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Abstract

Aims: Chronic stress is an important factor for a variety of health problems, highlight-

ing the importance of early detection of stress‐related problems. This methodological

pilot study investigatedwhether the physiological response to and recovery froma stress

task can differentiate healthy participants and persons with stress‐related complaints.

Methods and Results: Healthy participants (n = 20) and participants with stress‐

related complaints (n = 12) participated in a laboratory stress test, which included 3 stress

tasks. Three physiological signals were recorded: galvanic skin response (GSR), heart rate

(HR), and skin temperature (ST). From these signals, 126 features were extracted, includ-

ing static (eg, mean) and dynamic (eg, recovery time) features. Unsupervised feature

selection reduced the set to 26 features. A logistic regression model was developed for

6 feature sets, analysing single‐parameter and multiparameter models as well as models

using recovery vs response‐related features. The highest classification performance

(accuracy = 78%) was obtained using the response‐related feature set, including all phys-

iological signals and using GSR‐related features. A worse performance was obtained

using single‐signal feature sets based on HR (accuracy = 66%) and ST (accuracy = 59%).

Response‐related features outperformed recovery‐related features (accuracy = 63%).

Conclusion: Participants with stress‐related complaints may be differentiated from

healthy controls by physiological responses to stress tasks. We aimed to bring atten-

tion to new exploratory methodologies; further research is needed to validate and

replicate the results on larger populations and patients on different areas along the

stress continuum.
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1 | INTRODUCTION

Many studies have revealed the harmful influence of chronic stress on

mental and physical health. For example, Stansfeld and Candy1
- - - - - - - - - - - - - - - - - - - - - - - - - - -

e Creative Commons Attribution Li

lished by Wiley Periodicals, Inc.
concluded from a meta‐analysis that work stressors are prospective

risk factors for common mental health disorders, including depressive

and anxiety disorders. Rosengren et al2 have shown that psychosocial

stressors increase the risk of acute myocardial infarction. Furthermore,
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associations have been established between psychological stress and

depression, cardiovascular disease, and the course of HIV/AIDS.3

Another review concluded that both acute and chronic stress research

reveals extensive data concerning the stressors' contributions to dete-

riorated health, including sudden death and myocardial infarction.4

Together, these findings highlight the need for affordable and effec-

tive early detection of stress problems and preventive interventions

of stress‐related mental health disorders.

Stress‐related health problems can be conceptualized into 3 areas

along the stress continuum5: stress‐related complaints, overstrain, and

burnout. A main differentiator between these 3 areas is the chronicity

of the complaints. For stress‐related complaints, the time since the

onset of the complaints is less than 3 months; for overstrain, more than

3months; and for burnout, more than 6months.5 Furthermore, persons

categorized in the stress‐related complaints group do not yet feel any

substantial limitation in their social or professional functioning, whereas

this is increasingly the case for both overstrained and burnout patients.5

Physiological signals such as heart rate (HR), blood pressure, and gal-

vanic skin response (GSR) have been investigated to detect stress‐related

health problems. Studies on autonomous nervous system (re)activity in

the context of stress‐related health problems have focused especially

on the last stage in the stress continuum, ie, burnout. May et al6 found

that school burnout was associated with decreased baseline HR variabil-

ity (HRV). Contradictorily, Morgan et al7 showed that persons who score

higher on the Maslach Burnout Inventory have significantly higher HRV.

De Vente et al8 found that burnout patients show higher resting HRs

than do healthy controls. Other studies investigating the hypothalamic‐

pituitary‐adrenocortical (HPA) activity concluded that burnout patients

and controls do not show differences in HPA outcomes.9 A review anal-

ysis, including 22 studies investigating the physiological mechanisms

among burnout patients, concluded that, so far, results are contradictory

and inconclusive.10 Authors suggest this could be due to differences

between studies in the variety and severity of participants' symptoms,

co‐morbidity, use of medications, phase in the burnout process, and

degree of sick leave.10 Although preliminary, such research is promising

for the detection of burnout. However, in terms of prevention, it could

be valuable to detect stress‐related health problems already in an earlier

stage of the stress continuum. To date, no validated questionnaires exist

to identify individuals with stress complaints who are vulnerable to

develop overstrain and burnout.

In the current study, we, therefore, sought to identify the specific

characteristics of persons with stress‐related complaints who are not

yet limited in their social or professional functioning, ie, the first stage

of the stress continuum. Analogous to previous studies focusing on

burnout,8 we aimed to investigate the patient's autonomic nervous

system responses to and recovery from an acute stressor, as especially

these measures may have a great potential for ambulatory stress mon-

itoring and dynamically tailored direct feedback and just‐in‐time

behavioural interventions. However, in contrast with most studies in

this field, we opted for a less conventional, fundamentally different

approach of the data. Traditionally, psychophysiological studies are

hypothesis driven, which means that a study is specifically designed

to answer a question.11 The analysis, therefore, is confirmatory rather

than exploratory. However, as technology is continuously improving

and wearables become widespread, the amount and nature of
psychophysiological data that are available have exponentially grown

and call for complementary approaches that allow to maximally

explore the wealth of data that are nowadays available. Data scientists

have already moved towards more exploratory data‐mining tech-

niques to develop classification algorithms that can unravel new

knowledge hidden in the data.11 In this methodological study, we will

explore and apply this more exploratory approach to analyse the data

to evaluate whether persons with stress‐related complaints can be dif-

ferentiated from healthy participants.

Previous studies have mainly investigated single physiological

parameters independently, (eg, Morgan et al,7 and De Vente et al8),

while combinations of multiple physiological parameters and compari-

sons between single markers could unravel additional insights.12 Fur-

thermore, previous studies have focused mainly on static features,

ie, the comparison of mean HR in rest and stress tasks. However, both

physical fitness and stress research strongly suggests that dynamic

features such as response and recovery time can provide additional

information regarding physical condition determination.13 Based on

the research of McEwen,14 it was found that failure to shut off

allostatic activity after a stress response is one type of allostatic load.

This could be reflected in a longer recovery time of the physiological

signals after a stressor for patients. It is, therefore, needed to investi-

gate if such dynamic features can also improve the detection of per-

sons with stress‐related complaints.

In this methodological pilot study, we aimed to explore whether a

multiparameter classification model that, on the basis of the physiolog-

ical response to and recovery from 3 standardized laboratory stress

tasks, can differentiate between healthy participants and persons

with stress‐related complaints. We also assessed which physiological

signal(s) is most suitable for the characterization of persons with

stress‐related complaints. We included 3 commonly used physiological

signals for stress detection, being HR, GSR, and skin temperature (ST).

We hypothesized that a classification model combining all 3

physiological signals would outperform models based on the individual

signals separately. Furthermore, we compared classification perfor-

mances on the basis of response and recovery‐related features. We

hypothesized, on the basis of the suggestion of Linden et al,15 that

recovery‐related features could provide additional insight into the dif-

ference between healthy participants and persons with stress‐related

complaints and, therefore, increase classification performance. Finally,

we used both static and dynamic features for classification.We hypoth-

esized, on the basis of earlier findings in physical fitness research,13 that

dynamic features can improve classification performance. These find-

ings could enhance our understanding of the physiological differences

between healthy participants and persons with stress‐related com-

plaints and may advise further strategies to use physiological signals

for the early detection of stress‐related health problems.
2 | METHODS

2.1 | Participants

A controlled laboratory study was conducted with the approval of the

Medical Ethical Committee of the UZ Leuven. All participants signed
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an informed consent form before participating in the study. In this

study, 32 participants, of which 20 healthy participants (10 women,

10 men, mean age = 39.8 y, age range 26‐57 y) and 12 persons with

stress‐related complaints (7 women, 5 men, mean age = 38 y, age

range 23‐56 y) participated. The focus of this research is on early

detection of stress‐related health problems; therefore, only persons

with stress‐related complaints but without formal diagnosis of any

clinical mental health disorder were included.

Healthy participants were recruited in 2 companies in Belgium.

They were all employees with a mainly sedentary job who volunteered

to participate in the study. They did not receive any compensation for

their participation in the study. The healthy participants did not report

any physical or psychological disease or complaint, as administered

through an intake questionnaire, including, for example, questions

related to whether participants suffer of have suffered from psychosis,

hyperventilation, depression, epilepsy, panic attacks, and burnout. Per-

sons with stress‐related complaints were recruited at Tumi Therapeu-

tics, a multidisciplinary ambulatory diagnostic and treatment centre

that specializes in stress‐related symptoms and syndromes. In return

for participation, patients received the psychophysiological diagnos-

tics, which involved the stress tests, free of charge. In addition to

the stress test and as part of the standard intake procedure at Tumi

Therapeutics, patients also completed a set of questionnaires. Only

patients with stress‐related complaints (first phase of the stress con-

tinuum) were included. Specifically, the following inclusion criteria

were applied: (1) the patient experienced somatic complaints, and (2)

the complaints started less than 3 months before consultation and

(3) the patient did not feel limited in his or her personal or professional

life, and (4) the patient did not suffer from any psychiatric disorder or

organic disease. To assess the somatic complaints, the Dutch Symp-

tom Checklist‐9016 was used. This questionnaire is often used in clin-

ical practice and research for initial evaluation of patients at intake.

The test measures 8 primary symptom levels, ie, sleep difficulties, ago-

raphobia, hostility, somatization, interpersonal sensitivity, anxiety,

cognitive‐performance deficits, and depression. The results can be

compared with those of a healthy and clinical norm group for female

and male participants separately.17 The mean results for the selected

patients and normal and clinical norm groups are reported in Table 1.

The included patients scored higher on the subscales than did the

healthy norm group but scored lower than did the clinical norm group,
TABLE 1 Average scores for male and female patients, compared with a
SCL‐90

SCL‐90 Scale

Male

Patients Healthy Population Clinic

Somatization 25.6 ± 7.7 15 24

Cognitive‐performance deficits 19.8 ± 9 12 20

Interpersonal sensitivity 28.4 ± 7.4 23 35

Depression 29.6 ± 6.2 18 37

Anxiety 17.4 ± 3.1 11 23

Hostility 9.4 ± 2.8 6 10

Agoraphobia 9 ± 2.2 7 11

Sleep difficulties 6.2 ± 1.5 3 5

Abbreviation: SCL‐90, Symptom Checklist‐90.
for all scales, except for somatization and sleep difficulties, for which

they scored higher than did the average clinical norm group. The

Nijmegen questionnaire for hyperventilation18 was used to assess sev-

eral singular stress complaints such as chest pain, being short of

breath, and blurred vision. Included patients scored positive on the

Nijmegen questionnaire for hyperventilation, having 18 points or

more. All patients confirmed their complaints started less than

3 months before consultation, and all patients were still capable of

fully functioning in their social and professional lives. Further, a clinical

interview based on the Mini International Neuropsychiatric Interview,

which is based on DSM‐IV criteria,19,20 was conducted to exclude the

existence of any psychiatric disorders. Organic diseases were excluded

on the basis of doctor's reports, physical examination, medical tests,

and self‐reporting.
2.2 | Procedures

The protocol consisted of 3 stress tests of 2 minutes each: a Stroop

Color‐Word test,21 a math test, and a stress talk, which were pre-

sented using the NeXus 10 MK II software (Mind Media, Herten,

The Netherlands). The tasks were given in the same order to all partic-

ipants. During the Stroop Color‐Word test, colour words were written

in an incongruously ink colour; eg, the word red was written in the

colour blue. Participants had to respond with the real ink colour, eg,

blue in the previous example. During the math test, participants had

to successively subtract 7 from the number 1081. To induce additional

stress, the experimenter intervened by saying “wrong” or “faster”

during the first 2 tasks. During the stress talk, participants had to talk

for 2 minutes about a stressful life event. All 3 tests are commonly

used to induce stress in laboratory settings.22

The 3 tests were separated by rest phases of 2 minutes. Before

the first and after the last stress test, a resting phase of 2 minutes

was included. The timeline of the experiment is shown in Figure 1.

For the healthy participants, the protocol additionally included a

counting task before the first rest phase and after the last rest phase,

as presented in detail by Smets et al.23 The goal of this counting task

was to control for the physiological response to speaking. We have

shown that a stressful task with speech can be distinguished from a

nonstressful speaking task, ie, counting.23 Since the counting task

did not significantly differ from a rest phase, it was removed to reduce
healthy and clinical norm population,17 on the different scales of the

Female

al Population Patients Healthy Population Clinical Population

32.2 ± 7.7 16 26

20.3 ± 9.3 13 21

35 ± 12.6 23 38

34 ± 7.1 21 44

22 ± 2.6 13 27

15.8 ± 7.3 6 10

11.5 ± 4.4 7 12

8.2 ± 3.7 4 7



FIGURE 1 Schematic representation of the experimental protocol. The protocol consisted of 3 stress tasks of 2 min each: a Stroop Color‐Word
test, a math test, and a stress talk, separated by rest phases of 2 min
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the experimental time for the patients. To align the 2 protocols, the 2

counting tasks executed by the healthy participants and the first rest

phase executed by both healthy participants and patients were

excluded from further analysis.
2.3 | Measurements

Three physiological signals were measured using the NeXus 10 MK II

hardware (Mind Media, Herten, The Netherlands): GSR, ST, and HR.

These signals were chosen since they are well‐accepted measures of

physiological stress responses.24 Additionally, they can easily be

implemented in wearable sensors, so that in future research results

can be evaluated in daily life settings. Galvanic skin response was

recorded at 32 Hz from the distal phalanx of the index and middle

fingers of the nondominant hand using Ag/AgCl electrodes embedded

in Velcro straps. Skin temperature was recorded at 32 Hz from the

distal phalanx of the little finger of the nondominant hand using a

thermistor. This is a small point probe, secured by placing tape

over the measuring tip to avoid signal contamination by air flow.

Heart rate was measured at 128 Hz using a blood volume pulse

sensor at the ring finger of the nondominant hand. The sensor used

photoplethysmography, which is a light‐based technology to sense

the rate of blood flow as controlled by the heart beats. With this

signal, instant HR was detected in real‐time by the NeXus software.

Participants were asked to keep the hands still, as all signals are sus-

ceptible to motion artefacts. Physiological channels were simulta-

neously streamed to disk and displayed on a PC monitor. Offline, all

channels were visually inspected to ensure good quality. There were

no missing data. All sensors were attached at least 15 minutes before

starting the protocol, allowing the participants to adapt to their posi-

tion and wearing the equipment.
2.4 | Feature computation

We applied an exploratory approach towards the signal analysis and

feature computation, meaning the outcome for each feature is not

hypothesized beforehand but rather explored. Before feature extrac-

tion, the physiological signals were standardized with zero mean and

unit variance per participant to obtain time series on the same scale.

Then, the time series were divided into rest and stress blocks of

2 minutes each, according to the task performed in each segment. This

resulted in a total of 7 blocks, 4 rest blocks (R1, R2, R3, and R4), and 3

stress blocks (S1, S2, and S3). The first rest block (R1) was excluded,

since for the healthy participants this task was preceded by a counting
task, whereas for the patients, this was the start of the experiment.

Next, 2 types of features were calculated: static and dynamic features.

The static features describe the distribution of the physiological

signals, eg, the mean and standard deviation, in each block. For each

signal, 18 static features were calculated, including the mean and stan-

dard deviation, as well as differences of means between pairs of rest

or stress blocks (see Table 2). These trends were calculated to explore

whether healthy participants and patients differ in the cumulative

effect of consecutive stress tasks.

The dynamic features represent the transition between different

blocks, eg, the transition from rest to stress as response features,

and the transition from stress to rest as recovery features. As these

features have been shown valuable in physical fitness research,13 we

investigated whether they can bring additional value for detecting per-

sons with stress‐related complaints. For each signal, 24 dynamic fea-

tures were calculated. Previous research has indicated that HR and

GSR increase25 and ST decreases26 in response to a stressor. There-

fore, for each stress block, the response time was calculated as the

time to reach the maximum value for HR and GSR and the minimum

value for ST, starting from the onset of the stress task. Similarly, for

each rest block, the recovery time was calculated as the time to reach

the minimum value for HR and GSR and the maximum value for ST,

starting from the onset of the resting phase. Additionally, for all the

blocks, a straight line was fitted through the signal, and the slope

was calculated. To investigate the cumulative effect of the different

stress tasks, the trends across the slopes and the response or recovery

times over the different pairs of rest and stress phases were calcu-

lated; a positive value for the trend of HR slopes means an increase

in steepness of response, while a positive value for the trend of HR

response times means an increase in response time after different

stress tests. In Figure 2, the GSR to the 3 stress tests, indicated in

red, is shown. The recovery time, recovery slope, response time, and

response slope are graphically represented. An overview of all the fea-

tures is presented in Table 2.
2.5 | Statistical analysis

The goal of this study was to investigate whether healthy participants

could be differentiated from persons with stress‐related complaints on

the basis of physiological data. Logistic regression (LR) using the Scikit‐

learn library of Python 2.7 was used for the analysis.27 In LR, the prob-

ability of the outcome of the healthy participants versus patients is

modelled as a function of the features weighed by coefficients

obtained with a training set.28



FIGURE 2 Dynamic feature calculation including recovery time,
recovery slope, response time, and response slope. Red bars
represent stress phases; white bars, rest. The example signal is
galvanic skin response (GSR) from one participant. The same features
are calculated for skin temperature and heart rate

TABLE 2 Overview of the static and dynamic features, calculated for each physiological signal

Feature Name Blocks Static or Dynamic Explanation of Features

Mean R2, R3, R4, S1, S2, S3 Static Mean of the physiological signal in the rest/stress block

Standard deviation R2, R3, R4, S1, S2, S3 Static Standard deviation of the physiological signal in the
rest/stress block

Trend means of stress phases S4 − S2, S4 − S3, S3 − S2 Static Difference between the means of different stress
phases, eg, S4 − S2

Trend means of rest phases R4 − R2, R4 − R3, R3 − R2 Static Difference between the means of different rest
phases, eg, R4 − R2

Response time S1, S2, S3 Dynamic Time in seconds to reach the maximum (HR and GSR)/
minimum (ST) starting from the onset of the stress task

Recovery time S1, S2, S3 Dynamic Time in seconds to reach the minimum (HR and GSR)/
maximum (ST) starting from the onset of the rest phase

Slope R2, R3, R4, S1, S2, S3 Dynamic Slope of a straight line fitted through physiological signal
in the rest/stress block

Trend response times S4 − S2, S4 − S3, S3 − S2 Dynamic Difference between the response times of different stress
phases, eg, S4 − S2

Trend recovery times R4 − R2, R4 − R3, R3 − R2 Dynamic Difference between the recovery times of different rest
phases, eg, R4 − R2

Trend slopes of stress phases S4 − S2, S4 − S3, S3 − S2 Dynamic Difference between the slopes of different stress phases,
eg, S4 − S2

Trend slopes of rest phases R4 − R2, R4 − R3, R3 − R2 Dynamic Difference between the slopes of different rest phases,
eg, R4 − R2

Abbreviations: GSR, galvanic skin response; HR, heart rate; R, rest phase; S, stress task; ST, skin temperature.
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A total of 126 features were calculated. To avoid overfitting,

unsupervised feature selection using principal component analysis

was applied. We calculated the principal components of the features

and selected the number of components, which explained 95% of

the variance of the dataset (20 components). Then, we calculated

the Pearson correlation of each feature with each principal component

and retained the features with a correlation higher than 0.6 with at

least one component. This reduced the dataset from 126 to 38 fea-

tures. Next, to minimize feature redundancy, we calculated the corre-

lation between all features and removed those with a correlation

higher than 0.6, reducing the dataset to 26 features.
To compare the classification performance of separate physiolog-

ical signals and of recovery versus response signals, 6 feature sets

were separated on the basis of the reduced feature set: (1) a combina-

tion of all features derived from all physiological signals, ie, GSR, HR,

and ST (26 features); (2) all features derived from GSR (8 features);

(3) all features derived from HR (8 features); (4) all features derived

from ST (10 features); (5) all recovery‐related features derived from

all physiological signals (13 features); and (6) all response‐related fea-

tures derived from all physiological signals (13 features).

The performance of each classifier was assessed using a leave‐

one‐out cross‐validation. The models were trained on the data of all

but one participant and evaluated on the data of this participant; this

was repeated until all participants had been evaluated exactly once.

This method is often used in different fields of research using small

datasets, eg, Healey and Picard25 and Woo et al.29 To evaluate the

model performance specificity, true negative rate (healthy), sensitivity,

true positive rate (patient), and accuracy were calculated.

To further investigate the contribution of separate features of dif-

ferent physiological signals to the model, the feature importance was

calculated for the model with the highest performance (accuracy). In

an LR model, more important features have higher weights. Therefore,

the feature importance was calculated by ranking the weights of the

model. For the most important features, a t test was also performed.

For features with significant differences, ie, P < .05, the effect size

(Cohen d) was calculated.30 The statistical analyses were performed

using the open source SciPy statistical functions library of Python 2.7.
3 | RESULTS

To evaluate whether physiological data could differentiate healthy

controls from persons with stress‐related complaints, classifiers using
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LR based on 6 feature sets were developed. After unsupervised fea-

ture reduction, 26 features were retained: 10 static and 16 dynamic.

The accuracy, sensitivity, and specificity for each set are presented in

Table 3. The best performance was obtained for the response and

GSR feature sets. The worst performance was obtained for the ST

and recovery feature set. An intermediate performance was found

for the single‐parameter feature set with HR features and feature

set with all features.

For the model based on the response feature set (highest accu-

racy, including all physiological signals), the relative feature importance

was further investigated. Features were ranked on the basis of their

relative contributions to the model predictions. The result is shown in

Figure 3.

Significant differences for the t test and medium to large effect

sizes based on Cohen d were found for the 5 most important fea-

tures (others did not show significant differences). These include 4
TABLE 3 Classification performance for each feature set using a
logistic regression modela

Feature Set Accuracy Sensitivity Specificity

All features 0.72 0.75 0.70

GSR 0.78 0.75 0.80

HR 0.66 0.50 0.75

ST 0.59 0.50 0.65

Recovery 0.63 0.50 0.70

Response 0.78 0.75 0.80

Abbreviations: GSR, galvanic skin response; HR, heart rate; ST, skin
temperature.
aThe performance is evaluated using accuracy, sensitivity, and specificity.
Classifications based on the GSR and response‐related features give the
best performance.

FIGURE 3 Feature importance of the response feature set based on
the relative contribution to the logistic regression model. Feature
names contain 3 parts, separated by an underscore: (1) the
physiological signal for which the feature was computed, ie, HR, GSR,
or ST; (2) the feature (see Table 2); and (3) the stress task(s) for which
the feature was computed: S1 = stress task 1 (ie, Stroop Color‐Word
test), S2 = stress task 2 (ie, math test), S3 = stress task 3 (ie, stress talk).
GSR indicates galvanic skin response; HR, heart rate; ST, skin
temperature
ST‐ and 1 GSR‐related features. The t test was found significant for

P < .05, and an effect size d > 0.5 was considered medium and

d > 0.8 large.30 In Figure 4, the boxplots of these features are shown,

comparing the standardized feature values of healthy participants

and patients.

The trend of the ST means from the first to second stress task,

ie, Stroop test to math test, was close to zero for patients and signif-

icantly lower, ie, more negative, for healthy participants (P = .007,

d = 1.06). Since the trend is the difference of S2 and S1, this indicates

that healthy participants have a lower ST in the second stress task

compared with the first, while this difference is less distinct for

patients. The mean ST from the second stress task, ie, the math test,

was significantly higher for patients compared with healthy partici-

pants (P = .02, d = 0.90). The slope of the ST during the first stress

task, ie, the Stroop test, was significantly higher for patients compared

with healthy participants (P = .02, d = 0.87). Since both slopes are

negative (based on the not normalized values), this indicates a stron-

ger ST decrease for healthy participants. The standard deviation of

the ST from the third stress task, ie, the stress talk, was significantly

lower for patients compared with healthy participants (P = .04,

d = 0.80). Finally, the trend of the GSR slopes from the first to third

stress tasks, ie, Stroop test to stress talk, was significantly higher

for patients compared with healthy participants (P = .05, d = 0.73).

This indicates a stronger increase in GSR slopes (ie, a stronger GSR)

for patients.
FIGURE 4 Boxplots of the 5 most important features of the
response feature set for healthy participants and patients. Features
are represented as standardized values. The boxplot line represents
the median, the box extends from the lower to upper quartile values,
whiskers extend from minimum to maximum (indicating the range),
and flier points (indicated as +) are considered outliers. *P < .05 vs
healthy participants, based on a t test. Feature names contain 3 parts,
separated by an underscore: (1) the physiological signal for which the
feature was computed, ie, HR, GSR, or ST; (2) the feature (seeTable 2);
and (3) the stress task(s) for which the feature was computed:
S1 = stress task 1 (ie, Stroop Color‐Word test), S2 = stress task 2 (ie,
math test), S3 = stress task 3 (ie, stress talk). GSR indicates galvanic
skin response; HR, heart rate; ST, skin temperature
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4 | DISCUSSION

Chronic stress can have a detrimental influence on health, leading, for

example, to burnout. To prevent these negative health outcomes,

early detection of risk factors is crucial. Stress‐related health problems

can be categorized into 3 areas along the stress continuum: stress‐

related complaints, overstrain, and burnout. In this pilot study, we

investigated the acute physiological response to and recovery from a

stress task, for early detection of stress‐related complaints. Persons

with stress‐related complaints could be distinguished from healthy

participants with an accuracy of 78%, sensitivity of 75%, and specific-

ity of 80%. Whether these results generalize to a larger population,

patients with clinical diagnoses such as burnout and chronic fatigue

syndrome, or to other types of stressors requires further study.

Our analysis also points to several conclusions with respect to

physiological sensing priorities. In previous reports, mainly cardiovas-

cular or GSR features have been used separately as physiological

markers of stress‐related diseases (eg, Morgan et al,7 and De

Vente et al8). Our analysis indicated that the best results can be

obtained using GSR‐related features. The classification performance

using only features related to ST or HR was much lower. However,

by combining the response features of HR, GSR, and ST, the perfor-

mance can be increased, and insights from all physiological signals

can be obtained. Furthermore, previous research has suggested that

the physiological stress response is person‐dependent, and different

participants can show different response levels per physiological

signal.23,31 For these reasons, and since HR, GSR, and ST are standard

measurements readily available in many state‐of‐the art sensors, eg,

NeXus 10 MK II, and in multiple wearables such as Empatica E4

(Empatica, Milan, Italy), it is advised to focus further research on the

combination of these signals rather than investigate them separately.

Furthermore, when using the recovery‐related features only, as

compared with using response‐related features, the accuracy was

reduced by 15%. These findings are in disagreement with the sugges-

tion of Linden et al15 that recovery features can unravel additional

information to distinguish healthy participants and patients. Our find-

ings indicate that these 2 groups differ more in their response to stress

than in their recovery from a stress task. A possible explanation could

lie in the time frame of the analysis. In our research, the immediate

stress response and recovery were analysed in a time frame of

2 minutes during and after the stress task. It is possible that differ-

ences become more apparent after a longer period. Further, we

focused our research on persons with stress‐related complaints for

less than 3 months before consultation. It is possible that if the chro-

nicity of the complaints increases, eg, burnout patients with com-

plaints for more than 6 months, the difference in recovery phase

becomes more pronounced. This hypothesis is supported in the

meta‐analysis of Miller et al,32 who state that when chronic stress first

begins, the HPA axis is activated, whereas prolonged chronic stress,

which is the case for burnout patients, leads to diminished activity.

In a follow‐up study, it could, therefore, be interesting to investigate

not only healthy controls versus persons with stress‐related com-

plaints but also persons with stress‐related complaints versus over-

strain versus burnout patients. Additionally, it was not possible to

compare the response and recovery features to baseline physiology,
since the baseline had to be removed owing to the difference in pro-

tocol for healthy participants and patients. We suggest that future

studies, using this methodology, apply an identical protocol for the 2

groups in order to investigate physiological response and recovery as

compared with baseline physiology.

In our analysis, we also investigated which type of features, static

or dynamic, is more important for classification purposes. We showed

that both types are needed to reach the reported classification perfor-

mances, with a higher number of dynamic features selected. In previ-

ous research towards identification of stress‐related mental health

problems, the focus has been on static features. In other research

branches, such as the identification of physical condition as opposed

to mental, dynamic features have been already incorporated in the

analysis (eg, Nishime et al13). We suggest that future research in the

area of mental and physical health may benefit from including more

dynamic features in the analysis. Here, a linear approach was used to

calculate the slopes and response and recovery times; in Lim et al,33

an exponential approach was also proposed.

Detailed investigation of the most important features for the

model based on response‐related features revealed that feature slopes

and trends are the most relevant ones (Figure 3). The 5 most impor-

tant features showed significant differences and medium‐to‐large

effect sizes for the healthy participants compared with the patients.

A general observation of the results shows that patients often show

a more rigid response to stress than did healthy participants (ie, less

variation between rest and stress). This could reflect one type of

allostatic load, being the inadequate response of the allostatic systems

as described by McEwen.14 These results highlight the opportunities

of using physiological stress responses as a means to discover new

insights regarding the process of stress‐related health disorders.

The current study was a methodological pilot study, which was

executed in a laboratory setting and with a limited number of patients

(n = 12). In the future, a possible application of this methodology could

be large‐scale population screenings for early detection of stress‐

related health problems. Therefore, to use this methodology in prac-

tice, it should be investigated whether similar results can be obtained

in real‐life conditions, outside the laboratory. To this end, wearables

such as Empatica E4 (Empatica, Milan, Italy) could be used for ambula-

tory physiological measurement of HR, GSR, and ST. Additional chal-

lenges will be related to signal quality.34 In the current study, only

persons with stress‐related complaints were included. All patients con-

firmed their complaints started less than 3 months before consulta-

tion, and all patients were still capable of fully functioning in their

social and professional lives. However, since this information is based

on self‐report, it could be incorrect as patients might be unaware of

problems in their functioning. Further, we suggest additional research

to investigate whether the results generalize to larger populations and

patients on different areas along the stress continuum (ie, overstrain

and burnout). We aimed with this methodological pilot study to bring

attention to new exploratory methodologies; further research is

needed to validate and replicate the results.

We conclude that our pilot study demonstrated the potential of

physiological signals during the response to a stress task to discrimi-

nate healthy participants from persons having stress‐related com-

plaints. Our analysis also showed that a multiparameter classification
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model based on response‐related features can outperform models

based on single parameters (HR and ST) and models based on recov-

ery‐related features only. Investigation of the separate features can

provide more insights and enhance our understanding of the physio-

logical differences between healthy participants and persons at risk

of stress‐related health problems. Although further research is needed

to investigate if these conclusions generalize to a larger population

and to multiple clinical diagnoses, these results highlight the potential

of using physiological signals and an exploratory approach to gain

more insight into the difference between healthy participants and

patients. Further longitudinal research using wearable technology to

investigate the development of the 3 stages on the stress continuum

could provide a powerful technique for better understanding the

development of stress‐related disorders. Such research could unravel

early detection points for early diagnosis and prevention.
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