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The XZZX surface code
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Performing large calculations with a quantum computer will likely require a fault-tolerant

architecture based on quantum error-correcting codes. The challenge is to design practical

quantum error-correcting codes that perform well against realistic noise using modest

resources. Here we show that a variant of the surface code—the XZZX code—offers

remarkable performance for fault-tolerant quantum computation. The error threshold of this

code matches what can be achieved with random codes (hashing) for every single-qubit Pauli

noise channel; it is the first explicit code shown to have this universal property. We present

numerical evidence that the threshold even exceeds this hashing bound for an experimentally

relevant range of noise parameters. Focusing on the common situation where qubit

dephasing is the dominant noise, we show that this code has a practical, high-performance

decoder and surpasses all previously known thresholds in the realistic setting where syn-

drome measurements are unreliable. We go on to demonstrate the favourable sub-threshold

resource scaling that can be obtained by specialising a code to exploit structure in the noise.

We show that it is possible to maintain all of these advantages when we perform fault-

tolerant quantum computation.
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A large-scale quantum computer must be able to reliably
process data encoded in a nearly noiseless quantum sys-
tem. To build such a quantum computer using physical

qubits that experience errors from noise and faulty control, we
require an architecture that operates fault-tolerantly1–4, using
quantum error correction to repair errors that occur throughout
the computation.

For a fault-tolerant architecture to be practical, it will need to
correct for physically relevant errors with only a modest over-
head. That is, quantum error correction can be used to create
near-perfect logical qubits if the rate of relevant errors on the
physical qubits is below some threshold, and a good architecture
should have a sufficiently high threshold for this to be achievable
in practice. These fault-tolerant designs should also be efficient,
using a reasonable number of physical qubits to achieve the
desired logical error rate. The most common architecture for
fault-tolerant quantum computing is based on the surface code5.
It offers thresholds against depolarising noise that are already
high, and encouraging recent results have shown that its per-
formance against more structured noise can be considerably
improved by tailoring the code to the noise model6–10. While the
surface code has already demonstrated promising thresholds, its
overheads are daunting5,11. Practical fault-tolerant quantum
computing will need architectures that provide high thresholds
against relevant noise models while minimising overheads
through efficiencies in physical qubits and logic gates.

In this paper, we present a highly efficient fault-tolerant
architecture design that exploits the common structures in the
noise experienced by physical qubits. Our central tool is a variant
of the surface code12–14 where the stabilizer checks are given by
the product XZZX of Pauli operators around each face on a
square lattice15. This seemingly innocuous local change of basis
offers a number of significant advantages over its more conven-
tional counterpart for structured noise models that deviate from
depolarising noise.

We first consider preserving a logical qubit in a quantum
memory using the XZZX code. While some two-dimensional
codes have been shown to have high error thresholds for certain
types of biased noise7,16, we find that the XZZX code gives
exceptional thresholds for all single-qubit Pauli noise channels,
matching what is known to be achievable with random coding
according to the hashing bound17,18. It is particularly striking that
the XZZX code can match the threshold performance of a ran-
dom code, for any single-qubit Pauli error model, while retaining
the practical benefits of local stabilizers and an efficient decoder.
Intriguingly, for noise that is strongly biased towards X or Z, we
have numerical evidence to suggest that the XZZX threshold
exceeds this hashing bound, meaning this code could potentially
provide a practical demonstration of the superadditivity of
coherent information19–23.

We show that these high thresholds persist with efficient,
practical decoders by using a generalisation of a matching deco-
der in the regime where dephasing noise is dominant. In the
fault-tolerant setting when stabilizer measurements are unreliable,
we obtain thresholds in the biased-noise regime that surpass all
previously known thresholds.

With qubits and operations that perform below the threshold
error rate, the practicality of scalable quantum computation is
determined by the overhead, i.e. the number of physical qubits
and gates we need to obtain a target logical failure rate. Along
with offering high thresholds against structured noise, we show
that architectures based on the XZZX code require very low
overhead to achieve a given target logical failure rate. Generically,
we expect the logical failure rate to decay like O(pd/2) at low error
rates p where d ¼ Oð ffiffiffi

n
p Þ is the distance of a surface code and n is

the number of physical qubits used in the system. By considering

a biased-noise model where dephasing errors occur a factor η
more frequently than other types of errors we demonstrate an
improved logical failure rate scaling like Oððp= ffiffiffi

η
p Þd=2Þ. We can

therefore achieve a target logical failure rate using considerably
fewer qubits at large bias because its scaling is improved by a
factor ~η−d/4. We also show that near-term devices, i.e. small-
sized systems with error rates near to threshold, can have a logical
failure rate with quadratically improved scaling as a function of
distance; Oðpd2=2Þ. Thus, we should expect to achieve low logical
failure rates using a modest number of physical qubits for
experimentally plausible values of the noise bias, for example,
10≲ η≲ 100024,25.

Finally, we consider fault-tolerant quantum computation with
biased noise26–28, and we show that the advantages of the XZZX
code persist in this context. We show how to implement low-
overhead fault-tolerant Clifford gates by taking advantage of the
noise structure as the XZZX code undergoes measurement-based
deformations29–31. With an appropriate lattice orientation, noise
with bias η is shown to yield a reduction in the required number
of physical qubits by a factor of � log η in a large-scale quantum
computation. These advantages already manifest at code sizes
attainable using present-day quantum devices.

Results
The XZZX surface code. The XZZX surface code is locally
equivalent to the conventional surface code12–14, differing by a
Hadamard rotation on alternate qubits32,33. The code parameters
of the surface code are invariant under this rotation. The XZZX
code therefore encodes k=O(1) logical qubits using n=O(d2)
physical qubits where the code distance is d. Constant factors in
these values are determined by details such as the orientation of
the square-lattice geometry and boundary conditions. See Fig. 1
for a description. This variant of the surface code was proposed in
ref. 15, and has been considered as a topological memory34. To
contrast the XZZX surface code with its conventional counter-
part, we refer to the latter as the CSS surface code because it is of
Calderbank-Shor-Steane type35,36.

Together with a choice of code, we require a decoding
algorithm to determine which errors have occurred and correct
for them. We will consider Pauli errors E 2 P, and we say that E
creates a defect at face f if SfE= (−1)ESf with Sf the stabilizer
associated to f. A decoder takes as input the error syndrome (the
locations of the defects) and returns a correction that will recover
the encoded information with high probability. The failure
probability of the decoder decays rapidly with increasing code
distance, d, assuming the noise experienced by the physical qubits
is below some threshold rate.

Because of the local change of basis, the XZZX surface code
responds differently to Pauli errors compared with the CSS
surface code. We can take advantage of this difference to design
better decoding algorithms. Let us consider the effect of different
types of Pauli errors, starting with Pauli-Z errors. A single Pauli-Z
error gives rise to two nearby defects. In fact, we can regard a
Pauli-Z error as a segment of a string where defects lie at the
endpoints of the string segment, and where multiple Pauli-Z
errors compound into longer strings, see Fig. 1d.

A key feature of the XZZX code that we will exploit is that
Pauli-Z error strings align along the same direction, as shown in
Fig. 1d. We can understand this phenomenon in more formal
terms from the perspective of symmetries10,37. Indeed, the
product of face operators along a diagonal such as that shown
in Fig. 1e commute with Pauli-Z errors. This symmetry
guarantees that defects created by Pauli-Z errors will respect a
parity conservation law on the faces of a diagonal oriented along
this direction. Using this property, we can decode Pauli-Z errors
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on the XZZX code as a series of disjoint repetition codes. It
follows that, for a noise model described by independent Pauli-Z
errors, this code has a threshold error rate of 50%.

Likewise, Pauli-X errors act similarly to Pauli-Z errors, but
with Pauli-X error strings aligned along the orthogonal direction
to the Pauli-Z error strings. In general, we would like to be able to
decode all local Pauli errors, where error configurations of Pauli-
X and Pauli-Z errors violate the one-dimensional symmetries we
have introduced, e.g. Fig. 1f. As we will see, we can generalise
conventional decoding methods to account for finite but high bias
of one Pauli operator relative to others and maintain a very high
threshold.

We finally remark that the XZZX surface code responds to
Pauli-Y errors in the same way as the CSS surface code. Each
Pauli-Y error will create four defects on each of their adjacent
faces; see Fig. 1g. The high-performance decoders presented in
refs. 7,8,10 are therefore readily adapted for the XZZX code for an
error model where Pauli-Y errors dominate.

Optimal thresholds. The XZZX code has exceptional thresholds
for all single-qubit Pauli noise channels. We demonstrate this fact
using an efficient maximum-likelihood decoder38, which gives the
optimal threshold attainable with the code for a given noise
model. Remarkably, we find that the XZZX surface code achieves
code-capacity threshold error rates that closely match the zero-
rate hashing bound for all single-qubit Pauli noise channels, and
appears to exceed this bound in some regimes.

We define the general single-qubit Pauli noise channel

EðρÞ ¼ ð1� pÞρþ pðrXXρX þ rYYρY þ rZZρZÞ ð1Þ
where p is the probability of any error on a single qubit and the
channel is parameterised by the stochastic vector r= (rX, rY, rZ),
where rX, rY, rZ ≥ 0 and rX+ rY+ rZ= 1. The surface of all
possible values of r parametrise an equilateral triangle, where
the centre point (1/3, 1/3, 1/3) corresponds to standard
depolarising noise, and vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1)
correspond to pure X, Y and Z noise, respectively. We also define
biased-noise channels, which are restrictions of this general noise
channel, parameterised by the scalar η; for example, in the case of

Z-biased noise, we define η= rZ/(rX+ rY) where rX= rY, such
that η= 1/2 corresponds to standard depolarising noise and the
limit η→∞ corresponds to pure Z noise. The hashing bound is
defined as R= 1−H(p) with R an achievable rate, k/n, using
random codes and H(p) the Shannon entropy for the vector p=
pr. For our noise model, for any r there is a noise strength p for
which the achievable rate via random coding goes to zero; we
refer to this as the zero-rate hashing bound, and it serves as a
useful benchmark for code-capacity thresholds.

We estimate the threshold error rate as a function of r for both
the XZZX surface code and the CSS surface code using a tensor-
network decoder that gives a controlled approximation to the
maximum-likelihood decoder7,8,38; see Methods for details. Our
results are summarised in Fig. 2. We find that the thresholds of
the XZZX surface code closely match or slightly exceed (as
discussed below), the zero-rate hashing bound for all investigated
values of r, with a global minimum pc= 18.7(1)% at standard
depolarising noise and peaks pc ~ 50% at pure X, Y and Z noise.
We find that the thresholds of the CSS surface code closely match
this hashing bound for Y-biased noise, where Y errors dominate,
consistent with prior work7,8, as well as for channels where rY <
rX= rZ such that X and Z errors dominate but are balanced. In
contrast to the XZZX surface code, we find that the thresholds of
the CSS surface code fall well below this hashing bound as either
X or Z errors dominate with a global minimum pc= 10.8(1)% at
pure X and pure Z noise.

In some cases, our estimates of XZZX surface code thresholds
appear to exceed the zero-rate hashing bound. The discovery of
such a code would imply that we can create a superadditive
coherent channel via code concatenation. To see why, consider an
inner code with a high threshold that exceeds the hashing bound,
pc > ph.b., together with a finite-rate outer code with rate Rout=
Kout/Nout > 0 that has some arbitrary nonzero threshold against
independent noise39–42. Now consider physical qubits with an
error rate p below the threshold of the inner code but above the
hashing bound, i.e. ph.b. < p < pc. We choose a constant-sized inner
code using Nin qubits such that its logical failure rate is below the
threshold of the outer code. Concatenating this inner code into the
finite-rate outer code will give us a family of codes with rate

Fig. 1 The XZZX surface code. Qubits lie on the vertices of the square lattice. The codespace is the common+1 eigenspace of its stabilizers Sf for all faces of
the lattice f. a An example of a stabilizer Sf associated with face f. We name the XZZX code according to its stabilizer operators that are the product of two
Pauli-X terms and two Pauli-Z terms. Unlike the conventional surface code, the stabilizers are the same at every face. b A boundary stabilizer. c A logical
operator that terminates at the boundary. d Pauli-Z errors give rise to string-like errors that align along a common direction, enabling a one-dimensional
decoding strategy. e The product of stabilizer operators along a diagonal give rise to symmetries under an infinite bias dephasing noise model10,37. f Pauli-X
errors align along lines with an orthogonal orientation. At finite bias, errors in conjugate bases couple the lines. g Pauli-Y errors can be decoded as in ref. 10.
h A convenient choice of boundary conditions for the XZZX code are rectangular on a rotated lattice geometry. Changing the orientation of the lattice
geometry means high-rate Pauli-Z errors only create strings oriented horizontally along the lattice. We can make a practical choice of lattice dimensions with
dZ > dX to optimise the rates of logical failure caused by either low- or high-rate errors. Small-scale implementations of the XZZX code on rectangular lattices
may be well suited for implementation with near-term devices. i In the limit where dX= 1 we find a repetition code. This may be a practical choice of code
given a limited number of qubits that experience biased noise. j The next engineering challenge beyond a repetition code is an XZZX code on a rectangle with
dX= 2. This code can detect a single low-rate error.
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R0 ¼ Rout=N in > 0 and a vanishing failure probability as Nout→∞.
If both codes have low-density parity checks (LDPCs)41,42, the
resulting code provides an example of a superadditive LDPC code.

Given the implications of a code that exceeds the zero-rate
hashing bound we now investigate our numerics in this regime
further. For the values of r investigated for Fig. 2, the mean
difference between our estimates and the hashing bound is
pc � ph:b: ¼ �0:1ð3Þ% and our estimates never fall more than
1.1% below the hashing bound. However, for high bias, η ≥ 100, we
observe an asymmetry between Y-biased noise and Z-biased (or,
equivalently, X-biased) noise. In particular, we observe that, while
threshold estimates with Y-biased noise match the hashing bound
to within error bars, threshold estimates with highly biased Z noise
significantly exceed the hashing bound. Our results with Z-biased
noise are summarised in Fig. 3, where, since thresholds are defined
in the limit of infinite code distance, we provide estimates with
sets of increasing code distance for η ≥ 30. Although the gap
typically reduces, it appears to stabilise for η= 30, 100, 1000,
where we find pc− ph.b.= 1.2(2)%, 1.6(3)%, 3.7(3)%, respectively,
with the largest code distances; for η= 300, the gap exceeds 2.9%
but has clearly not yet stabilised. This evidence for exceeding
the zero-rate hashing bound appears to be robust, but warrants
further study.

Finally, we evaluate threshold error rates for the XZZX code
with rectangular boundaries using a minimum-weight perfect-
matching decoder, see Fig. 4. Matching decoders are very fast, and
so allow us to explore very large systems sizes; they are also
readily generalised to the fault-tolerant setting as discussed below.
Our decoder is described in Methods. Remarkably, the thresholds
we obtain closely follow the zero-rate hashing bound at high bias.
This is despite using a sub-optimal decoder that does not use all
of the syndrome information. Again, our data appear to
marginally exceed this bound at high bias.

Fault-tolerant thresholds. Having demonstrated the remarkable
code-capacity thresholds of the XZZX surface code, we now
demonstrate how to translate these high thresholds into practice
using a matching decoder14,43,44. We find exceptionally high
fault-tolerant thresholds, i.e. allowing for noisy measurements,
with respect to a biased phenomenological noise model. More-
over, for unbiased noise models we recover the standard
matching decoder14,45.

To detect measurement errors we repeat measurements over a
long time14. We can interpret measurement errors as strings that
align along the temporal axis with a defect at each endpoint. This

Fig. 2 Optimal code-capacity thresholds over all single-qubit Pauli channels. Threshold estimates pc are found using approximate maximum-likelihood
decoding for a the XZZX surface code and b the CSS surface code with open boundaries (as in Fig. 1b). The grey triangle represents a parametrisation of all
single-qubit Pauli channels, where the centre corresponds to depolarising noise, the labeled vertices correspond to pure X and Z noise, and the third vertex
corresponds to pure Y noise. For the XZZX code, estimates closely match the zero-rate hashing bound (not shown) for all single-qubit Pauli channels. For
the CSS code, estimates closely match the hashing bound for Y-biased noise but fall well below for X- and Z-biased noise. All estimates use d × d codes
with distances d∈ {13, 17, 21, 25}.

Fig. 3 Estimates of optimal XZZX surface code thresholds relative to the hashing bound. a Threshold estimates pc for the XZZX and CSS surface codes as
a function of bias η with Z-biased (or, by code symmetry, X-biased) noise using approximate maximum-likelihood decoding and codes with open boundaries
(as in Fig. 1b). The solid line is the zero-rate hashing bound for the associated Pauli noise channel, where the entropy of the channel equals 1 bit. For high bias,
η≥ 30, the estimates for the XZZX code exceed the hashing bound. To investigate this surprising effect, estimates for the XZZX code with 30≤ η≤ 1000
use large d × d codes with distances d∈ {65, 69, 73, 77}; other estimates use distances d∈ {13, 17, 21, 25} (as used for Fig. 2). b Difference between
threshold estimates for the XZZX code with Z-biased noise and the hashing bound pc− ph.b. as a function of code distances used in the estimation. Data is
shown for biases η= 30, 100, 300, 1000. Threshold estimates exceed the hashing bound in all cases. The gap reduces, in most cases, with sets of greater
code distance, but it persists and appears to stabilise for η= 30, 100 and 1000. In both plots, error bars indicate one standard deviation relative to the fitting
procedure.
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allows us to adapt minimum-weight perfect-matching for fault-
tolerant decoding. We explain our simulation in Fig. 5a–d and
describe our decoder in Methods.

We evaluate fault-tolerant thresholds by finding logical failure
rates using Monte-Carlo sampling for different system para-
meters. We simulate the XZZX code on a d × d lattice with
periodic boundary conditions, and we perform d rounds of
stabilizer measurements. We regard a given sample as a failure if
the decoder introduces a logical error to the code qubits, or if the
combination of the error string and its correction returned by the
decoder includes a non-trivial cycle along the temporal axis. It is
important to check for temporal errors, as they can cause logical
errors when we perform fault-tolerant logic gates by code
deformation46.

The phenomenological noise model is defined such that qubits
experience errors with probability p per unit time. These errors
may be either high-rate Pauli-Z errors that occur with probability
ph.r. per unit time, or low-rate Pauli-X or Pauli-Y errors each
occurring with probability pl.r. per unit time. The noise bias with
this phenomenological noise model is defined as η= ph.r./(2pl.r.).
One time unit is the time it takes to make a stabilizer
measurement, and we assume we can measure all the stabilizers
in parallel5. Each stabilizer measurement returns the incorrect
outcome with probability q= ph.r.+ pl.r.. To leading order, this
measurement error rate is consistent with a measurement circuit
where an ancilla is prepared in the state þj i and subsequently
entangled to the qubits of Sf with bias-preserving controlled-not
and controlled-phase gates before its measurement in the Pauli-X

basis. With such a circuit, Pauli-Y and Pauli-Z errors on the
ancilla will alter the measurement outcome. At η= 1/2 this noise
model interpolates to a conventional noise model where q= 2p/
347. We also remark that hook errors47,48, i.e. correlated errors
that are introduced by this readout circuit, are low-rate events.
This is because high-rate Pauli-Z errors acting on the control
qubit commute with the entangling gate, and so no high-rate
errors are spread to the code.

Intuitively, the decoder will preferentially pair defects along the
diagonals associated with the dominant error. In the limit of
infinite bias at q= 0, the decoder corrects the Pauli-Z errors by
treating the XZZX code as independent repetition codes. It
follows that by extending the syndrome along the temporal
direction to account for the phenomenological noise model with
infinite bias, we effectively decode d decoupled copies of the two-
dimensional surface code, see Fig. 5. With the minimum-weight
perfect-matching decoder, we therefore expect a fault-tolerant
threshold ~ 10.3%14. Moreover, when η= 1/2 the minimum-
weight perfect-matching decoder is equivalent to the conven-
tional matching decoder14,45. We use these observations to check
that our decoder behaves correctly in these limits.

In Fig. 5e, we present the thresholds we obtain for the
phenomenological noise model as a function of the noise bias η.
In the fault-tolerant case, we find our decoder tends towards a
threshold of ~10% as the bias becomes large. We note that the
threshold error rate appears lower than the expected ~10.3%; we
suggest that this is a small-size effect. Indeed, the success of the
decoder depends on effectively decoding ~d independent copies
of the surface code correctly. In practice, this leads us to
underestimate the threshold when we perform simulations using
finite-sized systems.

Notably, our decoder significantly surpasses the thresholds
found for the CSS surface code against biased Pauli-Y errors10.
We also compare our results to a conventional minimum-weight
perfect-matching decoder for the CSS surface code where we
correct bit-flip errors and dephasing errors separately. As we see,
our decoder for the XZZX code is equivalent to the conventional
decoding strategy at η= 1/2 and outperforms it for all other
values of noise bias.

Overheads. We now show that the exceptional error thresholds of
the XZZX surface code are accompanied by significant advantages
in terms of the scaling of the logical failure rate as a function of
the number of physical qubits n when error rates are below
threshold. Improvements in scaling will reduce the resource
overhead, because fewer physical qubits will be needed to achieve
a desired logical failure rate.

The XZZX code with periodic boundary conditions on a lattice
with dimensions d × (d+ 1) has the remarkable property that it
possesses only a single logical operator that consists of only physical
Pauli-Z terms. Moreover, this operator has weight n= d(d+ 1).
Based on the results of ref. 8, we can expect that the XZZX code on

such a lattice will have a logical failure rate that decays like Oðpd2=2h:r: Þ
at infinite bias. Note we can regard this single logical-Z operator as
a string that coils around the torus many times such that it is
supported on all n qubits. As such, this model can be regarded as an
n-qubit repetition code whose logical failure rate decays like O(pn/2).

Here we use the XZZX code on a periodic d × (d+ 1) lattice to
test the performance of codes with high-weight Pauli-Z operators
at finite bias. We find, at high bias and error rates near to
threshold, that a small XZZX code can demonstrate this rapid
decay in logical failure rate. In general, at more modest biases and
at lower error rates, we find that the logical failure rate scales like
Oððp= ffiffiffi

η
p Þd=2Þ as the system size diverges. This scaling indicates a

significant advantage in the overhead cost of architectures that

Fig. 4 Thresholds for the XZZX code using a matching decoder. Code-
capacity thresholds pc for the XZZX code with rectangular boundary
conditions (as in Fig. 1h) shown as a function of noise bias η using a matching
decoder. The threshold error rates for the XZZX code experiencing Pauli-Z-
biased noise (blue) significantly outperform those found using the matching
decoder presented in ref. 10 experiencing Pauli-Y-biased noise for the CSS
surface code (red). For the XZZX code, we evaluated separate thresholds for
logical Pauli-X and Pauli-Z errors, with the lowest of the two shown here
(although the discrepancy between the two different thresholds is negligible).
Data points are found with ~105 Monte-Carlo samples for each physical error
rate sampled and each lattice size used. We study the XZZX code for large
lattices with dZ=AηdX where aspect ratios take values 1≤Aη≤ 157 such that
A1/2= 1 and A1000= 157. We find the XZZX code matches the zero-rate
hashing bound at η ~10 (solid line). For larger biases the data appear to
exceed the hashing bound. For instance, at η= 100 we found pc− ph.b. ~ 1%.
We obtained this threshold using code sizes dX= 7, 11, 15 and A100= 23. Error
bars indicate one standard deviation obtained by jackknife resampling over
code distance.
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take advantage of biased noise. We demonstrate both of these
regimes with numerical data.

In practice, it will be advantageous to find low-overhead scaling
using codes with open boundary conditions. We finally argue that
the XZZX code with rectangular open boundary conditions will
achieve comparable overhead scaling in the large system
size limit.

Let us examine the different failure mechanisms for the XZZX
code on the periodic d × (d+ 1) lattice more carefully. Restricting
to Pauli-Z errors, the weight of the only non-trivial logical
operator is d(d+ 1). This means the code can tolerate up to
d(d+ 1)/2 dephasing errors, and we can therefore expect failures
due to high-rate errors to occur with probability

Pquad: � Nh:r:p
d2=2
h:r: ; ð2Þ

below threshold, where Nh:r: � 2d
2
is the number of configura-

tions that d2/2 Pauli-Z errors can take on the support of the
weight-d2 logical operator to cause a failure. We compare this
failure rate to the probability of a logical error caused by a string
of d/4 high-rate errors and d/4 low-rate errors. We thus consider
the ansatz

Plin: � N l:r:ð1� pÞd2�d=2ðph:r: þ pl:r:Þd=4ð2pl:r:Þd=4 ð3Þ
where Nl.r. ~ 2γd is an entropy term with 3/2≲ γ≲ 249. We justify
this ansatz and estimate γ in Methods.

This structured noise model thus leads to two distinct regimes,
depending on which failure process is dominant. In the first
regime where Pquad: � Plin:, we expect that the logical failure rate

will decay like � pd
2=2
h:r: . We find this behaviour with systems of a

finite size and at high bias where error rates are near to threshold.
We evaluate logical failure rates using numerical simulations to
demonstrate the behavior that characterises this regime; see Fig. 6
(a). Our data show good agreement with the scaling ansatz
P ¼ AeBd

2
. In contrast, our data are not well described by a

scaling P ¼ AeBd .

We observe the regime where Plin: � Pquad: using numerics at
small p and modest η. In this regime, logical errors are caused by
a mixture of low-rate and high-rate errors that align along a path
of weight O(d) on some non-trivial cycle. In Fig. 6b, we show that
the data agree well with the ansatz of Eq. (3), with γ ~ 1.8. This
remarkable correspondence to our data shows that our decoder is
capable of decoding up to ~d/4 low-rate errors, even with a
relatively large number of high-rate errors occurring simulta-
neously on the lattice.

In summary, for either scaling regime, we find that there are
significant implications for overheads. We emphasise that the
generic case for fault-tolerant quantum computing is expected to
be the regime dominated by Plin:. In this regime, the logical failure
rate of a code is expected to decay as P � pd=2 below
threshold5,50,51. Under biased noise, our numerics show that
failure rates P � ðp= ffiffiffi

η
p Þd=2 can be obtained. This additional

decay factor ~η−d/4 in our expression for logical failure rate
means we can achieve a target logical failure rate with far fewer
qubits at high bias.

The regime dominated by Pquad: scaling is particularly relevant
for near-term devices that have a small number of qubits
operating near the threshold error rate. In this situation, we have
demonstrated a very rapid decay in logical failure rate like � pd

2=2

at high bias, if they can tolerate ~d2/2 dephasing errors.
We finally show that we can obtain a low-overhead

implementation of the XZZX surface code with open boundary
conditions using an appropriate choice of lattice geometry. As we
explain below, this is important for performing fault-tolerant
quantum computation with a two-dimensional architecture.
Specifically, with the geometry shown in Fig. 1h, we can reduce
the length of one side of the lattice by a factor of Oð1=log ηÞ,
leaving a smaller rectangular array of qubits. This is because high-
rate error strings of the biased-noise model align along the
horizontal direction only. We note that dX (dZ) denote the least
weight logical operator comprised of only Pauli-X (Pauli-Z)
operators. We can therefore choose dX≪ dZ without

Fig. 5 Fault-tolerant thresholds for the XZZX code. a–d Spacetime where stabilizer measurements are unreliable. Time t progresses upwards and
stabilizers are measured at moments marked by black vertices. We identify a defect when a stabilizer measurement differs from its previous outcome.
a The dashed line shows the worldline of one qubit. If a Pauli-Z error occurs in the time interval Δ, a horizontal string is created in the spacetime with
defects at its endpoints at the following round of stabilizer measurements. b Measurement errors produce two sequential defects that we interpret as
strings that align along the vertical direction. c Pauli-X errors create string-like errors that align orthogonally to the Pauli-Z errors and measurement
errors. d In general errors compound to make longer strings. In the limit where there are no Pauli-X errors all strings are confined to the square lattice
we show. e Fault-tolerant threshold error rates pc as a function of noise bias η and measurement error rates q= ph.r.+ pl.r.. The results found using our
matching decoder for the XZZX code experiencing Pauli-Z-biased noise (blue) are compared with the results found using the matching decoder
presented in ref. 10 experiencing Pauli-Y-biased noise for the CSS surface code (red). Equivalent results to the red points are obtained with Pauli-Z-
biased noise using the tailored code of ref. 7. The XZZX code significantly outperforms the CSS code for all noise biases. At a fixed bias, data points are
found with 3 × 104 Monte-Carlo samples for each physical error rate sampled and for each square lattice with distance d ∈ {12, 14, …, 20} at finite bias
and d ∈ {24, 28, …, 40} at infinite bias. Error bars indicate one standard deviation obtained by jackknife resampling over code distance. The solid line
shows the threshold of the conventional matching decoder for the CSS surface code undergoing phenomenological noise where bit-flip and dephasing
errors are decoded independently. Specifically, it follows the function ph.r.+ pl.r.= 0.029 where ~2.9% is the phenomenological threshold45. We note
that our decoder is equivalent to the conventional matching decoder at η= 1/2.
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compromising the logical failure rate of the code due to Pauli-Z
errors at high bias. This choice may have a dramatic effect on the
resource cost of large-scale quantum computation. We estimate
that the optimal choice is

dZ � dX 1� log η
log p

� �
: ð4Þ

using approximations that apply at low error rates. To see this, let
us suppose that a logical failure due to high(low)-rate errors is
Ph:r: � pdZ=2 (Pl:r: � ðp=ηÞdX=2) where we have neglected entropy
terms and assumed ph.r. ~ p and pl.r. ~ p/η. Equating Pl:r: and Ph:r:
gives us Eq. (4). Similar results have been obtained in, e.g.
refs. 16,26,52–54 with other codes. Assuming an error rate that is far
below threshold, e.g. p ~ 1%, and a reasonable bias we might
expect η ~ 100, we find an aspect ratio dX ~ dZ/2.

Low-overhead fault-tolerant quantum computation. As with
the CSS surface code, we can perform fault-tolerant quantum
computation with the XZZX code using code
deformations29–31,55–57. Here we show how to maintain the
advantages that the XZZX code demonstrates as a memory
experiencing structured noise, namely, its high-threshold error
rates and its reduced resource costs, while performing fault-
tolerant logic gates.

A code deformation is a type of fault-tolerant logic gate where
we manipulate encoded information by changing the stabilizer
group we measure55,57. These altered stabilizer measurements
project the system onto another stabilizer code where the encoded
information has been transformed or ‘deformed’. These deforma-
tions allow for Clifford operations with the surface code; Clifford
gates are universal for quantum computation when supplemented
with the noisy initialisation of magic states58. Although
initialisation circuits have been proposed to exploit a bias in the
noise59, here we focus on fault-tolerant Clifford operations
and the fault-tolerant preparation of logical qubits in the
computational basis.

Many approaches for code deformations have been proposed
that, in principle, could be implemented in a way to take
advantage of structured noise using a tailored surface code. These
approaches include braiding punctures55–57,60, lattice

surgery29,30,61,62 and computation with twist defects30,63,64. We
focus on a single example based on lattice surgery as in refs. 31,62;
see Fig. 7a. We will provide a high-level overview and leave open
all detailed questions of implementation and threshold estimates
for fault-tolerant quantum computation to future work.

Our layout for fault-tolerant quantum computation requires
the fault-tolerant initialisation of a hexon surface code, i.e. a
surface code with six twist defects at its boundaries30; see Fig. 7
(b). We can fault-tolerantly initialise this code in eigenstates of
the computational basis through a process detailed in Fig. 7. We
remark that the reverse operation, where we measure qubits of
the XZZX surface code in this same product basis, will read the
code out while respecting the properties required to be robust to
the noise bias. Using the arguments presented above for the
XZZX code with rectangular boundaries, we find a low-overhead
implementation with dimensions related as dZ= AηdX, where we
might choose an aspect ratio Aη ¼ Oðlog ηÞ at low error rates and
high noise bias.

We briefly confirm that this method of initialisation is robust
to our biased-noise model. Principally, this method must correct
high-rate Pauli-Z errors on the red qubits, as Pauli-Z errors act
trivially on the blue qubits in eigenstates of the Pauli-Z operator
during preparation. Given that the initial state is already in an
eigenstate of some of the stabilizers of the XZZX surface code, we
can detect these Pauli-Z errors on red qubits, see, e.g. Fig. 7(v).
The shaded faces will identify defects due to the Pauli-Z errors.
Moreover, as we discussed before, strings created by Pauli-Z
errors align along horizontal lines using the XZZX surface code.
This, again, is due to the stabilizers of the initial state respecting
the one-dimensional symmetries of the code under pure
dephasing noise. In addition to robustness against high-rate
errors, low-rate errors as in Fig. 7(vi) can also be detected on blue
qubits. The bit-flip errors violate the stabilizers we initialise when
we prepare the initial product state. As such we can adapt the
high-threshold error-correction schemes we have proposed for
initialisation to detect these errors for the case of finite bias. We
therefore benefit from the advantages of the XZZX surface code
under a biased error model during initialisation.

Code deformations amount to initialising and reading out
different patches of a large surface code lattice. As such,
performing arbitrary code deformations while preserving the

Fig. 6 Sub-threshold scaling of the logical failure rate with the XZZX code. a Logical failure rate P at high bias near to threshold plotted as a function of
code distance d. We use a lattice with coprime dimensions d × (d+ 1) for d∈ {7, 9, 11, 13, 15} at bias η= 300, assuming ideal measurements. The data were
collected using N ¼ 5 ´ 105 iterations of Monte-Carlo (MC) samples for each physical rate sampled and for each lattice dimension used. The physical error
rates used are, from the bottom to the top curves in the main plot, p=0.19, 0.20, 0.21, 0.22 and 0.23. Error bars represent one standard deviation for the
Monte-Carlo simulations. The solid lines are a fit of the data to Pquad: ¼ AeBd

2
, consistent with Eq. (2), and the dashed lines a fit to Plin: ¼ AeBd, consistent with

Eq. (3) where we would expect B ¼ log ðp=ð1� pÞÞ=2, see Methods. The data fit the former very well; for the latter, the gradients of the best fit dashed lines,
as shown on the inset plot as a function of log ðp=ð1� pÞÞ, give a linear slope of 0.61(3). Because this slope exceeds the value of 0.5, we conclude that the sub-
threshold scaling is not consistent with Plin: ¼ AeBd. b Logical failure rates P at modest bias far below threshold plotted as a function of the physical error rate p.
The data (markers) were collected at bias η= 3 and coprime d × (d+ 1) code dimensions of d∈ {5, 7, 9, 11, 13, 15} assuming ideal measurements. Data is
collected using the Metropolis algorithm and splitting method presented in refs. 76,77. The solid lines represent the prediction of Eq. (3). The data show very
good agreement with the single parameter fitting for all system sizes as p tends to zero.
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biased-noise protection offered by the XZZX surface code is no
more complicated than what has already been demonstrated. This
is with one exception. We might consider generalisations of
lattice surgery or other code deformations where we can perform
fault-tolerant Pauli-Y measurements. In this case, we introduce a
twist to the lattice63 and, as such, we need to reexamine the
symmetries of the system to propose a high-performance decoder.
We show the twist in the centre of Fig. 7c together with its
weight-five stabilizer operator. A twist introduces a branch in the
one-dimensional symmetries of the XZZX surface code. A
minimum-weight perfect-matching decoder can easily be adapted
to account for this branch. Moreover, should we consider
performing fault-tolerant Pauli-Y measurements, we do not
expect that a branch on a single location on the lattice will have a
significant impact on the performance of the code experiencing
structured noise. Indeed, even with a twist on the lattice, the
majority of the lattice is decoded as a series of one-dimensional
repetition codes in the infinite bias limit.

Discussion
We have shown how fault-tolerant quantum architectures based
on the XZZX surface code yield remarkably high memory
thresholds and low overhead as compared with the conventional
surface code approach. Our generalised fault-tolerant decoder can
realise these advantages over a broad range of biased error models
representing what is observed in experiments for a variety of
physical qubits.

The performance of the XZZX code is underpinned by its
exceptional code-capacity thresholds, which match the perfor-
mance of random coding (hashing) theory, suggesting that this
code may be approaching the limits of what is possible. In con-
trast to this expectation, the XZZX surface code threshold is
numerically observed to exceed this hashing bound for certain
error models, opening the enticing possibility that random coding
is not the limit for practical thresholds. We note that for both
code capacities and fault-tolerant quantum computing, the
highest achievable error thresholds are not yet known.

We emphasise that the full potential of our results lies not just
in the demonstrated advantages of using this particular archi-
tecture, but rather the indication that further innovations in codes
and architectures may still yield significant gains in thresholds
and overheads. We have shown that substantial gains on
thresholds can be found when the code and decoder are tailored
to the relevant noise model. While the standard approach to
decoding the surface code considers Pauli-X and Pauli-Z errors

separately, we have shown that a tailored non-CSS code and
decoder can outperform this strategy for essentially all structured
error models. There is a clear avenue to generalise our methods
and results to the practical setting involving correlated errors
arising from more realistic noise models as we perform fault-
tolerant logic. We suggest that the theory of symmetries10,37 may
offer a formalism to make progress in this direction.

Because our decoder is based on minimum-weight matching,
there are no fundamental obstacles to adapt it to the more
complex setting of circuit noise47,56,65. We expect that the high
numerical thresholds we observe for phenomenological noise will,
when adapted to circuit level noise, continue to outperform the
conventional surface code, especially when using gates that pre-
serve the structure of the noise27,28. We expect that the largest
performance gains will be obtained by using information from a
fully characterised Pauli noise model66–68 that goes beyond the
single-qubit error models considered here.

Along with high thresholds, the XZZX surface code archi-
tecture can yield significant reductions in the overheads for fault-
tolerant quantum computing, through improvements to the sub-
threshold scaling of logical error rates. It is in this direction that
further research into tailored codes and decoders may provide the
most significant advances, bringing down the astronomical
numbers of physical qubits needed for fault-tolerant quantum
computing. A key future direction of research would be to carry
these improvements over to codes and architectures that promise
improved (even constant) overheads39,40,42. Recent research on
fault-tolerant quantum computing using low-density parity check
(LDPC) codes that generalise concepts from the surface
code41,69–74 provide a natural starting point.

Methods
Optimal thresholds. In the main text, we obtained optimal thresholds using a
maximum-likelihood decoder to highlight features of the codes independent of any
particular heuristic decoding algorithm. Maximum-likelihood decoding, which
selects a correction from the most probable logical coset of error configurations
consistent with a given syndrome, is, by definition, optimal. Exact evaluation of the
coset probabilities is, in general, inefficient. An algorithm due to Bravyi, Suchara
and Vargo38 efficiently approximates maximum-likelihood decoding by mapping
coset probabilities to tensor-network contractions. Contractions are approximated
by reducing the size of the tensors during contraction through Schmidt decom-
position and retention of only the χ largest Schmidt values. This approach,
appropriately adapted, has been found to converge well with modest values of χ for
a range of Pauli noise channels and surface code layouts8,38. A full description of
the tensor network used in our simulations with the rotated CSS surface code is
provided in ref. 8; adaptation to the XZZX surface code is a straightforward
redefinition of tensor element values for the uniform stabilizers.

Fig. 7 Generalised lattice surgery. Details of generalised lattice surgery are given in refs. 31,62. a Pairs of qubits are encoded on surface codes with six twist
defects lying on their boundaries30 (i). Entangling operations are performed by making parity measurements with an ancillary surface code, (ii). Circled
areas are described in terms of the microscopic details of the architecture in parts b and c of the figure, respectively. b Initialising a hexon surface code. Red
(blue) vertices are initialised in Pauli-X(Pauli-Z) basis. The system is prepared in an eigenstate of the stabilizers shown on the shaded faces, (iii) and the
logical Pauli-Z operators, (iv). This initialisation strategy is robust to biased noise. Pauli-Z errors that can occur on red vertices are detected by the shaded
faces (v). We can also detect low-rate Pauli-X errors on blue vertices with this method of initialisation (vi). We can decode all of these initialisation errors
on this subset of faces using the minimum-weight perfect-matching decoder in the same way we decode the XZZX code as a memory. c The hexon surface
code fused to the ancillary surface code to perform a logical Pauli-Y measurement. The lattice surgery procedure introduces a twist in the centre of the
lattice. We show the symmetry with respect to the Pauli-Z errors by lightly colored faces. Again, decoding this model in the infinite bias limit is reduced to
decoding one-dimensional repetition codes, except at the twist where there is a single branching point.
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Figure 2, which shows threshold values over all single-qubit Pauli noise
channels for CSS and XZZX surface codes, is constructed as follows. Each threshold
surface is formed using Delaunay triangulation of 211 threshold values. Since both
CSS and XZZX square surface codes are symmetric in the exchange of Pauli-X and
Z, 111 threshold values are estimated for each surface. Sample noise channels are
distributed radially such that the spacing reduces quadratically towards the sides of
the triangle representing all single-qubit Pauli noise channels, see Fig. 8a. Each
threshold is estimated over four d × d codes with distances d∈ {13, 17, 21, 25},
at least six physical error probabilities, and 30,000 simulations per code distance
and physical error probability. In all simulations, a tensor-network decoder
approximation parameter of χ= 16 is used to achieve reasonable convergence over
all sampled single-qubit Pauli noise channels for the given code sizes.

Figure 3, which investigates threshold estimates exceeding the zero-rate hashing
bound for the XZZX surface code with Z-biased noise, is constructed as follows.
For bias 30 ≤ η ≤ 1000, where XZZX threshold estimates exceed the hashing bound,
we run compute-intensive simulations; each threshold is estimated over sets of four
d × d codes with distances up to d ∈ {65, 69, 73, 77}, at least fifteen physical error
probabilities, and 60,000 simulations per code distance and physical error
probability. Interestingly, for the XZZX surface code with Z-biased noise, we find
the tensor-network decoder converges extremely well, as summarised in Fig. 8b for
code distance d= 77, allowing us to use χ= 8. For η= 30, the shift in logical failure
rate between χ= 8 and the largest χ shown is less than one fifth of a standard
deviation over 30,000 simulations, and for η > 30 the convergence is complete. All
other threshold estimates in Fig. 3, are included for context and use the same
simulation parameters as described above for Fig. 2.

All threshold error rates in this work are evaluated use the critical exponent
method of ref. 45.

The minimum-weight perfect-matching decoder. Decoders based on the
minimum-weight perfect-matching algorithm43,44 are ubiquitous in the quantum
error-correction literature5,14,37,45,75. The minimum-weight perfect-matching
algorithm takes a graph with weighted edges and returns a perfect matching using
the edges of the input graph such that the sum of the weights of the edges is
minimal. We can use this algorithm for decoding by preparing a complete graph as
an input such that the edges returned in the output matching correspond to pairs
of defects that should be locally paired by the correction. To achieve this we assign
each defect a corresponding vertex in the input graph and we assign the edges
weights such that the proposed correction corresponds to an error that occurred
with high probability.

The runtime of the minimum-weight perfect-matching algorithm can scale like
O(V3) where V is the number of vertices of the input graph44, and the typical
number of vertices is V=O(pd2) for the case where measurements always give the
correct outcomes and V=O(pd3) for the case where measurements are unreliable.

The success of the decoder depends on how we choose to weight the edges of
the input graph. Here we discuss how we assign weights to the edges of the graph.
It is convenient to define an alternative coordinate system that follows the
symmetries of the code. Denote by f 2 Dj sets of faces aligned along a diagonal line
such that S ¼ Q

f2Dj
Sf is a symmetry of the code with respect to Pauli-Z errors, i.e.

S commutes with Pauli-Z errors. One such diagonal is shown in Fig. 1(e). Let also
D0

j be the diagonal sets of faces that respect symmetries introduced by Pauli-X
errors.

Let us first consider the decoder at infinite bias. We find that we can decode the
lattice as a series of one-dimensional matching problems along the diagonals Dj at

infinite bias. Any error drawn from the set of Pauli-Z errors EZ must create an even
number of defects along diagonals Dj . Indeed, S ¼

Q
f2Dj

Sf is a symmetry with

respect to EZ since operators S commute with errors EZ . In fact, this special case of
matching along a one-dimensional line is equivalent to decoding the repetition
code using a majority vote rule. As an aside, it is worth mentioning that the

parallelised decoding procedure we have described vastly improves the speed of
decoding in this infinite bias limit.

We next consider a finite-bias error model where qubits experience errors with
probability p. Pauli-Z errors occur at a higher rate, ph.r.= pη/(η+ 1), and Pauli-X
and Pauli-Y errors both occur at the same low error rate pl.r.= p/2(η+ 1). At finite
bias, string-like errors can now extend in all directions along the two-dimensional
lattice. Again, we use minimum-weight perfect matching to find a correction by
pairing nearby defects with the string operators that correspond to errors that are
likely to have created the defect pair.

We decode by giving a complete graph to the minimum-weight perfect-
matching algorithm where each pair of defects u and v are connected by an edge of
weight � �log probðEu;vÞ, where prob(Eu,v) is the probability that the most
probable string Eu,v created defects u and v. It remains to evaluate �log probðEu;vÞ.

For the uncorrelated noise models we consider, �log probðEu;vÞ depends,
anisotropically, on the separation of u and v. We define orthogonal axes x0(y0) that
align along (run orthogonal to) the diagonal line that follows the faces of Dj . We
can then define separation between u and v along axes x0 and y0 using the
Manhattan distance with integers lx0 and ly0 , respectively. On large lattices then, we
choose �log probðEu;vÞ / wh:r:lx0 þ wl:r:ly0 where

wl:r: ¼ �log
pl:r:
1� p

� �
; wh:r: ¼ �log

ph:r:
1� p

� �
: ð5Þ

The edges returned from the minimum-weight perfect-matching algorithm43,44

indicate which pairs of defects should be paired. We note that, for small,
rectangular lattices with periodic boundary conditions, it may be that the most
probable string Eu,v is caused by a large number of high-rate errors that create a
string that wraps around the torus. It is important that our decoder checks for such

strings to achieve the logical failure rate scaling like Oðpd2=2h:r: Þ. We circumvent the
computation of the weight between two defects in every simulation by creating a
look-up table from which the required weights can be efficiently retrieved.
Moreover, we minimise memory usage by taking advantage of the translational
invariance of the lattice.

We finally remark that our minimum-weight perfect-matching decoder
naturally extends to the fault-tolerant regime. We obtain this generalisation by
assigning weights to edges connecting pairs of defects in the 2+ 1-dimensional
syndrome history such that

�log probðEu;vÞ / lx0wh:r: þ ly0wl:r þ ltwt ; ð6Þ

where now we have lt the separation of u and v along the time axis, wt ¼
�log q

1�q

� �
and q= ph.r.+ pl.r.. In the limit that η= 1/2 our decoder is equivalent

Fig. 8 Optimal threshold sample distribution and decoder convergence. a Distribution of 211 samples over the surface of all single-qubit Pauli noise
channels. To construct each threshold surface of Fig. 2, by code symmetry, thresholds are estimated for 111 of these samples. b Tensor-network decoder
convergence for the 77 × 77 XZZX surface code with Z-biased noise, represented by shifted logical failure rate fχ− f24, as a function of truncated bond
dimension χ at a physical error probability p near the zero-rate hashing bound for the given bias η. Each data point corresponds to 30,000 runs with
identical errors generated across all χ for a given bias.

Fig. 9 A low-weight error that causes a logical failure. The error consists
of ~d/4 high-rate errors and ~d/4 low-rate errors along the support of a
weight d logical operator.
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to the conventional minimum-weight perfect-matching decoder for
phenomenological noise45.

Ansatz at low error rates. In the main text we proposed a regime at low
error rates where the most common cause of logical failure is a sequence of
~ d/4 low-rate and ~ d/4 high-rate errors along the support of a weight d logical
operator; see Fig. 9. Here we compare our ansatz, Eq. (3) with numerical data to
check its validity and to estimate the free parameter γ.

We take the logarithm of Eq. (3) to obtain

log Plin: � nlog ð1� pÞ þ γdlog 2þ d
2
log

p
1� p

� �
þ d

4
log

ηþ 1=2

ðηþ 1Þ2
" #

: ð7Þ

Neglecting the small term nlog ð1� pÞ we can express the this equation as logP �
Gðp; ηÞd where we have the gradient

Gðp; ηÞ ¼ 1
2
log

p
1� p

� �
þ γlog 2þ 1

4
log

ηþ 1=2

ðηþ 1Þ2
" #

: ð8Þ

In Fig. 10a we plot the data shown in the main text in Fig. 6b as a function of d to
read the gradient G(p, η) from the graph. We then plot G(p, η) as a function of
β ¼ log ½p=ð1� pÞ� in the inset of Fig. 10a. The plot reveals a gradient ~0.5,
consistent with our ansatz where we expect a gradient of 1/2. Furthermore, at p= 0
we define the restricted function

IðηÞ � Gðp ¼ 0; ηÞ ¼ γlog 2þ 1
4
log

ηþ 1=2

ðηþ 1Þ2
" #

: ð9Þ

We estimate I(η) from the extrapolated p= 0 intercepts of our plots, such as
shown in the inset of Fig. 10a, and present these intercepts a function of
log ½ðηþ 1=2Þ=ðηþ 1Þ2�; see Fig. 10b. We find a line of best fit with gradient
0.22 ± 0.03, which agrees with the expected value of 1/4. Moreover, from the
intercept of this fit, we estimate γ= 1.8 ± 0.06, which is consistent with 3/2 ≤ γ ≤ 2
that we expect49. Thus, our data are consistent with our ansatz, that typical error
configurations lead to logical failure with ~d/4 low-rate errors.

Data availability
The data that support the findings of this study are available at https://bitbucket.org/
qecsim/qsdxzzx/.

Code availability
Software for all simulations performed for this study is available at https://bitbucket.org/
qecsim/qsdxzzx/ and released under the OSI-approved BSD 3-Clause licence. This
software extends and uses services provided by qecsim78,79, a quantum error-correction
simulation package, which leverages several scientific software packages44,80–82.
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