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S u m m a r y  

To investigate the role of interleukin 7 (IL-7) in the development of the lymphoid system, we 
have generated two lines of transgenic mice carrying an Ib7 eDNA fused to an immunoglobulin 
heavy chain promoter and enhancer. This transgene is expressed in the bone marrow, lymph 
nodes, spleen, thymus, and skin provoking a perturbation of T cell development characterized 
by a marked reduction of CD4+CD8 + (double-positive) thymocytes. Quite unexpectedly, 
however, both lines also develop a progressive cutaneous disorder involving a dermal lymphoid 
infiltrate that results in progressive alopecia, hyperkeratosis, and exfoliation. Although the infiltrate 
is primarily composed of T lineage cells, its development is not impeded in the athymic nu/nu 
background. Furthermore, the phenotype can be transmitted horizontally by transplanting lymphoid 
tissues or skin to syngeneic wild-type mice. Thus, the phenotype is conveyed by skin-homing, 
mobile cells (presumably the infiltrating lymphocytes) in a cell-autonomous fashion. In addition 
to the skin phenotype, this transgene also provokes the development of a lymphoproliferative 
disorder that induces B and T cell lymphomas within the first 4 mo of life. These findings suggest 
potential physiologic actions of IL-7 in T cell development and in cutaneous immunity. They 
also demonstrate that IL-7 can act as an oncogene in the living organism. 

T he mammalian immune system comprises a complex net- 
work of interacting cell types and functions. Much of 

the communication between cells that regulates their growth 
and differentiation appears to be accomplished by the elabo- 
ration of soluble factors that interact with specific receptors 
found on responsive cells. Several of these factors, known as 
cytokines, elicit very different responses from multiple cell 
types. II~7 is a cytokine that was discovered initially as an 
active component of murine bone marrow B lymphocyte cul- 
tures (1, 2). It is produced by cultured adherent bone marrow 
cells and stimulates DNA synthesis in feeder-dependent lym- 
phocytes. However, mRNA studies indicate that the primary 
organs in which I1,-7 synthesis takes place are the spleen, 
kidney, and thymus (3). 

The cellular response to I1,-7 is complex and varied, in- 
volving both B and T cell lineages. Early B cell progenitors, 
but not more mature B cells, respond to IL-7 in proliferation 
and colony formation assays (2, 4-6). Treatment of fetal thymo- 
cytes in dissociated culture with IL-7 results in only a brief 
mitogenic response and enhanced viability, whereas the same 
cells cultured in intact tissue exhibit a dramatic and prolonged 
proliferative response to exogenous IL-7 (7). The Ib7-induced 
population includes an increased number of cells that can ex- 
hibit cytolytic function in response to stimulation by IL-2 
(8). Adult thymocytes also proliferate in response to II,7, 

largely resulting in increased numbers of CD4-CD8- 
(double-negative) and CD4+CD8 - or CD4-CD8 § (single- 
positive) cells (9, 10). Additionally, IL-7, acting in concert 
with TCR engagement, phorbol ester, or Con A treatment 
activates and stimulates the cytolytic function of mature pe- 
ripheral T cells (11-14). 

The in vivo response to systemic administration of highly 
purified recombinant II.~7 is equally complex, resulting in 
the reversible increase in the number of early B cell progen- 
itors in murine bone marrow, spleen, and LN, and in single- 
positive (CO4 + or CO8 +) T cells in spleen and LN (15, 16). 
Similarly, transgenic mice expressing an IL-7 eDNA under 
the control of an immunoglobulin K L chain promoter and 
a H chain enhancer develop expanded populations of mature 
and immature bone marrow and splenic B cells and increased 
numbers of thymic and lymphoid T cells (17). In light of 
the many in vitro activities of IL-7, this lymphokine appears 
to have roles both in the normal development of the lym- 
phoid system and in the reactive phase of the immune response. 

As with several cytokine systems, the cellular response to 
a particular factor can differ depending upon the microen- 
vironment of the responding cell. For example, cultured bone 
marrow pre-B cells divide vigorously when they encounter 
II,-7 in the presence of stromal cells, whereas in the absence 
of stromal cells, DNA synthesis is only briefly stimulated 
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(2). As mentioned above, I1.7 evokes very different responses 
from fetal thymocytes depending upon whether they are dis- 
sociated or in thymic tissue (7). Thus, the context in which 
the cell encounters II-7 can make a critical difference in its 
response. With this in mind, we sought to investigate the 
effects of I1.7 expression in vivo using transgenic mice. More 
specifically, we directed expression of I1.7 to cells of the B 
and T cell lineages by utilizing the Ig H chain promoter and 
enhancer (18). The data we present below show that I1-7 
perturbs thymic T cell development and induces a novel popu- 
lation of lymphocytes that migrates to and substantially dis- 
rupts the cytoarchitecture of the skin. In addition, we find 
that II:7 expression promotes the malignant transformation 
of B and T lineage cells. 

Materials and Methods 

Construction of the E/a.P/a-II_,7 Transgene. cDNA was prepared 
from Swiss mouse spleen KNA with reverse transcriptase and oligo- 
dT. An Ib7 cDNA molecule containing the whole coding sequence 
was amplified from this preparation by PCR using oligonucleotide 
primers derived from the published sequence of an I1r cDNA (3). 
The primers corresponded to nucleotides 525-551 in the positive 
sense and 1158-1184 in the negative sense with four nucleotides 
(GGTC) added on to the 5' end of each of the primers to create 
a Sail restriction site. This ID7 cDNA molecule was inserted into 
the XhoI site of plgTE/N (19) to create piG17, pIgTE/N contains 
a murine H chain Ig enhancer (E/z) and a human H chain Ig pro- 
moter (P#) 5' of the XhoI site and SV40 sequences containing an 
intron and polyadenylation signal 3' of the XhoI site. A 3.1-kb 
fragment of DNA containing these sequences was excised from 
the plasmid with SalI and BamHI and purified by agarose gel elec- 
trophoresis. 

Transgenic Animals, All animals used in this study were obtained 
from Taconic Farms, Inc. (Germantown, NY) or raised in our fa- 
cility. Animals were maintained under Specific Pathogen Free (SPF) 
conditions in microisolator cages and were handled using sterile 
technique in laminar flow hoods. The 3.1-kb E/zP/~-ILT-SVPA frag- 
ment described above was introduced into the pronuclei of 0.5 d 
postcoitum fertilized FVB/N eggs by microinjection (20). The in- 
jected oocytes were implanted into oviducts of pseudopregnant 
Swiss-Webster mice. Transgenic animals were identified by hybrid- 
ization to DNA prepared from tail biopsies. A fragment derived 
from the same SV40 sequences as the transgene was radiolabeled 
and used as a hybridization probe. Two positive founders were 
identified, TG.UP and TG.QD, and propagated by crossing back 
into FVB/N. TG.UP/TG.UP animals were confirmed by breeding 
with wild-type animals and scoring offspring. To cross TG.UP into 
the nu/nu background, TG.UP/+ FVB/N males were bred with 
nu/nu Swiss-Webster females. Progeny from this cross were scored 
for the presence of the TG.UP transgene. TG.UP/+, nu/+ males 
were bred with +/+, nu/+ females and the resulting offspring 
were scored for nude phenotype and TG.UP genotype. 

Northern Blots. RNA was prepared from tissue or cultured cells 
by disruption in guanidinium isothiocyanate (GIT) followed by 
pelleting through CsC1 gradients (21). 5/zg of KNA per lane was 
loaded onto formaldehyde/agarose gels for electrophoresis (21). RNA 
was then blotted from the gel onto Genescreen (Dupont, Wil- 
mington, DE) membrane and cross-linked with UV light. Filters 
were hybridized to the same SV40 DNA probe described above, 
washed, and exposed to film. 

Skin Cell Suspensions. Mice were killed and shaved if necessary 
(wild-type only). Pelts were removed in a single piece and scraped 
free of subcutaneous tissue with the back of a no. 12 scalpel. Partic- 
ular attention was paid to removing all LN. Cells were dissociated 
from skin by an adaptation of a method used to obtain dendritic 
cells (22). Briefly, the skin was cut into ~0.5 cm pieces and in- 
cubated in 1 mg/ml trypsin in culture media without serum for 
5-6 h at room temperature. Dermis and epidermis of each piece 
were then gently teased apart with forceps and incubated in 0,7 
mg/ml trypsin, 1.4 mg/ml collagenase, 0.14 mg/ml DNase I for 
40 min at 37 ~ with frequent agitation, The suspensions were then 
filtered through gauze and the dissociated cells were rinsed and 
cultured overnight in complete medium supplemented with II~2 
and IL-7. Cells were harvested by vigorous pipetting, but strongly 
adherent cells were not removed from the culture dishes. 

Flow Cytometry. Cell preparations described above, dissociated 
noncutaneous tissues, or cultured cells were suspended in normal 
saline, reacted with antibodies, and analyzed with a Cytofluorograf 
IIs (Ortho Diagnostic Systems Inc., Westwood, MA). mAb used 
were: Thy-1 (clone M5/49) (23); B220/CD45K (clone 6B2) (24); 
Mac-1 (25); and TCK-cc/B (clone H57) (26). FIT(2 goat anti-rat 
IgG or FITC goat anti-hamster IgG (Kirkegaard and Perry Labora- 
tories, Inc., Gaithersburg, MD) were used as secondary reagents. 
Commercially prepared directly conjugated mAb used were: FITC- 
anti-Thy1.1 (New England Nuclear, Boston, MA); PE-anti-CD4, 
FITC-anti-CDS, FITC-anti-CD8 (Becton Dickinson & Co., Moun- 
tain View, CA); FITC-anti-CD3, PE-anti-CD3, PE-anti-TCR-cff/~ 
PE-anti-TCR-q,/& FITC-anti-B220/CD45R (Pharmingen, San 
Diego, CA); FITC-anti-CD4 (Caltag Laboratories, South San Fran- 
cisco, CA); and FITC goat anti-mouse IgM (Southern Biotech- 
nology Associates, Inc., Birmingham, AL). 

Histology. Tissue samples were preserved in Optimal*Fix (Amer- 
ican Histology Reagent Co., Stockton, CA). Standard paraffin 
embedding, sectioning, and staining with hematoxylin and eosin 
was performed by the Transgenic Pathology Laboratory (Univer- 
sity of California, Davis, CA). 

Southern Blots. DNA was prepared from the supernatant of the 
GIT/CsC1 gradients described above for RNA preparation, or 
directly from tissues and cell pellets by proteinase K digestion, phenol 
extraction, and ethanol precipitation. Southern blots were performed 
using standard techniques (21). To detect Ig H chain/z locus rear- 
rangements (see Fig. 8 A), DNA samples were digested with EcoRI 
and BamHI and hybridized to a radioactively labeled 1.5-kb PstI- 
PstI fragment containing J, sequences (27). To detect TCIk-B locus 
rearrangements (see Fig. 8 B), samples were digested with HindlII 
and probed with a 2-kb EcoRI-EcoRI fragment containing J2B 
(28). TCK-'y rearrangements (see Fig. 8 C) were detected by 
digesting DNA with EcoRI and probing the filters with a 0.5-kb 
HindlII-HindlII fragment containing exon I of C3'3 (28). 

Tissue Transplants. Portions of tumor or other noncutaneous 
tissue (0.1-0.3 g) were suspended in I-2 ml PBS by repeated extru- 
sion through a 1-ml syringe. Skin samples were dissociated by in- 
cubation in trypsin. 0.05-0.2 ml of cell suspension was injected 
subcutaneously or intravenously into naive syngeneic or nu/nu 
animals. 

Skin Grafts. Pelts were prepared as for cell suspensions and cut 
into 1.5-2.0 cm. squares. Recipient mice were anesthetized with 
avertin, immobilized, and shaved. A square of flank skin was care- 
fully removed and replaced with a piece of donor skin which was 
held in place with flexible collodion (Eastman Kodak Co., Koch- 
ester, NY). Vaseline gauze and plaster dressings were applied. After 
8 d, the dressings and collodion were removed. 

Tissue Culture. Tumor tissue was dissociated with forceps and 
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Figure 1. Structure of the E#P#-IL7-SVpA transgene. Map of the 3.1- 
kb SalI-BamHI fragment used to generate the TG.UP and TG.QD strains 
is shown. Construction is detailed in the text. 

cultured in KPMI 1640 medium supplemented with 10% bovine 
calf serum, 2 mM glutamine, 50 U/ml penicillin, 50 #g/ml strep- 
tomycin, and 50/~M 2-ME at 37 ~ in 7% COz. Some cultures 
were supplemented with mitomycin-C-treated NAIL-7 cells or cul- 
ture supernatants from NAIL-7 cells. NAID7 is a NIH3T3 cell that 
has been engineered to secrete IL-7 (Rich, B. E., and P. Leder, manu- 
script in preparation). Ib7 assays were performed as described (2). 

Results 

Generation of Transgenic Mice and Expression of the 11_,7 Trans- 
gene. Two lines of transgenic mice were generated carrying 
an engineered transgene comprising (5'-3') a mouse Ig H 
chain enhancer, a human Ig H chain promoter, a murine IL-7 
cDNA, and sequences from SV40 virus which contain an 
intron and a polyadenylation signal (Fig. 1). One of these 
lines, TG.UP, carries the transgene on an autosome, whereas 
in the other, TG.QD, the transgene is assumed to have in- 
tegrated into the Y-chromosome as it is only inherited by 
males. Significant variability in the transgene's genomic 
Southern blot pattern and the severity of the associated pheno- 
type were observed in the Y integrant line (TG.QD), sug- 
gesting that the locus undergoes inactivating rearrangements 
in this line (data not shown). In contrast, the phenotype (de- 
scribed below) of the autosome-borne TG.UP line is quite 
uniform and the transgene appears to be integrated in a stable 
fashion. For this reason, most of the analyses were carried 
out on the TG.UP line, though the TG.QD line displayed 
the same phenotype when the transgene was inherited intact. 

The levels of expression of the Ib7 transgene in various 
tissues were assessed by Northern blot analysis and the results 
for a heterozygous autosomal transgenic (TG.UP/+) mouse 
are shown in Fig. 2 (lanes 1-11). Significant levels of KNA 
derived from the transgene were found in the thymus, LN, 
bone marrow, spleen and, interestingly, the skin. Lower levels 

were also detected in kidney, lung, and intestine. No trans- 
gene KNA was detected in liver, brain, or skeletal muscle. 

I 11_,7 Transgenic Mice Develop Alopecia and Abnormal Lym- 
phoproliferation. The most dramatic result of the transgenic 
expression of Ib7 is the progressive alopecia that both of these 
lines develop in a characteristic pattern. This phenotype is 
observed in all mice carrying the autosomal transgene and 
(as indicated above) in almost all of the mice carrying the 
Y chromosome-borne transgene. Heterozygous animals begin 
to develop the skin phenotype at about 12 wk of age. Alopecia 
initially develops in the inguinal area and subsequently spreads 
to the flank, eventually affecting most of the body. As the 
skin becomes increasingly affected it loses suppleness and 
elasticity. Homozygous (TG.UP/TG.UP) animals develop a 
more rapidly progressing alopecia which is first noticeable 
on the flank and haunches at 6-8 wk of age. Because of the 
accelerated development of their phenotype, it is not prac- 
tical to maintain the line in the homozygous state. For the 
purposes of this study heterozygous TG.UP/+ mice were used 
unless specified otherwise. 

Before the skin phenotype is evident, autopsy examina- 
tion of younger (6-8-wk-old) heterozygous Ib7 transgenic 
mice reveals splenomegaly and lymphadenopathy with a 
marked increase in subcutaneous vascularity. The lymphade- 
nopathy becomes more pronounced and more evident as the 
alopecia becomes more extensive. In later stages, the lymph- 
adenopathy progresses to frank lymphomatosis, and large 
asymmetric masses develop in some animals. In addition, the 
life span of the transgenic mice is shorter than that of their 
wild-type litter mates. Half the heterozygous carriers of the 
transgene are dead by about 220 d of age, whereas, wild-type 
FVB/N mice live roughly 2 yr in our facility. 

Skin of the Affected Transgenics Is Hyperkeratotic and Is Infiltrated 
with Lymphoid Cells Bearing the Markers Thy-1, CDS, and 
CD3. Histologic examination of affected skin reveals atrophy 
and loss of hair foUides, a thickening of the epidermis, and 
the appearance of lymphoid infiltrates in the dermis. Figs. 
3, A and B compare typical sections of skin from about 14- 
wk-old normal and transgenic animals. Note that the trans- 
genic skin (Fig. 3 B) has fewer hair follicles than wild-type 
(Fig. 3 A) and that the remaining follicles are atrophied. Note 
also that the epidermis is hyperplastic and hyperkeratotic and 
that a prominent infiltrate of lymphoid cells is seen throughout 
the dermis of the transgenic skin. 

F i g u r e  2. Expression of the transgene. Unfractionated 
RNA samples isohted from tissues from transgenic (Lanes 1--11) 
or skin graft recipient (lanes 19-21) mice, or cultured tumor 
ceils (lanes 12-18) as indicated were separated by gel dectropho- 
resis, blotted to a membrane, and hybridized to radiolabeled 
SVpA fragment. The mobilities of 18S and 28S rRNAs are 
indicated. 
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Figure 4. Immunofluorescent flow cytometry of dissociated dermal cells. 
Trypsin/coUagenase-dissociated cells were prepared from dermis of wild- 
type (A-G) and transgenic (H-N) mice, stained with the indicated anti- 
body and analyzed as described in the text. (Smoothed plots) Number of 
cells (y axis) vs log fluorescence intensity (x axis). Three divisions on the 
x axis represent a 10-fold increase in the intensity of fluorescence. 

To determine the identity of the infiltrating lymphoid cells, 
flow analyses of cells dissociated from the infiltrated dermis 
of transgenic mice and from their wild-type litter mates were 
compared. Skin from transgenic animals was found to con- 

tain increased numbers of cells expressing high levels of the 
Thy-1 antigen with a concomitant decrease in cells expressing 
low levels of Thy-1 (Fig. 4, A and/-/). Similar increases were 
also detected in the numbers of cells expressing CD5 in trans- 
genic skin (Fig. 4, B and/) and CD3 (Fig. 4, C and j) .  Little 
reactivity with either anti-CD4 or anti-CD8 was found on 
any of these cells (Fig. 4, F,M and G,N, respectively). TCR- 
cz//~ molecules were detected on most of the CD3 + skin- 
derived transgenic cells, however, a significant fraction of the 
cells in these preparations expressed TCR-3'//i (data not 
shown). Note that the frequency of transgenic cells expressing 
surface IgM was reduced (Fig. 4, E and L), as was the level 
of B220 expression (Fig. 4, D and K). Thus, the predomi- 
nant infiltrating transgenic cell type seems to be of the T 
lineage. 

The Transgenic Skin Phenotype Can Be Transmitted by Trans- 
plantation in a Cell-autonomous Fashion. We postulated that 
the infiltrative skin phenotype in these transgenic mice might 
be brought about by circulating, IL-7-producing lympho- 
cytes that "home" to the dermis. To test this notion, we trans- 
planted intact transgenic and wild-type skin from littermates 
to syngeneic wild-type hosts. Within 8 wk, the infiltration 
and alopecia spread from the initially affected transgenic graft 
to involve all of the wild-type host skin. At autopsy, spleno- 
megaly, lymphadenopathy, and pulmonary infiltrates were 
also observed. As would be expected from the gross mor- 
phology, the skin of the recipient animals was invariably found 
to have an inflammatory, cellular infiltrate, and the thick- 
ened, hyperkeratotic epidermis characteristic of the affected 
transgenic mice (Fig. 3 C). The skin of recipients of wild- 
type grafts remained normal (data not shown). Recipients 
of dissociated transgenic spleen, LN, thymus, or skin cells 
developed similar lesions, but more slowly. In addition, RNA 
derived from the transgene was detected in infiltrated skin 
distal to the graft site and in spleens (but not in the livers) 
of wild-type recipients of transgenic grafts (Fig. 2, lanes 19-21). 
This indicates that organ-specific migration of transgenic cells 
occurred and that the phenotype is conveyed in a cell- 
autonomous fashion. 

Infiltrated Skin from Serially Transplanted Animals Contains 
Clonal T Cells. To determine the clonality of the infiltrating 
cells, DNA samples were extracted from the infiltrated skin 
of transgenic and transplanted animals and examined for rear- 
rangements of the TCIL-/~ and "3' and Ig/~ genes. No obvi- 
ously unique TCR-B rearrangement was detected in DNA 
extracted from the infiltrated skin of newly affected trans- 
genic mice (Fig. 5). However, when DNA samples from the 
infiltrated skin of wild-type recipients of transgenic trans- 
plants were examined, unique alterations of TCtL-/~ genes 
were detected (Fig. 5). Rearrangements were not detected 
at the TCtL-3' or H chain Ig ~ loci, (data not shown). In- 
deed, two separate lines have been carried for more than eight 

Figure 3. Skin histology. Photomicrographs of typical histological preparations of skin samples from a 15-wk-old wild-type mouse (A); a 15-wbold 
TG.UP/+ transgenic mouse (B); a distal site from a syngeneic transplant recipient (C); and a nu/nu TG.UP/+ mouse (D). 
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Figure 5. Rearrangement of 
the TCR-• gene detected in infil- 
trated graft recipient skin. South- 
ern blots were performed using 
DNA prepared from wild-type 
(+/+), transgenic (TG.UP/+), or 
graft recipient skin as indicated. 
DNA samples were digested with 
HindlII and the filter was hybrid- 
ized to a E-specific probe as de- 
scribed in the text. (--~) Gel mi- 
gration. 

sequential transplants, and both retain rearranged TCR-~ 
genes. Thus the dermal infiltrate in the transgenic mice ap- 
pears to arise as a polyclonal T cell response, and transplanta- 
tion results in the selection of a clonal subset of these skin- 
homing lymphocytes. 

Dermis-infiltrating Cells Develop in the nu/nu Background. 
Since the infiltrating cells bear T cell markers, it was impor- 
tant to determine what role, if any, the thymus played in their 
development. To do this, a mating strategy was used to in- 
troduce the II:7 transgene into an athymic nu/nu background. 
As shown in Fig. 3 D, the characteristic dermal infiltrate readily 
developed in these animals, indicating that this infiltrating 
T cell population did not require the thymus for its devel- 
opment. 

The 11_,7 Transgene Perturbs Lymphoid Cell Development. 
Since I1:7 is a pleiotropic effector of lymphocytic develop- 
ment, it was also important to assess the effect of its aberrant 
expression. As shown in Fig. 6, A-C, expression of the I1:7 
transgene results in increased frequencies of B220+slgM + 

cells in the bone marrow, LN, and, to a lesser extent, in 
the spleens of the transgenic animals. It is more remarkable 
that a similar population of B220+slgM + cells are found in 
the thymuses of transgenic mice (Fig. 6 D), whereas 
B220*slgM + cells are entirely absent in the thymuses of 
their wild-type litter mates. In addition, there is a concomi- 
tant reduction of the fraction of Thy-1 + thymocytes in 
transgenic animals that can be roughly accounted for by the 
presence of these B220 + slgM ÷ cells. Marked reductions are 
also observed in the frequencies of cells expressing CD4 and 
CD8 surface molecules, whereas there is a sharp increase in 
the percentage of thymocytes expressing the TCR-associated 
antigen, CD3. 

To clarify this perturbation, we performed further anal- 
yses of the thymocytes of the transgenic mice using two-color 
flow immunofluorescence (Fig. 7). A comparison of the CD4 
versus CD8 plots of wild-type and transgenic thymocytes re- 
veals a dramatic difference and pinpoints the abnormality as 
an absence of double-positive (CD4 + CD8 +) cells. Although 
most of the wild-type thymocytes carry both CD4 and CD8 
on their surface (82 _+ 1.5% double-positive), very few of 
the transgenic thymocytes express both antigens. The largest 
population of the transgenic thymocytes are single-positive 
CD4+CD8 - cells (47 _+ 15%), with smaller populations 
of single-positive CD4-CD8 + cells (27 + 13%) and 
double-negative CD4-CDS-  cells (21 _+ 8%) (Fig. 7, A 
and B). Note, however, that fewer thymocytes were recov- 
ered from the transgenic (mean of 1.5 x 107) than from 
wild-type animals (mean of 8.5 x 107). When this reduc- 
tion is taken into account and the total number of cells of 
each population is calculated, the difference in the total 
number of cells is roughly accounted for by the missing 
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Figure 6. Flow cytometry of lymphoid tissues. Frac- 
tions of lymphoid cells expressing the indicated cell sur- 
face markers are represented as a percentage of the whole 
population of lymphoid cells dissociated from spleen (A), 
LN (B), bone marrow (C), and thymus (D). (Hatched 
columns) Percentages for wild-type tissues. (Solid columns) 
Percentages for transgenic TG.UP/+ tissues. Error bars, SD. 
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Figure 7. Two-color flow cytometry of thymocytes. (.4) Wild-type and (B) TG.UP/+ thymocytes were stained with PE-anti-CD4 and FITC-anti- 
CD8 antibodies, analyzed as described, and presented in log-log scatter plots. Scales of both axes are identical to the x axis of Fig. 4. (C) Ratios deter- 
mined from two-color analyses shown in A and B were used to calculate number of each thymocyte population which plotted as wild-type (hatched) 
or TG.UP/+ (solid) columns. (D) Wild-type and (E) TG.UP/+ thymocytes were stained with PE-anti-CD3, FITC-anti-CD4, and FITC-anti-CD8 
antibodies, analyzed and presented as in A and B. (F) Number of thymocyte populations were calculated using ratios from D and E and plotted as in C. 

CD4§ + (double-positive) cells (Fig. 7 C). Therefore, 
the total numbers of the three other populations of cells are 
not dramatically altered. 

To determine whether TCR appear on the surface of the 
thymocytes, we stained them with a PE-labeled anti-CD3 
mAb and a mixture of FITC-labeled anti-CD4 and anti-CD8 
mAb and analyzed. Representative scatter plots are shown 
in Fig. 7, D and E. Whereas the great majority of wild-type 
thymocytes stain for either CD4 or CD8 or both (96% CD4, 
8+), most do not express CD3 (82% of total). Indeed, only 
a small fraction of these CD4-  and/or CD8-expressing cells 
also express CD3 (14% of total). The transgenic thymocytes, 
however, consist predominantly of a population displaying 
TCR. as well as either CD4 or CD8 (66% CD3+CD4, 8+), 
accompanied by a smaller fraction of cells lacking all three 
antigens (25% CD3-CD4,  8-). Thus, whereas most of the 
wild-type thymocytes express CD4 and CDS, they do not 
express CD3. In contrast, most of the transgenic thymocytes 
express CD3 as well as either CD4 or CD8. By comparing 
the total number of  thymocytes as described above, we see 
that the II.,7 transgenic mice appear to be specifically missing 
CD3-  CD4 + CD8 + thymocytes, whereas the other popula- 
tions of thymocytes are minimally altered (Fig. 7 F). This 
is consistent with the histological observation that the thymic 
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cortex, the primary repository of CD3-CD4+CD8 + T cells 
in normal mice, is greatly reduced in size in these animals 
(data not shown). 

Tumors in 11.,7 Transgenic Mice. As a biologic effector mol- 
ecule, II.-7 might be expected to perturb not only the devel- 
opment of lymphoid cells, but their growth as well. Thus, 
we noted that over time, both lines of IL-7 transgenic mice 
began to develop B and T cell lymphomas. Since lymphomas 
can be outwardly difficult to distinguish from benign lymph- 
adenopathy, we have relied on histology and tumor trans- 
plantation to diagnose malignancy in these animals. It is 
remarkable that every examined transgenic animal older than 
130 d had histological evidence of lymphoma (n = 42). In 
some of these animals, there was evidence of more than one 
type of tumor (see below). Five of eight animals autopsied 
before they reached 130 d of age (87-126 d) had histologi- 
cally abnormal LN architecture, but appeared free of neo- 
plastic disease (data not shown). Two obviously ill younger 
mice (nos. 1433 and 1707, see below) had greatly enlarged 
(0.57 and 1.15 g) thymus glands that proved to be neoplastic. 
In each case, the thymus was enlarged to a point at which 
it appeared to impair pulmonary function. This phenomenon 
and other tumor-associated processes must contribute to the 
markedly decreased life span of these mice. 



In addition to histologic examination, six tumors were trans- 
planted to syngeneic wild-type mice and grew rapidly as tumor 
masses at the site of transplant. As mentioned above, cells 
from enlarged LN from a transgenic mouse that was subse- 
quently judged histologically to be nonmalignant were also 
transplanted. These failed to form localized tumors, but 
months later did develop the infiltrative skin phenotype as- 
sociated with the survival of transplanted, transgenic skin- 
homing T cells. 

Samples of the primary tumors and cell lines derived from 
them were subjected to more detailed analyses to determine 
their cell types and donality. Immunofluorescent flow cytom- 
etry of dissociated primary tumor tissue revealed cells bearing 
a series of B and T cell-associated markers. Several of the 
samples were essentially monoclonal with respect to these 
surface markers (see nos. 1430, 1490, 1555, and 1577 below 
and in Fig. 8), whereas others obviously contained mixtures 
oflymphocytes (nos. 1433, 1671, and 1707). Although much 
of this heterogeneity may be due to reactive cells, it is likely 
that some of these tumors were oligoclonal. 

Seven of the tumors were successfully adapted for growth 
in culture and further analyzed. Each of these lines grew as 
a solid mass at the site of injection into FVB/N or nude mice. 
Immunofluorescent flow analyses of five of these cultured cell 
lines (nos. 1430, 1433, 1482, 1490, and 1671) revealed that 
they carried B lineage markers (B220 and/or IgM), whereas 
only one expressed T cell markers (no. 1577, Thy-1 +, 
CD3 + , TCR-3//r + , CD4- ,  and CD8-) .  This last line was 
also unique in that it grew in culture only in the presence 
of exogenous IL-7 and then, only slowly. It is interesting that 
early cultures of this line exhibited cytotoxic activity against 

adherent feeder cell layers that were used in coculture (data 
not shown). 

To establish the presence of clonal populations of geneti- 
cally committed cells, we also assessed the primary tumors 
and cultured tumor cells for rearrangements of Ig and TCR 
genes. Southern blots of these samples are shown in Fig. 8. 
Rearrangements at the # locus (indicating commitment to 
the B lineage) were detected in DNA prepared from tumors 
or cell lines from three of the mice, nos. 1490, 1555, and 
1671 (Fig. 8 A). Of  these three cell lines, nos. 1490 and 1671 
expressed IgM; no. 1555 was not tested. Rearrangements of 
TCR-3 and -'y genes were detected in samples from five of 
the tumors (Fig. 8, nos. 1433, 1554, 1577, 1665, and 1707). 
One of these grew in culture and expressed TCR (no. 1577), 
whereas three failed to grow. A tumorigenic cell line grew 
out of the fifth tumor (no. 1433), but only after prolonged 
culture in the presence of feeder cells and exogenous IL-7. 
This cell line, and two others (nos. 1430 and 1482) expressed 
B220, but did not appear to contain rearranged Ig or TCR 
genes. Thus, the cell line derived from tumor no. 1433 prob- 
ably did not originate from the same clone detected in the 
primary tumor by virtue of its TCR-~ and TCR-3, rearrange- 
ments (Fig. 8, B and C). In summary, the solid tumors that 
develop in these mice appear to be derived from both com- 
mitted B and T lineage cells, as well as from lymphoid cells 
that may be less mature. 

High levels of RNA derived from the transgene were de- 
tected in six of the seven tumor cell lines analyzed (Fig. 2, 
lanes 12-18) and a lower level of transgene-derived RNA was 
detected in the seventh (no. 1555). IL-7 activity (10-100 U/ml) 
was also detected in the culture supernatants of all of the lines 
except nos. 1555 and 1577 (data not shown). As noted above, 
no. 1577, which is the only T lineage tumor cell line we 
have been able to culture, is also the only line that requires 
exogenous IL-7 for growth in vitro. Consistent with the no- 
tion that ID7 plays an autocrine role in the growth of these 
transformed cells, all six of the tumor lines grow poorly at 
low cell concentrations (<104/ml) unless the culture me- 
dium is supplemented with exogenous IL-7. Furthermore, 
they are responsive to IL-7 when tested for [3H]thymidine 
incorporation or enhanced cloning efficiency (data not shown). 

Figure 8. Ig and TCR gene rearrangements in tumors. Southern blots 
were performed using DNA prepared from the indicated tissues or cells 
as described in the text. (A) DNA samples were digested with EcoRI 
and BamHI and the filter was hybridized to a/z-specific probe. (B) DNA 
samples were digested with Hindlll and the filter was hybridized to a 
3-specific probe as in Fig. 5. (C) DNA samples were digested with Hind- 
III and the filter was hybridized to a y-specific probe. (---) Gel migration. 

Discuss ion 

The phenotype associated with the expression of this trans- 
gene comprises three distinct, but interrelated phenomena. 
First, severe dermatological perturbations appear as a conse- 
quence of thymus-independent, T lymphoid cell infiltration 
of the dermis. Second, this is accompanied by distinct abnor- 
malities of thymocyte development primarily involving an 
absence of double-positive thymocytes. Finally, there is a gener- 
alized lymphoproliferation that progresses to malignancy. Each 
of these manifestations represents an abnormality of the lym- 
phoid system that may reflect an exaggerated, but otherwise 
physiologic function of IL-7. 

The Dermal Infiltrative Disorder. In addition to being a 
mechanical barrier, skin is a complex immunologically ac- 
tive organ (29). An emerging model suggests that antigenic 
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or traumatic stimuli induce skin cells to release arrays of cy- 
tokines that recruit and activate effector cells of the immune 
response (30). Among a number of other cytokines (29, 31), 
II.-7 is produced by keratinocytes (32) and dendritic epidermal 
T cells (33). 

Flow cytometry of cells dissociated from the affected skin 
of these I1,7 transgenic mice reveals a novel population of 
T cells that express Thy-1, CD3, and CD5, but lack CD4 
and CD8. We postulate that the skin disorder is caused by 
the I1,7-induced autocrine growth and activation of these 
cells which migrate to the dermis, secreting IL-7, and pos- 
sibly other factors. The expression of these cytokines may 
mimic, in part, the cutaneous immune response and cause 
a chronically reactive state to develop. We have tested the hy- 
pothesis that mobile I1,7-producing lymphocytes are respon- 
sible for this syndrome by transplanting affected skin or lym- 
phoid tissue from transgenic donors to syngeneic wild-type 
animals. The skin response in both types of graft recipients 
was generalized and not confined to the site of the transplant, 
indicating that the disorder is conveyed by nonsessile cells 
in a cell-autonomous fashion. 

It is interesting that a similar skin phenotype has been ob- 
served in transgenic mice broadly expressing human IL-2 (34). 
Histological examination of the affected tissues also reveals 
lymphocytic infiltrates, but in contrast to our results, trans- 
plantation experiments indicate that this skin phenotype is 
induced by transgene expression in sessile and not mobile cells 
(14). Since I1,2 and I1,7 are both mitogens and T cell acti- 
vators, and since I1,7 stimulates expression of I1,2 and I1,2 
receptors in T cells (14), it is possible that the skin pheno- 
types of these two strains of mice are related. 

The occurrence of the dermal infiltrative syndrome in trans- 
genic mice bearing the nu/nu genotype is especially impor- 
tant and indicates that, unlike most T cells (35), the skin- 
infiltrating cells we observe mature without a strict require- 
ment for the thymus. These transgenic lymphocytes may be 
related to the small numbers of CD4-CDS-CD3 +TCR- 
ce/3 + cells that are normally found in routine thymus 
(36-38), LN (39), or human skin (40) and can have cyto- 
toxic activity (41). The small population of normal 
CD4-CDS-CD3 + thymocytes is unique in that such cells 
appear to be terminally differentiated by virtue of their sin- 
gnlar inability to reconstitute thymuses of irradiated mice 
(37, 38). A fraction of these thymocytes may be derived from 
CD4+CD8 + precursors because their TCR repertoire is 
modified by donal deletion (42, 43), but some of these 
CD4-CD8-CD3 + cells may escape this process and pro- 
gress directly to maturity without ever expressing CD4 or 
CD8 (38, 42, 43). Thus, as with the infiltrating cells we ob- 
serve in the transgenic mice, some CD4-CD8-CD3 + TCR- 
od3 +, wild-type cells may not be entirely dependent on the 
thymus for their maturation. Indeed, Ib-7 is normally ex- 
pressed at significant levels in the murine thymus (3) and 
CD4-CDS-CD3 + thymocytes are highly sensitive to I1,7 
(44). It is plausible that the transgenic I1,7 expression in 
CD4-CDS-CD3 + cells has allowed them to mature in the 
absence of a thymus. 

It is also interesting to consider mechanisms that might 
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be responsible for the homing of the infiltrating lymphocytes 
to the skin. Certain surface molecules of hematopoietic cells 
mediate infiltration into specific tissues via binding to adhe- 
sion molecules in those tissues (45, 46). It is possible that 
the dermal infiltrate we observe is a result of the autocrine 
expression of the transgene in an I1,7-responsive cell that 
normally migrates to skin. Alternatively, the expression of 
the transgene might induce a lymphocyte not normally found 
in skin to migrate there by autocrine induction of skin-specific 
adhesion molecules or by the paracrine induction of 
lymphocyte-specific adhesion molecules on resident dermal 
cells. 

Tke Transgenic Syndrome and Human Disease. The trans- 
genie syndrome we observe shares features with certain human 
diseases. Whereas there are no precise human counterparts 
to the disorder seen in these mice, the infiltrating ceils seen 
in certain human cutaneous T cell lymphomas appear histo- 
logically similar to those seen in these I1,7 transgenic mice. 
Human cutaneous lymphomas most often express the T cell 
markers TCR-oe//g CD3, and CD5 that are also expressed 
by the infiltrating ceUs seen in the transgenic syndrome. How- 
ever, in the majority of human cases, the transformed T cells 
also express CD4 or CD8, although some malignancies are 
seen that lack both these markers (47, 48). The transgenic 
infiltrates are also distinct from those seen in many human 
cutaneous T cell lymphomas in that they do not significantly 
invade the epidermis. In addition to similarities to cutaneous 
T cell lymphoma, the polyclonal expansion of cutaneous lym- 
phocytes is similar to certain benign human disorders (such 
as lymphomatoid papulosis) that are thought to be precursors 
of malignant disease (49, 50). Indeed, CD4-CD8-TCR- 
odB + cells have been described in normal human skin (40) 
and in cutaneous and lymphoid infiltrates of Omenn's syn- 
drome, a heritable, recessive, combined immunodeficiency and 
lymphoproliferative disease (51, 52). 

Abnormalities of T Cell Maturation. We have found that 
CD4 + CD8 + (double-positive) thymocytes are largely miss- 
ing in these adult transgenic mice. A depletion of double- 
positive thymocytes, similar to that which occurs in the IL-7 
transgenic mice, is also seen when corticosteroid is administered 
in vivo or when dissociated thymocytes are cultured in the 
presence of Ib7 and Ib-2 (10). In the case of corticosteroid 
treatment in vivo, this effect is due to triggering of pro- 
grammed cell death in the susceptible double-positive popu- 
lation. Thymocytes cultured in vitro exhibit a proliferative 
response to Ib7, and as noted above, CD4-CD8- thymo- 
cytes are the most responsive, single-positive cells respond 
more modestly, and double-positive cells have no detectable 
response (10, 53). Thus the disappearance of double-positive 
thymocytes cultured in the presence of Ib7 and Ib2 reflects 
the enhanced survival and proliferation of the three other popu- 
lations of cells (double-negative and single-positive) rather 
than an increased rate of cell death among double-positive cells. 

It is noteworthy that the normally predominant popula- 
tion of double-positive thymocytes is absent in I1,7 trans- 
genic mice whereas double-negative and single-positive cells 
(representing stages that immediately precede and foUow, 
respectively, double-positives in thymocyte development) are 



minimally affected. Any of several mechanisms might account 
for this specific loss. For example, it is possible that this loss 
represents accelerated death and clearance of double-positive 
cells that fail to mature. Alternatively, the loss of double- 
positive cells could represent an increased and possibly in- 
discriminate rate of maturation to single-positive cells and 
their subsequent exit to the periphery. A third possibility 
is that the reduction of double-positive cells could be due 
to a decreased rate of progression of thymocytes from the 
double-negative to double-positive stage. In light of the in 
vitro results described above, the first of these explanations, 
that is, accelerated death and clearance of double-positive cells, 
seems most likely, although none of the other possibilities 
can be ruled out. It also remains to be determined whether 
this effect is caused by expression of IL-7 in T cell precursors 
or in the small percentage of B220 + slg + cells that are found 
in the thymus. B lineage thymocytes are not normally de- 
tected in significant levels, although they are found in some 
autoimmune mice and have been seen previously in trans- 
genic mice with hyperproliferative B cells (54). 

IL-7 As Autocrine Tumor-provoleing Cytoleine. In that IL-7 
is a potent growth factor, it is reasonable to expect that it 
might act as a factor in lymphoid tumorigenesis, conceivably 
in an autocrine manner. We have seen that the expression 

of I1:7 in the lymphoid compartment of these transgenic mice 
leads to a prolonged preneoplastic polydonal lymphoprolifer- 
ative state followed by the development of lymphomas. These 
lymphomas and thymomas are readily distinguished from the 
pathogenic skin-infiltrating cells by their pattern of growth 
in transplant experiments. Moreover, these tumors are of both 
B and T lineages. Although II:7 expression by itself is not 
sufficient to transform pre-B cells in vitro (55), our experi- 
ments indicate that prolonged expression in vivo does pro- 
mote tumor development. The resulting transgenic tumors 
are in many cases readily adapted to culture, and the fact that 
the tumors both secrete and respond to I1:7 suggests that 
I1:7 might be acting as an autocrine growth factor. We have 
not unambiguously demonstrated that continuous I1:7 ex- 
pression in these cells is essential for transformation, how- 
ever, the reduced ability of these cells to grow at low density 
without exogenous I1:7 suggests that this might be the case. 
Since these tumors are largely monoclonal, we infer that sec- 
ondary events are necessary to cause their progression to 
tumorigenesis. These putative secondary events might be ren- 
dered more likely by 1I:7 by inducing a proliferative state 
in target cells and/or by expanding the population of cells 
at risk for tumor formation. 
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