qRT-PCR). In these strains, levels of STN1

and TEN1 RNA were not significantly different from wild-type

(Figures 5D and 5E), whereas, as expected, levels of STN1 and

TEN1 RNAs were increased by an nmd2D mutation. Finally, it

was possible that Stn1 or Ten1 might be transcriptionally

induced by the response to telomere uncapping in cdc13D cells.

However, this is not the case because there is no significant

increase in STN1 and TEN1 RNA levels in cdc13-1 strains grown

at high temperatures (Greenall et al., 2008). We conclude that

bypass of the requirement for Cdc13 does not depend on

nmd2D-dependent overexpression of STN1 and/or TEN1.

Instead, our data suggest that at normal levels of expression

Stn1 and Ten1 can, in some circumstances, function without

Cdc13 to maintain viability of yeast cells.

Stn1, Ten1, and Cdc13 Can Bind Telomeric DNA at
Different Ratios
Our experiments show that Stn1 and Ten1 contribute to yeast

cell viability in conditions when Cdc13 is not required. To see if

the essential function provided by Stn1 or Ten1 was at telo-

meres, we asked whether disabling the NMD pathway affected

the ratio of CST components at telomeres. To investigate this,

we used a chromatin immunoprecipitation (ChIP) assay to

measure binding of myc-tagged STN1, TEN1, and CDC13 to

telomeric DNA, in wild-type or nmd2D backgrounds. We

observed about a 10-fold increase in binding of Stn1 and a

5-fold increase for Ten1 to telomeres in nmd2D mutants but

only a 2-fold increase in the levels of Cdc13 (Figures 6A–6C).

We conclude that Cdc13, Stn1, and Ten1, the components of

the CST complex, can bind telomeres at different ratios.

Given that we were able to delete Cdc13, but could not delete

Stn1 or Ten1, the other two components of the CST complex,

this suggests that Stn1 or Ten1 might help cap the telomere in

the complete absence of Cdc13.We tested this hypothesis using

a ChIP assay. We found that Stn1-Myc was indeed bound to te-

lomeric DNA in a Cdc13-independent manner in an nmd2D

exo1D rad24D cdc13D strain (Figure 6D). The level of Stn1 bind-

ing to telomeres was lower in the cdc13D strain compared to the

CDC13+ strain; this could be due to the cdc13D cells having

dramatically rearranged telomeres. We did not find evidence of

Ten1 binding to telomeres in the absence of Cdc13 (Figure 6E).

However, Ten1 enrichment at telomeres was also relatively

weak in the nmd2D exo1D rad24D strain, and it may be that

any binding is below our detection limit. RPA is another ssDNA
ell Reports 7, 1259–1269, May 22, 2014 ª2014 The Authors 1263
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Figure 5. Bypass of Cdc13 in a pif1D exo1D

Strain Does Not Depend on Overexpression

of Stn1 and Ten1

(A–C) PIF1/pif1D EXO1/exo1D CDC13/cdc13D,

PIF1/pif1D EXO1/exo1D STN1/stn1D, and PIF1/

pif1D EXO1/exo1D TEN1/ten1D diploids were

sporulated. Tetrads were dissected onto YEPD

plates, and spores were allowed to form colonies

for 5 days at 23�C before being photographed.

See also Figure S5.

(D and E) qRT-PCR analysis of Stn1 and Ten1 RNA

expression levels in the strains indicated. A single

wild-type (WT) strain was given the value of 1, and

the error bar indicates the value of the other wild-

type strain. All other genotypes are expressed

relative to the single wild-type strain, the mean of

two independent strains is shown, and error bars

indicate the individual value of each strain.

See also Figure S5.
binding protein, binds at telomeres, and is therefore likely to

compete with Cdc13 as a telomeric ssDNA binding protein.

Consistent with this hypothesis, we measured more RPA bound

to telomeres in the absence of Cdc13 (Figure 6F). This suggests

that in the absence of Cdc13, RPA can bind telomeric DNA

and that RPA cooperates with Stn1, Ten1, and other proteins

to cap the telomere. We conclude that Stn1 can bind telomeres

in the absence of Cdc13.

DISCUSSION

We have shown that NMD acts in a parallel pathway to the Exo1

and Rad24 DDR proteins to inhibit growth of yeast cells with

defective telomeres. Furthermore, we show that NMD, like

Exo1 and Rad24, affects the level of telomeric ssDNA. Re-

markably, we find that the requirement for CDC13 can be

robustly bypassed in 100% of cells with nmd2D and exo1D or

rad24D mutations. Viable cdc13D strains can be cultured for

many passages, and the telomeres in such cells resemble those

of telomerase-deficient survivors and still bind Stn1. In contrast,

none of the four genetic backgrounds that allow robust bypass of

cdc13D allowed bypass of stn1D or ten1D.

Cdc13, along with Stn1 and Ten1, has been proposed to form

an essential heterotrimeric telomeric ssDNA binding complex

analogous to RPA, the ssDNA binding complex (Gao et al.,

2007). The CST/RPA model is attractive for many reasons,

perhaps most notably because all three CST subunits are, like

the RPA subunits, essential for yeast cell viability, and all three

contribute to telomere protection. However, we have identified

several defined genetic backgrounds that permit deletion of

CDC13, but none of these permit deletion of STN1 or TEN1.

The simplest explanation for these data is that Stn1 and Ten1

play Cdc13-independent roles at the telomere, or elsewhere.
Figure 4. stn1D and ten1D Mutants Form Microcolonies

(A and B) NMD2/nmd2D EXO1/exo1D RAD24/rad24D STN1/stn1D and NMD2

Tetradswere dissected onto YEPDplates, and sporeswere allowed to form coloni

germination of spores, microcolonies were photographed using a 203 objective

See also Figure S4. We are uncertain about the genotypes of individual microcolo

(in contrast to Figure 3B).

C

We show that STN1 and TEN1 binding to telomeric DNA in-

creases more than Cdc13 in nmd2D strains, which suggests

that Stn1 and Ten1 can bind telomeric DNA without Cdc13.

Indeed, we also show that Stn1 binds to telomeric DNA in the

absence of Cdc13. Consistent with our data, others have shown

that C-terminal truncations of Stn1, which disrupt the Stn1-

Cdc13 interaction, are sufficient to support cell viability and telo-

mere function (Petreaca et al., 2007). Interestingly, Stn1 overpro-

duction inactivates the S phase checkpoint in budding yeast,

and, although the biochemical mechanism explaining this inter-

action is not known, it is tempting to speculate that some aspect

of this checkpoint inhibition function is critical for Stn1 function

(Gasparyan et al., 2009). We conclude that budding yeast

Cdc13—the largest component of the CST complex—contrib-

utes to a subset of the essential functions performed by its

smaller partners, Stn1 and Ten1.

Ten1 was the last of the budding yeast CST components to

be identified, in 2001 (Grandin et al., 2001). It was only much

more recently that orthologs of CST components were identi-

fied in higher eukaryotes (Giraud-Panis et al., 2010). Our data

from budding yeast, showing that STN1 and TEN1 are critical

for cell viability in conditions when CDC13 is not, are consis-

tent with data from other organisms, suggesting that this

pattern might be universally the case in eukaryotes. For

example, so far, no ortholog of Cdc13 has yet been reported

in fission yeast but orthologs of both Stn1 and Ten1 have

been identified (Jain and Cooper, 2010). Also, mutations in

human CTC1, the ortholog of CDC13, are found in a number

of diseases associated with telomere defects (Coats plus,

dyskeratosis congenita and CRMCC); however, no equivalent

mutations in STN1 or TEN1 have yet been identified in the

same cohorts of patients (Anderson et al., 2012; Polvi et al.,

2012; Walne et al., 2012). Perhaps mutations in Stn1 or
/nmd2D EXO1/exo1D RAD24/rad24D TEN1/ten1D diploids were sporulated.

es for 5 days at 23�Cbefore being photographed (see also Figure S4). Following

on a Microtec microscope and reproduced at the same scale.

nies as we cannot establish which gene deletions were inherited by each spore
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Figure 6. Altered Stoichiometry of CST Components at Telomeres

(A–E) ChIP analysis of Cdc13-13Myc, Stn1-13Myc, and Ten1-13Myc binding to the VI-R telomere and the internal locus PAC2 on chromosome V. Cultures of

each genotype were grown at 23�C, and cells were harvested in exponential phase. Duplicate samples were immunoprecipitated with a Myc antibody (IP) or a

nonspecific IgG control (BG). ChIP samples were measured in triplicate by qPCR, and group means are shown with error bars indicating SD.

(F) ChIP analysis of RPA binding to the VI-R telomere and the internal locus PAC2 on chromosome V. ChIP was conducted as in (A)–(E) using an anti-

S. cerevisiae RPA antibody (IP) or a nonspecific IgG control (BG). ChIP samples were measured in triplicate by qPCR, and group means are shown with error

bars indicating SD.
Ten1 in humans cause stronger phenotypes that are not

tolerated.

We have previously shown that some cdc13D strains can also

be deleted of STN1 (Zubko and Lydall, 2006). stn1D strains grew

less well than the parental (cdc13D) strains, and we were unable

to identify any ten1D strains. These data, and those we report

here, show that a functional telomere is very flexible in terms of

the proteins it contains. The possibility remains that conditions

will be identified that permit bypass of Stn1 and or Ten1 but

not of Cdc13. A better understanding of the functions of

Cdc13, Stn1, and Ten1 at telomeres will be important to see if

this is likely. As it stands, our data suggest there is a functional

hierarchy of CST subunit function in budding yeast with Ten1

more critical than Stn1, which is more critical than Cdc13.

If Stn1 and Ten1 function at eukaryotic telomeres in the

absence of Cdc13, then how do they do so? Because Stn1

and Ten1 have low affinity for telomeric DNA (in comparison

with Cdc13), one simple explanation is that Stn1 and Ten1
1266 Cell Reports 7, 1259–1269, May 22, 2014 ª2014 The Authors
bind and cap the telomere via interactions with any of the

numerous other telomere binding proteins or RNAs. The idea

that Stn1 interacts with proteins other than Cdc13 to perform

essential functions is consistent with data showing that the

Ten1 interaction domain of Stn1 is much more critical for cell

viability than the Cdc13 interaction domain (Petreaca et al.,

2007). Stn1/Ten1 might interact with one or more than one of

numerous other proteins found at budding yeast telomeres,

and elsewhere, including Rap1, Rif1, Rif2, Ku, MRX, Tel1, Telo-

merase, Sir proteins, RPA, and DNA polymerase alpha. We

tested a model in which subunits of RPA formed heterotrimers

with CST subunits, but we could obtain no strong evidence for

such a model (data not shown). However, we did observe

increased binding of RPA to telomeres in the absence of

Cdc13. Both budding yeast and mammalian CST components

interact with Pol a primase and in yeast this interaction has

been shown to promote telomere capping (Grossi et al., 2004;

Gasparyan et al., 2009; Qi and Zakian, 2000; Anderson et al.,



2012). In mammalian cells, CST components facilitate the

replication of telomeric lagging-strand DNA (Sun et al., 2011;

Nakaoka et al., 2012). It will be interesting to determine how

telomeres are capped and replication is completed in the

absence of Cdc13.

Finally, given that CST and NMD play important roles in

telomeres in yeast and humans, the genetic interactions we

report in yeast may identify useful avenues to pursue for

developing future treatments for the human diseases in which

CTC1 is affected (Gu and Chang, 2013). Premature termination

codons are responsible for around 10% of inherited human dis-

eases and pharmaceuticals targeting NMD have been identified.

If we extrapolate from the yeast experiments to human cells, it is

conceivable that reducing NMD function pharmaceutically might

compensate for loss of CTC1 function in patients.

EXPERIMENTAL PROCEDURES

Yeast Strains

All strains are in the W303 background and are RAD5+ (Supplemental

Experimental Procedures, list 1). Gene disruptions of CDC13, STN1, and

TEN1 were created by inserting a hygromycin cassette into a diploid using

one step PCR, primers indicated in Supplemental Experimental Procedures

(list 2) and a pAG32 plasmid harboring HPHMX4 (Goldstein and McCusker,

1999) (Supplemental Experimental Procedures, list 3). Gene disruptions

were confirmed by PCR. STN1 and TEN1 rescue plasmids were created by

PCR-based gap repair of plasmid pDL1466 (see Supplemental Experimental

Procedures, list 3, for plasmid details).

Yeast Growth Assays

Single colonies were inoculated into 2ml of YEPD+adenine and grown in tubes

at 23�C overnight until saturation. Six-fold serial dilution series of the cultures

were spotted onto plates using a 48-prong replica-plating device. Plates were

incubated for 2–3 days at temperatures indicated before being photographed.

For cycling temperature assays plates were incubated at 23�C for 4 hr then

36�C for 4 hr, and this was repeated three times before colonies were allowed

to form at 23�C. For passage experiments, several colonies were pooled with a

toothpick and restruck onto YEPD plates.

ChIP

Chromatin immunoprecipitation was performed essentially as previously

described (Dubarry et al., 2011); cells were additionally crosslinked with

2 mM EGS. Mouse anti-myc 9E10 (ab32, Abcam) or anti-Saccharomyces

cerevisiae RPA (AS07 214, Agrisera) or rabbit anti-goat immunoglobulin (Ig)

G (ab97096, Abcam) antibodies were used for immunoprecipitations. Immu-

noprecipitated DNA was isolated using 10% Chelex (Bio-Rad) and quantified

by qPCR using the SYBR Green pPCR SuperMIX-UDG w/ROX kit (Invitrogen,

11744500). Primers used for PCR are described in the Supplemental Experi-

mental Procedures, list 2.

Synchronous Cultures and QAOS

Synchronous culture experiments and viability assay were carried out in

strains containing bar1D cdc15-2mutations and were performed as described

(Zubko et al., 2006). Quantitative amplification of ssDNA was carried out as

described (Holstein and Lydall, 2012).

In-Gel Assay

In-gel assays were performed as previously described (Dewar and Lydall,

2012). The Cy5-labeled oligonucleotide (M2188) was detected on a GE

Healthcare Typhoon Trio imager. The agarose gel was poststained using

SYBR Safe, and total DNA was detected using a FUJI LAS-4000 imager.

ssDNA was quantified using ImageJ and normalized relative to the loading

control. The final fold change is relative to the 0 hr time point of each

strain.
C

Microcolonies

After germination for 5 days at 23�C, colonies were photographed using a 203

objective on aMicrotecmicroscope. An imagewas taken of eachmicrocolony,

and images are reproduced at the same scale for direct comparison.

Analysis of Telomere Structure

Southern blot analysis was performed essentially as previously described

(Maringele and Lydall, 2004). Genomic DNA was cut with XhoI (New England

Biolabs), run overnight on a 0.8% agarose gel, and transferred to a positively

charged nylon membrane. The membrane was hybridized with a 1 kbp Y0 and
TG probe, obtained by digesting pDL987 with XhoI and BamHI. The probe was

labeled, and the blot was hybridized and immunologically detected using the

DIG-High Prime Labeling and Detection Kit (Roche, 11585614910). The probe

was visualized using a FUJI LAS-4000 imager.

Quantitative RT-PCR

RNA isolation was performed essentially as described (Collart and Oliviero,

2001). RNA was further purified using the RNEasy Mini Kit (QIAGEN, 74104)

and by DNase I digestion (Invitrogen, 18068-015). Quantitative RT-PCR was

carried out using the Superscript III Platinum SYBRGreen One-Step qRT-PCR

kit (Invitrogen, 11736-059). RNA sampleswere normalized relative to theBUD6

loading control.
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