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Background and Purpose: Radiation esophagitis is a clinically important toxicity seen with treatment for
locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in
identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors
contributing to the development of radiation esophagitis to uncover previously unidentified criteria and
more robust dosimetric factors.
Materials and Methods: We used machine learning approaches to identify predictors of grade � 3 radia-
tion esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients trea-
ted with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient
grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and
dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning
algorithms combined with predictive power assessments.
Results: All patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%)
and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients
developed grade � 3 radiation esophagitis. On univariate analysis, no individual feature was found to pre-
dict radiation esophagitis (AUC range 0.45–0.55, p � 0.07). In multivariate analysis, all machine learning
algorithms exhibited poor predictive performance (AUC range 0.46–0.56, p � 0.07).
Conclusions: Contemporary machine learning algorithms applied to our modern, relatively large institu-
tional cohort could not identify any reliable predictors of grade � 3 radiation esophagitis. Additional
patients are needed, and novel patient-specific and treatment characteristics should be investigated to
develop clinically meaningful methods to mitigate this survival altering toxicity.

� 2020 The Author(s). Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Severe radiation esophagitis is a clinically important toxicity
that frequently arises during the treatment of locally advanced
non-small cell lung cancer (LA-NSCLC) [1–3]. Radiation esophagitis
acutely can be present as dysphagia, odynophagia, sternal or epi-
gastric chest pain, or spasms, which can directly influence patient
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quality of life [4], or as acute or late esophageal bleeding, perfora-
tion, or fistulas, which can be life threatening [5].

The estimated incidence of this toxicity ranges from 7 to 25% in
patients receiving standard of care definitive chemoradiation [6–9]
and development of high-grade (�3) radiation esophagitis can
necessitate interventions such as analgesic medications, treatment
delays/breaks, hospitalizations, and permanent feeding tube
dependence [10]. Prior efforts aimed at improving the survival of
LA-NSCLC using radiation dose-escalation were unsuccessful likely
in part due to the dose limiting toxicity of radiation esophagitis. In
prior multi-institutional randomized clinical trials, high-grade
radiation esophagitis is shown to negatively affect overall survival
(OS) [7,11], highlighting the importance of mitigating this toxicity.

Prior attempts at identifying predictors of esophagitis have
identified the importance of factors such as concurrent chemother-
apy, radiation dose intensification, and dosimetric/volumetric fac-
tors related to the esophagus itself, but there are conflicting data
on the predictors, especially in terms of dose constraints [1,9,12–
18]. As such, currently there is no consensus for predicting and pre-
venting radiation esophagitis regarding optimal thresholds for vol-
ume criteria, dose-volume criteria, radiation treatment modality,
or the comparative importance of these factors. This study aims
to employ machine learning techniques to identify the critical pre-
dictors of esophageal toxicity and their comparative importance in
order to inform clinical decision making. Here, we analyze 35 con-
tinuous and categorical variables drawn from previous literature as
predictors of grade � 3 radiation esophagitis on a large institu-
tional cohort of 202 consecutively treated LA-NSCLC patients. We
apply three variants of a panel of 11 machine learning techniques
to robustly identify the important predictive factors in the devel-
opment of grade � 3 radiation esophagitis.
2. Methods and materials

2.1. Patient cohort

With institutional review board approval (Penn IRB protocol
#832329), we identified a cohort of 202 consecutive patients with
histologically confirmed Stage II-III LA-NSCLC (AJCC 7th Edition)
treated at our institution with sequential or concurrent chemoradi-
ation with platinum-containing regimens between 2008 and 2016.
Patients received treatment using either proton beam therapy
(PBT) or intensity-modulated radiation treatment (IMRT) with x-
rays. Radiation esophagitis was graded according to the common
terminology criteria for adverse events (CTCAEv4.0).
2.2. Feature definition

In this study, we analyzed a set of 35 predefined continuous and
categorical features, including variables previously reported in the
literature as strong predictors of grade � 3 radiation esophagitis.
The categorical features were ethnicity, pre-treatment ECOG, 3-
month post-radiotherapy (RT) ECOG performance status, AJCC clin-
ical stage grouping, T Stage, N Stage, radiation treatment modality
(photon or proton), concurrent vs. sequential chemotherapy, speci-
fic chemotherapy agents used, tumor grade, and sex. The continu-
ous features were smoking pack-years (pack-year), body mass
index (BMI) age at diagnosis, primary tumor size, pulmonary func-
tion test (PFT) pre-bronchodilator, DLCO (% predicted), PFT pre-
bronchodilator FEV1 (L), radiation total dose (total dose), radiation
fraction size, number of radiation fractions (nr. fractions), mean
esophagus dose (eso mean), maximum esophagus dose (eso
max), eso V40, eso V50, eso V60, mean lung dose (lung mean), lung
V5, lung V10, lung V20, mean heart dose (heart mean), heart V5,
heart V30, heart V50 and heart V60. For PBT, the dosimetric indices
were calculated using the proton convolution superposition algo-
rithm (Varian Medical Systems, Palo Alto, CA, USA), and for IMRT
dose calculations with heterogeneity corrections were performed
using the analytical anisotropic algorithm (photons). This set of
dose parameters and clinical features was thoroughly discussed
and selected by three highly experienced board-certified thoracic
radiation oncologists (CBS, ATB, KAC) at our institution based on
their expertise, best clinical practice, and current national treat-
ment guidelines.

2.3. Missing values imputation

Missing values were imputed using trimmed scores regression
(TSR), a method that fits principal component analysis (PCA) mod-
els iteratively thus exploiting the statistical relationship among
features [19]. This imputation is based on the first four principal
components, which for this cohort explain 95.84% of the variance
of the data. More details about the selection of TSR imputation in
Section S3 of the SI Appendix.

2.4. Univariate analysis

Based on the two labeled classes (esophagitis/non-esophagitis)
in our cohort, we performed a Wilcoxon rank-sum test for each
continuous predictor as well as a v2 test for each categorical pre-
dictor. The statistical significance (p-value) of the separation
between the two classes by each predictor was estimated. Due to
Bonferroni correction of a 5% family-wise error rate, the signifi-
cance level a ¼ 0:002 was used for multiple comparisons. The aver-
age performance indexes, specifically, balanced accuracy (BACC)
[20], the receiver operating characteristic (ROC), the area under
the ROC curve (AUC) were estimated. BACC is defined as the aver-
age between sensitivity and specificity, and commonly used to cal-
culate performance in two-class imbalanced domains. 95%
confidence intervals of the average performance measurements
(i.e., BACC and AUC) were calculated using cross-validated esti-
mates as bootstrapped samples and using the standard t-
distribution-based approximation. A total of 500,000 bootstrap
replicates were used to estimate the confidence intervals. All the
analyses were implemented using the Statistics and Machine
Learning Toolbox of Matlab R2018b� (MathWorks, Santa Clara,
CA, USA) [21]. Additionally, Pearson correlation coefficients were
calculated to assess possible confounders associated with radiation
esophagitis.

2.5. Multivariate analysis

To assess the combined capacity of prediction of the features,
we used a set of diverse statistical tools including long-existing
methods such as logistic regression [22], elastic net, k-nearest
neighbors (k-NN) and linear and quadratic discriminants [23] to
more sophisticated methods such as linear, quadratic and Gaussian
support vector machines (SVM) [24], classification and regression
trees (CART) [25], Random Forest [26] and boosted trees (RUS-
Boost) [27]. All experiments were performed using nested resam-
pling as shown in Fig. S1. We implemented stratified 5-fold
cross-validation for the internal resampling, where the validation
set, was used for hyperparameter tuning and feature selection
using grid search to maximize BACC. We also used stratified 5-
fold cross-validation for the external resampling. The test set in
the external resampling (Fig. S1), also known as hold-out set,
was used for performance estimation of the model, i.e., BACC and
AUC. Same as univariate analysis, 95% confidence intervals of the
average performance measurements were calculated using cross-
validated estimates as bootstrapped samples using the standard
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t-distribution-based approximation with 500,000 bootstrap repli-
cates. We assured that the observations used in hyperparameter
optimization never appear in the external resampling test set, thus
reducing model overfitting. The list of hyperparameters tuned per
each implemented algorithm is shown in Table S1. This analysis
corresponds to the development and validation of a predictive
model using resampling or analysis type 1b as specified in Collins
et al, 2015 [28]. The implemented stages of nested resampling are
illustrated in the workflow shown in Fig. 1. In the internal resam-
pling for each machine learning algorithm, one model is built per
fold, for a total of five models. Then, the hyperparameters of the
model with the highest BACC calculated through grid search, are
selected and the performance of such model (i.e., BACC and AUC)
is subsequently assessed on the respective test set during external
resampling.

For further exploration of the prediction power of the algo-
rithms, three variants of the experiments were proposed:

1. Evaluation of predictive power using all 35 predictors.
2. Predictive power assessment using backward sequential feature

selection (BSFS).
3. Predictive power assessment using synthetic minority over-

sampling technique (SMOTE) [29] and BSFS.

SMOTE is a method that combines the under-sampling of the
majority class and the over-sampling of the minority class by cre-
ating synthetic minority class examples. This increases the sensi-
tivity of the classifiers to the minority class [29]. In the
experiments where oversampling was implemented, SMOTE was
performed in the internal resampling only, specifically in the train-
ing set of each internal fold. Moreover, BSFS was performed in the
internal resampling, in the experiments in which feature selection
was implemented. The p-values associated with the predictive per-
formance of the different algorithms were calculated using the
Wilcoxon rank-sum test with a significance level a ¼ 0:002, due
to Bonferroni correction of a 5% error rate, considering the three
variants of the 11 algorithms. For each of the machine learning
algorithms, we calculate their predictions using the test sets in
the outer resampling. Following theWilcoxon rank sum test proce-
dure, we compare the distribution of the estimated predictions of
Data
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Fig. 1. Multivariate analysis workflow. Diagram illustrating the workflow by which th
prediction of radiation esophagitis.
each algorithm between the two labeled classes (esophagitis/
non-esophagitis).

3. Results

3.1. Patient characteristics and outcomes

Characteristics of the 202 consecutive patients with adenocarci-
noma who were treated at our center with chemoradiation and
included in the current analysis are provided in Tables 1 and 2.
Patients were treated homogeneously to a median dose of
66.6 Gy at 1.8 Gy per fraction (range 64.8–66.6 Gy at 1.8 Gy per
fraction). The median age of the cohort was 64 years (range 56–
73). Radiation was mainly delivered with IMRT (89.6%), with a
minority receiving proton beam therapy (10.4%). Overall, 86.6% of
patients received concurrent chemotherapy, with a carboplatin-
based doublet combination (51.5%) being the most common regi-
men, followed by cisplatin-based doublet (34.7%).

At a median follow-up of 22.6 months (1–88 month range),
patients had a median OS of 23.5 months, 1-year OS of 75.0%, 2-
year OS of 49.0%, and 5-year OS of 12.0%, all calculated from a
Kaplan-Meier plot. Within the cohort, 23 patients (11.4%) devel-
oped grade � 3 radiation esophagitis.

3.2. Univariate analysis

Dosimetric parameters of the same organ at risk (e.g. heart,
lung, and esophagus) were found to be strongly positively corre-
lated to each other and also showed weaker positive correlations
with neighboring anatomic organs (e.g. lung-heart, lung-
esophagus) (Fig. 2). The univariate analysis showed that no indi-
vidual features can predict grade � 3 radiation esophagitis, with
median AUC = 0.49 (range 0.45–0.55) and p � 0.07 across all 35
features (Table 3).

3.3. Multivariate analysis

The predictive power using AUCs, as well as the associated p-
values and the optimal BACC for all classifiers are summarized in
Table 4. In the first experiment where we trained all 11 algorithms
g
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Table 2
Summary of numerical patient characteristics. Description of numerical characteris-
tics of the cohort with their respective median and interquartile ranges.

Continuous Predictors Median Range �

Age (yr) 64 (56–73)
Pack-Year (current/former smokers) 35 (14.5–50)
BMI (kg/m2) 26.0 (23.0–30.0)
Radiation Dose Delivered (Gy) 66.6 (64.8–66.6)
Dose per fraction (Gy) 1.8 (1.8–1.8)
Esophagus Mean Dose (Gy) 24.5 (18.3–31.9)
Esophagus Maximum Dose (Gy) 69.4 (65.4–72.4)

� Interquartile range.
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using the complete set of 35 predictors, none of the algorithms
combining the effect of all available features could predict
grade � 3 radiation esophagitis with median AUC = 0.50 (range
0.45–0.54) and p � 0.09 across all the algorithms (upper third of
Table 4). In the second experiment where BSFS in the internal
resampling was implemented, a median AUC = 0.52 (range 0.49–
0.56) and p � 0.25 across all machine learning algorithms show
that the algorithms are unable to perform better than a random
classifier (middle third of Table 4). It evidences the lack of capacity
of the current combined features to separate grade � 3 radiation
esophagitis even when counteracting confounding through feature
selection. BSFS was chosen over forward sequential feature selec-
tion (FSFS) due to its superior predictive performance using logistic
regression in our cohort (Fig. S2). In the last set of experiments,
where SMOTE was implemented, a median AUC = 0.49 (range
0.45–0.52) and p � 0.07, show that no algorithm significantly pre-
dicted the two classes.
4. Discussion

Prior attempts to identify predictors of radiation esophagitis
have utilized various methodologies, with many of these reports
conducted in a pre-IMRT era, resulting in conflicting data regarding
the relative importance of these factors [9,12–14,16–18,30,31] as
illustrated in Table S1. We sought to apply machine learning algo-
Table 1
Summary of categorical patient characteristics. Description of clinical characteristics
of the cohort with their respective categorization and percentages.

Categorical
Predictors

Classes Number of
Patients

(%)

Sex Male 90 44.6
Female 112 55.4

Smoking History Former 136 67.3
Current 26 12.9
Never 17 8.4
Not Available 23 11.4

Ethnicity White 137 67.8
Black 47 23.3
Asian 4 2.0
Other 14 6.9

Pre Treatment ECOG 0 77 38.1
Perform. Status 1 55 27.2

2 14 6.9
3 2 1.0
4 2 1.0
Not Recorded 52 25.7

Stage Grouping IIB 1 0.5
IIIA 120 58.9
IIIB 81 40.6

Tumor Stage Tx 15 7.4
T1 51 25.2
T2 63 31.2
T3 32 15.8
T4 41 20.3

Nodal Stage Nx 7 3.5
N0 9 4.5
N1 12 5.9
N2 126 62.4
N3 48 23.8

Histology Adenocarcinoma 202 100.0
Radiation Modality Photon (IMRT) 181 89.6

Proton 21 10.4
Chemotherapy Concurrent 176 86.6

Sequential 21 10.4
None 5 3.0

Chemotherapy
Agents

Carboplatin-based
Doublet

104 51.5

Cisplatin-based Doublet 70 34.7
Platinum-based Triplet 6 3.0
Single Agent 2 1.0
Other 20 9.9
rithms to a contemporary, curated patient cohort treated relatively
homogenously with modern radiotherapy techniques in order to
examine, validate, and rank factors suggested to predict for high-
grade esophagitis. Here, we specifically analyzed predictors of
grade � 3 radiation esophagitis, a particularly important toxicity
and grade given its association with considerably worse OS as
reported on the clinical trial of the Radiation Therapy Oncology
Group (RTOG) 0617 [7]. Interestingly, we found that when using
a combination of machine learning methodologies coupled with
resampling techniques to reduce confounding from overfitting,
no single feature reliably predicts grade � 3 esophagitis in our
analysis.

Although we found that eso mean and dosimetric factors that
correlated strongly with esophageal dose (Heart Mean, Heart
V30) ranked highly in feature importance (Table 3), none crossed
the AUC threshold in our study to be deemed a reliable predictor.
This is in contrast to previously published retrospective [12,32],
prospective [16,33] and randomized [34] studies showing associa-
tions between esophageal toxicity and predictors including age,
tumor nodal stage, concurrent chemotherapy and BMI. It also con-
trasts with dosimetric factors including eso mean, eso max, as well
as eso V20, eso V35, eso V60 which have been analyzed retrospec-
tively in [35], and using a mixture of retrospective and prospective
collected datasets in [9]. It is important to note that we specifically
examined grade � 3 RE, whereas much of the prior literature has
examined grade � 2 esophagitis, a less clinically impactful toxicity
[36,37].

In our dataset, we observed grade � 3 radiation esophagitis in
23 of 202 patients (11.4%), which is lower than historically
observed rates of >15%[3,10,35,37]. The comparatively low radia-
tion esophagitis rates we report here may reflect treatment
improvements over eras reflecting improved symptom prevention
and proactive care, as well as advanced radiation treatment modal-
ities. Importantly, to our knowledge, our series is the first machine
learning analysis to include a cohort of patients treated with pro-
ton beam therapy, which may also result in lower than expected
radiation esophagitis rates, as has been reported in locally
advanced lung cancer prospective population treated with proton
therapy [38]. Additionally, the lower than expected toxicity rates
may contribute to a lack of reliable predictors in our models due
to insufficient radiation esophagitis events. By comparison, other
studies reporting robust predictors for grade � 2 radiation
esophagitis observed toxicity rates upwards of 50% [9,10,35].

Another inherent challenge in using machine learning tools to
identify predictive factors is falsely identifying significant factors
due to overfitting. We also sought to enhance the robustness of
our machine learning models through the use of sequential feature
selection and resampling using BSFS and SMOTE. We further attri-
bute the difference in results between our current models and the
prior literature to a combination of the different toxicity endpoint
assessed (grade � 3 vs. grade � 2), variance in radiation tech-
niques, and implementation of resampling. Previously published



Table 3
Univariate analysis. Predictive performance for individual features using AUC analysis
with their respective significance using Wilcoxon rank-sum test (continuous features)
and v2 (categorical features). None of the features can predict grade � 3 RE using
Bonferroni correction (a ¼ 0:002) for multiple comparison.

Feature AUC § P-value

T Stage 0.41 (0.28,0.55) 0.07
Lung V20 0.39 (0.27,0.52) 0.09
BMI 0.61 (0.48,0.72) 0.09
Pack Years 0.40 (0.29,0.52) 0.12
Concurrent v Sequential 0.57 (0.55,0.60) 0.15
Eso V60 0.59 (0.47,0.70) 0.16
Lung Mean 0.41 (0.30,0.54) 0.16
Total Dose 0.42 (0.31,0.55) 0.18
Heart Mean 0.58 (0.43,0.71) 0.23
Agents Drugs 0.43 (0.33,0.54) 0.25
Heart V30 0.57 (0.43,0.70) 0.28
Pre Treatment ECOG 0.56 (0.43,0.68) 0.31
Sex 0.56 (0.44,0.65) 0.32
Eso Max 0.44 (0.33,0.56) 0.33
Eso V50 0.56 (0.44,0.67) 0.34
Ethnicity 0.45 (0.37,0.58) 0.34
Eso V40 0.56 (0.43,0.67) 0.38
N Stage 0.55 (0.45,0.62) 0.38
Heart V5 0.55 (0.41,0.69) 0.42
Heart V60 0.55 (0.41,0.67) 0.43
Best CS AJCC Stage 0.43 (0.32,0.54) 0.44
Heart V50 0.55 (0.41,0.67) 0.48
Age at Diagnosis 0.46 (0.36,0.57) 0.52
Lung V10 0.46 (0.33,0.58) 0.52
Nr of Fractions 0.46 (0.37,0.59) 0.55
Eso Mean 0.54 (0.41,0.66) 0.55
Grade Differentiation 0.45 (0.36,0.56) 0.56
Fraction Size 0.53 (0.41,0.61) 0.57
PFT DLCO pred 0.47 (0.36,0.59) 0.63
Linac 0.51 (0.46,0.62) 0.66
Proton 0.49 (0.38,0.54) 0.66
Lung V5 0.47 (0.34,0.60) 0.67
PFT Pre Bronch Actual FEV1 L 0.52 (0.40,0.63) 0.76
Primary Tumor Long Dim cm 0.48 (0.35,0.61) 0.78
ECOG 3 mo Post-RT 0.49 (0.37,0.61) 0.85

§ Estimate with 95% confidence interval.

Pearson Correlation Coefficients for Numerical Variables Associated to Esophagitis
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Fig. 2. Feature correlation heat map. Heat map, illustrating the Pearson correlation between the continuous features under study.
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reports using models developed using a median cohort size of 141
(well below our actual cohort), and median rate of radiation
esophagitis of 11.1%, used logistic regression approaches
[1,9,12,17,31,32,34,36,37,39], while some other studies would fit
Lyman-Kutcher-Burman (LKB) models, both using pre-IMRT era
cohorts [14,33], which may not reflect the current risks of
radiation-induced toxicity in a contemporary setting. A more
recent study used lasso regularization using a smaller cohort of
94 patients, where 16% developed radiation esophagitis [35].
Finally, some studies with considerably larger cohorts are limited
to conformal radiotherapy patients and/or a rather small number
of IMRT patients [9,14]. To the best of our knowledge, this is the
first study with a relatively large cohort using sophisticated
machine learning techniques to identify predictors of grade � 3
radiation esophagitis.

Radiation esophagitis has been a challenging entity to predict,
which is reflected in the variance in esophageal dosimetric con-
straints employed in recent national prospective randomized trials
on LA-NSCLC. Among the two most recent NRG oncology phase III
randomized trials for LA-NSCLC, RTOG 0617 [7] recommended con-
straint of an eso mean below 34 Gy and to record the eso V60 with-
out required dose constraint, whereas RTOG 1308 [40], the
currently enrolling prospective trial comparing proton vs. photon
radiation therapy, set a per protocol constraint of an eso max of
74 Gy to �1 cc of the partial circumference while retaining none
of the earlier constraints from RTOG 0617. This is in contrast to
the pulmonary constraints, which have remained relatively con-
stant over these trials.

An earlier meta-analysis focusing on radiation esophagitis
development [9] illustrates some of the potential challenges in
identifying reliable predictors. Similar to our analysis, many clini-
cal and dosimetric factors are found to be associated with radiation
esophagitis toxicity, with more features associated with grade � 2
than grade � 3 radiation esophagitis. However, when these fea-
tures are used as predictors, they by and large perform poorly with
C-statistics below 0.6. Interestingly, eso V60 was identified as a



Table 4
Multivariate analysis. Combined predictive performance of features using 11 statistical models with three variants namely, a) 35 handcrafted features, b) BSFS and c) BSFS and
SMOTE. None of the models can predict grade � 3 RE using Bonferroni correction (a ¼ 0:002) for multiple comparison.

Experiment Algorithm AUC § BACC § P-value

All 35 Features Logistic Regression 0.58 (0.27,0.88) 0.58 (0.29,0.87) 0.09
Linear Discriminant 0.57 (0.21,0.93) 0.57 (0.25,0.89) 0.30
Linear SVM 0.56 (0.22,0.90) 0.49 (0.38,0.60) 0.50
Elastic Net 0.52 (0.17,0.87) 0.47 (0.28,0.66) 0.88
RUSBoost 0.52 (0.07,0.96) 0.56 (0.23,0.88) 0.62
k-NN 0.50 (0.20,0.79) 0.53 (0.27,0.79) 0.72
Quadratic SVM 0.49 (0.08,0.89) 0.53 (0.19,0.88) 0.74
Random Forest 0.46 (0.10,0.82) 0.50 (0.50,0.50) 0.55
Quadratic Discriminant 0.45 (0.09,0.80) 0.48 (0.14,0.82) 0.27
CART 0.44 (0.17,0.71) 0.47 (0.33,0.60) 0.32
Gaussian SVM 0.40 (0.03,0.77) 0.50 (0.48,0.51) 0.12

BSFS Logistic Regression 0.61 (0.41,0.81) 0.54 (0.31,0.78) 0.26
Linear Discriminant 0.59 (0.30,0.88) 0.52 (0.34,0.70) 0.25
Linear SVM 0.57 (0.50,0.64) 0.50 (0.46,0.54) 0.54
Random Forest 0.56 (0.22,0.90) 0.53 (0.35,0.71) 0.35
k-NN 0.53 (0.19,0.86) 0.56 (0.25,0.87) 0.71
Elastic Net 0.52 (0.17,0.87) 0.47 (0.28,0.66) 0.88
Quadratic SVM 0.50 (0.14,0.85) 0.50 (0.23,0.78) 0.84
RUSBoost 0.49 (0.05,0.93) 0.49 (0.18,0.81) 0.76
Quadratic Discriminant 0.48 (0.09,0.88) 0.50 (0.23,0.77) 0.66
Gaussian SVM 0.46 (0.13,0.78) 0.52 (0.43,0.61) 0.73
CART 0.40 (0.20,0.60) 0.46 (0.41,0.52) 0.25

BSFS and SMOTE Elastic Net 0.61 (0.16,1.00) 0.63 (0.24,1.00) 0.07
Linear Discriminant 0.58 (0.17,0.98) 0.55 (0.21,0.89) 0.39
Logistic Regression 0.55 (0.15,0.95) 0.54 (0.18,0.90) 0.42
Linear SVM 0.50 (0.14,0.86) 0.51 (0.34,0.68) 0.85
Quadratic SVM 0.49 (0.12,0.86) 0.52 (0.13,0.90) 0.92
RUSBoost 0.49 (0.12,0.85) 0.50 (0.18,0.82) 0.73
Random Forest 0.48 (0.12,0.83) 0.53 (0.26,0.80) 0.73
k-NN 0.47 (0.10,0.85) 0.51 (0.19,0.83) 0.61
Gaussian SVM 0.43 (0.02,0.84) 0.49 (0.22,0.76) 0.33
CART 0.42 (0.01,0.83) 0.48 (0.21,0.76) 0.35
Quadratic Discriminant 0.41 (0.12,0.69) 0.48 (0.45,0.51) 0.54

§ Estimate with 95% confidence interval.
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reliable predictor of grade � 3 radiation esophagitis in [9]. This ser-
ies does represent an older cohort of patients treated from 1993 to
2011, which may contribute to some of the discrepant findings.
Furthermore, none of the eso V40, V50 nor V60 were identified
as an important predictor in our study (see Table 3).

Given the result from our machine learning analysis that none
of the 35 features analyzed performed better than a random clas-
sifier, this suggests that our currently utilized clinical, demo-
graphic, and dosimetric features could be inadequate to reliably
predict radiation esophagitis. One can conclude that we are not
currently collecting and capturing the appropriate features to
allow a machine learning workflow to predict grade � 3 radiation
esophagitis, as we were successfully able to do when using
machine learning to predict for pneumonitis in LA-NSCLC [41]
and chest wall toxicity in early stage NSCLC [42]. As such, we
encourage other investigators to explore and develop new markers
directed at this toxicity. This may include more widespread utiliza-
tion of biomarkers or composite features to generate the appropri-
ate power and granularity to adequately capture radiation
esophagitis.

In the recent work of Bahn and Alber [43], the authors assume a
unimodal beta distribution of the output of the normal tissue com-
plication probability (NTCP), and using Monte Carlo simulations
state that a cohort size of N = 300 is necessary to be powered to
detect a small difference of 0.1 between two AUCs. Our current
cohort size N = 202 does not fulfill this suggested sample size for
AUC comparison in weak model settings. It does, however, meet
the sample size recommendations for detecting models with med-
ium predictive performance (as defined in [43], AUC = 0.69). In
summary, our findings encourage the incorporation of novel pre-
dictors of acute esophagitis in our future research agenda, as well
as the prospective increase of the cohort size as more patient infor-
mation becomes available at our institution. This single institution
analysis, however, does allow us comparative uniformity in the
patient population and minimizes potential heterogeneity in the
assessed population. It is also worth noting that our cohort is the
largest used in a modern, IMRT analysis of grade > 3 RE in stage
II-III NSCLC patients performed to date.
5. Conclusions

From our analysis, we conclude that current predictors for high-
grade radiation esophagitis are unreliable and that continued
investigation is necessary to develop clinically useful metrics for
prevention of this detrimental toxicity that is associated with over-
all survival. Reporting and identifying more robust variables will
be critically important for future study. Clinicians should employ
individualized patient-centered decision making in terms of treat-
ment regimens and toxicity mitigation until reliable radiation
esophagitis predictors can be identified.
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