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Leveraging systems biology for predicting modulators 
of inflammation in patients with COVID-19
Sascha Jung1*, Ilya Potapov2*, Samyukta Chillara1, Antonio del Sol1,2,3†

Dysregulations in the inflammatory response of the body to pathogens could progress toward a hyperinflammatory 
condition amplified by positive feedback loops and associated with increased severity and mortality. Hence, there 
is a need for identifying therapeutic targets to modulate this pathological immune response. Here, we propose a 
single cell–based computational methodology for predicting proteins to modulate the dysregulated inflammatory 
response based on the reconstruction and analysis of functional cell-cell communication networks of physiological 
and pathological conditions. We validated the proposed method in 12 human disease datasets and performed an 
in-depth study of patients with mild and severe symptomatology of the coronavirus disease 2019 for predicting 
novel therapeutic targets. As a result, we identified the extracellular matrix protein versican and Toll-like receptor 2 
as potential targets for modulating the inflammatory response. In summary, the proposed method can be of great 
utility in systematically identifying therapeutic targets for modulating pathological immune responses.

INTRODUCTION
Inflammation is a key defense mechanism to pathogenic factors, such 
as infection, chemical substances, or tissue injury, which is mediated 
by tissue resident and circulating cells recruited from the blood 
through the establishment of chemokine gradients. To modulate the 
level of inflammation, these cells release cytokines to communicate 
with each other and activate cell type–specific functions necessary 
to clear the pathogenic factor. For instance, phagocytic activity 
removes cellular debris and pathogens, thereby suppressing inflam-
mation through the release of anti-inflammatory cytokines, such as 
interleukin-10 (IL-10) and transforming growth factor– (1). Typi-
cally, the immune response is tightly controlled to minimize tissue 
injury and restore homeostasis. However, in case the pathogenic 
factor cannot be cleared, an acute inflammatory response progresses 
toward a hyperinflammatory condition, commonly referred to as 
“cytokine storm,” due to an excessive release of cytokines and an 
accumulation of immune cells in the tissue.

Recently, a novel, highly contagious coronavirus [severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2)] has been iden-
tified as the causative pathogen of an ongoing outbreak of viral 
pneumonia [coronavirus disease 2019 (COVID-19)]. Accumulating 
evidence suggests that patients with severe symptomatology of 
COVID-19 develop such a hyperinflammatory immune response, 
similar to other respiratory infectious diseases such as influenza 
infection (2). Although initial studies have begun to arise in which 
the immune status of patients is assessed (3, 4), the molecular mech-
anisms underlying the hyperinflammatory response of patients with 
more severe symptoms are not readily known. Hence, the present 
challenge is how to mitigate this cytokine storm while not impairing 
viral clearance.

Cytokine storms are most often characterized by high levels of 
tumor necrosis factor (TNF), interferons, and IL-6, as well as the 

accumulation of immune cells in the tissue (5–7). However, the com-
position of proinflammatory ligands involved in cytokine storms 
depends on the viral pathogen. For instance, in patients with SARS, 
hyperinflammation is characterized by high levels of interferon- 
(IFNG), IL-18, and lymphotoxin- (LT-), whereas patients with 
severe influenza infections present high levels of TNF, IL-6, and IL-1 
(6, 7). Moreover, cytokine storms are mediated by interactions be-
tween immune and nonimmune cells, which form positive feedback 
loops responsible for amplifying and maintaining the immune re-
sponse. These loops are composed of cell-cell interactions for which 
incoming signals induce outgoing signals in each participating cell 
population. For example, in case of influenza infection, a positive 
feedback loop involves the production of IL-1 and TNF by macro-
phages in response to granulocyte-macrophage colony-stimulating 
factor released by nonhematopoietic cells (8). In the case of Epstein- 
Barr virus infection, the hyperinflammatory response is amplified by 
multiple, interconnected positive feedback loops between dendritic 
cells, CD8+ T cells, natural killer (NK) cells, and macrophages that 
involve several proinflammatory cytokines, including IL-1, IL-6 and 
IL-18, IFNG, and TNF (9). However, in general, positive feedback 
loops responsible for the amplification of proinflammatory signals 
are largely unknown. Furthermore, they differ in the participating 
cell populations, as well as in the involved inflammatory molecules 
depending on the tissue type and the viral infection. Consequently, 
it is critical to characterize the positive feedback loops amplifying 
and maintaining the hyperinflammatory immune response to de-
velop therapeutic strategies for selectively disrupting cell-cell inter-
actions underlying these conditions.

The development of strategies for modulating the immune re-
sponse typically relies on the identification of biomarkers as thera-
peutic targets or the large-scale in vitro screening of compounds. 
While these approaches have led to the identification of immuno-
modulatory compounds for a diverse array of underlying diseases 
(10), they are laborious and resource intensive or, as in the case of 
biomarkers, mostly not efficacious, which impedes the design of 
novel therapeutic strategies for modulating inflammation. The upsurge 
of single-cell sequencing technologies has enabled the analysis of 
multiple cell populations in a tissue at an unprecedented resolution 
and permits the development of computational methods that could 
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identify immunomodulatory therapeutic targets and compounds 
inhibiting them. To date, great efforts have been devoted to the dis-
covery of biomarkers and drug-target interactions (11–13). However, 
to our knowledge, no computational method for predicting immuno-
modulatory target proteins that could alleviate pathologic dysregu-
lations of the physiological immune response exists.

To address this issue, we present a single cell–based computational 
method for the systematic prediction of protein targets to modulate 
the inflammatory response. In particular, given two tissue-specific 
single-cell profiles of a dysregulated immune response and a physio-
logical control, our method infers the functional cell-cell communi-
cation networks of both conditions by integrating a collection of 
1756 extracellular receptor-ligand interactions from more than 6000 
protein-protein interactions (PPIs) with intracellular signaling and 
gene regulatory networks. Once the functional cell-cell communi-
cation network has been inferred, to construct positive feedback 
loops, the method searches for those interactions causing the ex-
pression of ligands secreted by this cell population. As a plausible 
therapeutic strategy to modulate the pathological immune response, 
we propose to target these positive feedback loops. In this regard, 
our method simulates the effect of perturbing receptor-ligand inter-
actions, prioritizes genes specifically disrupting pathological while 
preserving physiological feedback loops, and links them to compounds 
targeting them. To validate our method for predicting immuno-
modulatory target proteins and to demonstrate its general applicability, 
we applied it to 12 disease pathologies characterized by hyperinflam-
matory or chronic inflammation and were able to validate 90% of 
the predicted target proteins. Similar to a hyperinflammatory immune 
response, the released cytokines under chronic inflammatory condi-
tions are highly promiscuous, depend on the causative pathogenic 
factor and the affected tissue, and form positive feedback loops to 
amplify and maintain an elevated immune response (5–7, 14).

Last, we applied our method to a recently published dataset of 
bronchoalveolar lavage fluid from patients with mild and severe 
symptomatology of COVID-19 (15). Our method revealed that the 
hyperinflammatory response in patients with severe symptomatology 
is maintained by interconnected feedback loops involving multiple 
proinflammatory cytokines and extracellular matrix proteins as well 
as the reprogramming of the anti-inflammatory immune response 
by IL-10 into a proinflammatory phenotype. In addition, we demon-
strate that T cell recruitment is impaired because of the disruption 
of a feedback mechanism between T cells, secretory epithelial cells, 
and macrophages, which explains the defective viral clearance in 
patients with severe symptomatology. Last, computational pertur-
bation of genes involved in causal feedback loops identified versican 
(VCAN), an extracellular matrix glycoprotein, and Toll-like receptor 2 
(TLR2) as novel target proteins for alleviating the hyperinflammatory 
response in patients with COVID-19 with severe symptomatology. 
Thus, in summary, we believe that this method can be of great utility 
in the systematic identification of therapeutic targets for modulating 
pathological immune responses.

RESULTS
Elucidating positive feedback loops in cell-cell communication 
networks for predicting immunomodulatory target proteins 
and compounds in diverse disease pathologies
Because of the well-established effect of cellular feedback in the 
control of the inflammation, we hypothesized that the positive feed-

back loops established between immune and nonimmune cells are 
responsible for amplifying and maintaining an elevated immune 
response. To detect these feedback loops, we first set out to recon-
struct the ligand-receptor–mediated cell-cell communication net-
work within a tissue (Fig. 1A). In this regard, we manually curated 
more than 6000 PPIs between receptors and ligands and identified 
1756 experimentally validated, extracellular interactions (table S1). 
Next, we integrated this set of high-confidence interactions with 
intracellular signaling and gene regulatory networks to infer the 

Fig. 1. Method overview and validation in 11 disease pathologies. (A) The method 
workflow consists of the following steps: (1) single-cell RNA sequencing (RNA-seq) 
data with cell type (CT) annotations as an input; (2) each population is examined 
for the persistent signaling flow from receptors via signaling molecules (pathways) 
to the phenotype-determining TFs; (3) the phenotype-maintaining receptors form 
the final interactome along with their cognate ligands from other populations; (4) 
the interactome is further examined for presence of the positive feedback loops, 
extracellular (from ligands to receptors) and intracellular (from receptors via signaling 
pathways to ligands) paths that maintain each other by forming closed loops; (5) 
disease-specific ligands and receptors that are responsible for the formation of the 
feedback loops and are ranked on the basis of their ability to disrupt the positive 
feedback loops unique to pathological immune responses; (6) high-scoring genes 
are mapped to DrugBank for identifying inhibitory compounds. (B) Percentage of 
predicted target proteins with literature evidence per example. Except in peripheral 
age-related macular degeneration (15%) and Crohn’s disease (60%), all predicted 
target genes are validated. AERD, aspirin-exacerbated respiratory disease.
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cell-cell communication network and positive feedback loops (Fig. 1A). 
In particular, we first selected transcription factors (TFs) whose 
expression is preserved across cells in each population and, second, 
identified the active receptors regulating them using a Markov chain 
model that assess signal transduction probabilities. Last, cognate 
ligands were identified for each active receptor, which are expressed 
in more than 5% of the secreting cell population. Only statistically 
significant ligand-receptor interactions remained in the final cell-cell 
communication network of each condition, assessed by the strength 
of each interaction compared to all potential interactions. Once the 
functional cell-cell communication network has been inferred, the 
method searches for those interactions causing the expression of 
ligands secreted by the receiving population by warranting the exis-
tence of a sustained regulatory path from the receptor to the ligand 
(see Materials and Methods for details). Positive feedback loops are 
lastly established by combining extracellular and intracellular ligand- 
receptor interactions. A detailed description of the methodology can 
be found in Materials and Methods.

To predict immunomodulatory target proteins, we propose to 
score genes by their ability to disrupt positive feedback loops when 
perturbed. Namely, given the positive feedback loops underlying 
pathological and physiological immune responses, each gene is 
synthetically removed from the feedback loops unique to the patho-
logical condition. The fraction of ligands and receptors that are re-
moved by this synthetic perturbation serves as a score for the gene. 
We score only those feedback loops and genes that differ between 
the pathological and corresponding physiological conditions. Last, 
the method extracts information from DrugBank (16) to select drug 
candidates targeting the highly scored genes (see Materials and 
Methods for details).

We set out to validate our approach for identifying immuno-
modulatory proteins and to demonstrate its general applicability by 
applying it to a vast array of diseases that are characterized by a 
pathological immune response. In particular, the considered pathol-
ogies include autoimmune diseases, such as lupus nephritis, chronic 
diseases, such as Crohn’s disease and type II diabetes, as well as 
allergic conditions, such as aspirin-exacerbated respiratory disease 
(table S2). As a result, we identified a median of two top-ranking 
target proteins having the highest scores, with two notable exceptions. 
In particular, in case of liver cirrhosis and age-related macular 
degeneration samples from the peripheral eye region, our method 
identified 15 and 20 target proteins, respectively. Validation with 
previous literature revealed evidence for, on average, 90% of the pre-
dicted immunomodulatory proteins (Fig. 1B and table S3). Never-
theless, only 60 and 15% of proteins predicted for Crohn’s disease 
and peripheral age-related macular degeneration samples could be 
validated, respectively.

Mild and severe COVID-19 manifestations have distinct 
transcriptional profiles
We sought to perform an in-depth case study and analyzed recently 
published single-cell RNA sequencing (RNA-seq) data of nine Chinese 
patients with COVID-19 with mild and severe symptomatology and 
three healthy individuals (15). For each group, we aggregated data 
of different patients presenting with mild and severe symptoms and 
healthy individuals into a single representative sample of each con-
dition and clustered cells to identify cell types using known sets of 
markers (15). We identified 15 common cell types for both groups: 
B cells, CCR7+ T cells, CD8+ T cells, proliferating T cells, innate 

T cells, regulatory T cells, four subpopulations of macrophages (Mac1 
to Mac4), ciliated cells, secretory cells, plasma cells, myeloid dendritic 
cells (mDCs), and NK cells. In addition, neutrophils and mast cells 
were uniquely identified in the severe cases. (Fig. 2A and fig. S1A).

Before reconstructing the cell-cell communication networks 
underlying both conditions, we performed differential expression 
analysis of each cell type under both conditions. As a result, we 
observed that the mild and severe groups significantly differ in the 
levels of expression of inflammatory molecules (Fig. 2, B and C). 
For instance, chemokines, including CCL2 (CC chemokine ligand 2), 
CCL3, CCL4, and CCL8, are significantly up-regulated in nearly all 
cell types of patients with severe symptoms. In contrast, chemokines, 
such as CXCL2 (C-X-C motif chemokine ligand 2), CXCL3, and 
CXCL9, together with their receptor CXCR4 (C-X-C motif chemo-
kine receptor 4), are up-regulated in specific cell types such as in 
macrophages. In addition, certain pro- and anti-inflammatory 
cytokines and their receptors have elevated levels under the severe 
condition, such as IL-6 and its receptor in macrophages, IL-18 in 
ciliated cells, IL-4R (IL-4 receptor) and IL-7R. On the contrary, among 
the up-regulated cytokines under the mild condition are IL-18 in macro-
phages, CCL20 in innate and regulatory T cells, CXCR6 in NK cells, 
and VASP (vasodilator-stimulated phosphoprotein) protein in certain 
macrophage populations and T cells. Known anti-inflammatory cyto-
kines do not show consistent differential expression. Thus, for example, 
the expression of IL-10 is marginally elevated in Mac3 and regulatory 
T cell populations of the severe cases, whereas the expression level of 
IL-1R2 (IL-1 decoy receptor) and IL-1 receptor antagonist (IL-1RN) 
is elevated in all macrophage populations and mDCs. In contrast 
to patients with COVID-19, samples obtained from healthy individ-
uals do largely not display expression of cytokines and chemokines 
(fig. S1, B and C). Notably, CXCL16, the cognate ligand of CXCR6, is 
expressed in most cells and cell types, which suggests that with increas-
ing severity, CXCL16 expression is substantially decreased (fig. S1D).

Disease severity is characterized by specific cell-cell 
communication networks
To elucidate the intercellular interactions maintaining the differences 
in the expression of ligands and receptors, we use our method to 
reconstruct the cell-cell communication networks underlying mild 
and severe disease courses and observed vast differences, which is 
signified by a 33% increase in interactions in severe cases (Fig. 3A). 
Despite the observed increase in cell-cell interactions, the number 
of unique molecules per condition that are involved in extracellular 
signaling remains low. The severe condition is characterized by 
interactions involving the proinflammatory cytokines IL-1B, IL-1A, 
TNF superfamily member 4 (TNFSF4), and thymic stromal lympho-
poietin. In contrast, the mild condition is distinguished by ligands 
promoting lymphocyte migration, such as CXCL13, CCL24, CCL7 
and CCL20 as well as cell-adhesion mediators including tenascin C 
(TNC). The unique interactions involving these ligands cannot be 
fully explained by differential expression analysis. For instance, IL-21 
nor its receptor IL-21R is differentially expressed in any cell type. 
However, a significant difference in the signal transduction proba-
bilities of IL-21R can be observed in proliferating T cells, which 
underscores the advantages of our approach (Fig. 3, B and C).

Next, we investigated whether unique interactions can be explained 
by differences in the composition of cell populations between the 
two conditions. While the relative proportion of most cell popula-
tions in the cell-cell communication networks differs by at most 1%, 
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neutrophils and mast cell interactions are specific to severe disease 
courses. Consistent with their role in the induction of inflammation 
(17, 18), these cells release proinflammatory cytokines, such as TNF, 
IL-1B, IL-18, and oncostatin M, responsible for the positive regulation 
of nuclear factor B of activated B cells. Further, neutrophils and 
mast cells express receptors of proinflammatory cytokines including 
TNF receptor 1, interferon- receptor 2, IL-18R, and the mast cell 
growth factor receptor KIT, which suggest their involvement in 
proinflammatory feedback mechanisms (Fig. 3, D and E).

Distinct cellular feedback mechanisms control the inflammatory 
response in patients with mild and severe COVID-19
Although a plethora of clinical trials has been performed or is cur-
rently ongoing that probed the efficacy of drugs in the treatment of 

patients presenting with a hyperinflammatory immune response, no 
effective treatment has been found. Therefore, we sought to apply 
our methodology to identify proteins that could be targeted for 
modulating the immune response in patients with severe symptom-
atology of the COVID-19. In this regard, we first identified the 
positive feedback loops underlying mild and severe cases, respectively, 
and detected three groups (fig. S2). The first group signifies the 
immune response common to patients with severe and mild symp-
tomatology and is characterized by feedback between pro- and 
anti-inflammatory cytokines predominantly released by macrophages 
and dendritic cells (table S4). In particular, proinflammatory cytokine 
signaling by TNF and IFNG is fine-tuned by anti-inflammatory 
ligands, such as IL-10 and the TNF receptor antagonist progranulin 
(GRN). In contrast, the second and third groups contain interactions 

Fig. 2. Transcriptional characterization of bronchoalveolar lavage fluid samples of patients with COVID-19. (A) UMAP (uniform manifold approximation 
and projection) representation of integrated samples from patients with mild (left) and severe (right) symptoms. Treg, regulatory T cells. (B) Expression of selected pro- and 
anti-inflammatory cytokine and chemokine receptors per identified cell type in patients with mild (top) and severe (bottom) symptoms. (C) Expression of selected pro- and 
anti-inflammatory cytokines and chemokines per identified cell type in patients with mild (top) and severe (bottom) symptoms.
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unique to patients with mild and severe pathologies, respectively. In 
contrast to patients with COVID-19, healthy individuals display only 
a single positive feedback loop between fibronectin (FN1) and 
plasminogen activator, urokinase receptor (PLAUR) not involving 
any cytokines or chemokines, as expected from the transcriptional 
analysis. To gain insights into the individual stabilizing mechanisms 
of the immune response in patients with mild and severe sympto-
matology, we set out to characterize the feedback mechanisms 
underlying both groups.

Promotion of lymphocyte survival and recruitment 
in patients with mild symptomatology
Analysis of the cell-cell communication landscape of mild cases re-
veals two distinct clusters of positive feedback loops unique to this 
condition. The first cluster consists of B cells secreting macrophage 
inhibitory factor (MIF), which is sensed in an autocrine and paracrine 
manner by human leukocyte antigen class II histocompatibility 
antigen gamma chain (CD74). This interaction induces B cell 
survival and proliferation through activation of the PI 3-kinase/Act 
pathway, thus, rescuing them from apoptosis (19). The absence of 

autocrine and paracrine MIF stimulation of B cells in patients 
with severe symptomatology suggests an impaired B cell response 
to SARS-CoV-2 due to increased apoptosis.

In contrast to the first cluster, the second group of interconnected 
feedback loops involves a chemotactic interaction between CXCL16 
and CXCR6. In particular, CXCL16 and CXCR6 belong to a causal 
feedback loop between T cells, secretory epithelial cells, and macro-
phages (Fig. 4A). According to our model, CXCR6 activates IFNG 
release in innate T cells, which is received by IFNGR1 (IFNG 
receptor 1) in secretory cells. In turn, IFNG induces the expression 
of TNC, an extracellular glycoprotein up-regulated in infected 
tissues, which binds to TLR4 and results in secretion of CXCL16. 
Mechanistically, the interaction between CXCL16 and CXCR6 is 
necessary for the recruitment of T lymphocytes to infected tissues. 
The absence of this interaction together with a 56% decline in 
innate T cells expressing CXCR6 demonstrates the impaired innate 
T cell recruitment in patients with severe symptomatology (Fig. 4B). 
In summary, the feedback loops unique to mild disease courses 
contribute to survival and recruitment of B and T lymphocytes 
required for viral clearance.

Fig. 3. Cell-cell communication network analysis of patients with COVID-19. (A) Number of interactions detected in each cell-cell communication network. (B) Differ-
ential signaling activity of ligands and receptors involved in immune response based on SigHotSpotter. (C) Differential expression of ligands and receptors involved in 
immune response. Dots represent significant differences [adjusted P < 0.05, obtained by MAST analysis, Seurat implementation (34, 35)]. (D and E) Expression of receptors 
characteristic for neutrophils (D) and mast cells (E) under both conditions. JAK1, Janus kinase 1; TYK2, tyrosine kinase 2.
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Hyperinflammation is maintained in patients with  
severe symptomatology
In addition to mild disease cases, we analyzed the causal feedback 
loops identified in patients with severe symptomatology to charac-
terize distinct patterns in the immune response. Severe COVID-19 
cases are known to develop a hyperinflammatory response to SARS-
CoV-2, which is characterized by an excess of proinflammatory cyto-
kine secretion (20). To elucidate the mechanism that maintains the 
excessive release of cytokines in severe cases, we first performed a 
topological analysis of the interconnected feedback loops and assessed 
differences in network stability between mild and severe cases. In 
contrast to mild cases, we observed a threefold increase in the inter-
connectivity of the feedback loops (density, 0.219 and 0.072), which 
can be attributed to the establishment of redundancy in receptor 
activation. While, in mild cases, each receptor is activated by a 
median of one ligand, a median of three ligands activates each 
receptor in severe cases according to our model (one-sided Wilcoxon 
rank sum test, P = 0.009). In addition, the number of induced ligands 
per receptor significantly decreases (one-sided Wilcoxon rank sum 
test, P = 0.002), which implies that more cellular populations partic-
ipate in the formation of causal feedback loops in severe cases com-
pared to mild disease courses. In summary, patients with severe 
symptomatology show a significant redundancy in the activation of 
receptors and intracellular signaling cascades. Because of the involve-
ment of an increased number of cellular populations in the activa-
tion of these receptors, a stable feedback regulation is established 
that is robust to fluctuations in ligand secretion.

Next, we sought to determine whether this stable feedback regu-
lation maintains the hyperinflammatory immune response by secre-
tion of proinflammatory cytokines. In contrast to patients with mild 
symptoms, we observed causal feedback loops involving an array of 
proinflammatory cytokines, namely, TNF, IFNG, LT-, IL-27, IL-6, 
IL-15, and IL-18. Moreover, these loops contain the extracellular 
matrix proteins FN1, VCAN, and PLAU, which suggests the induction 
of proinflammatory ligand secretion by cell adhesion. In agreement 
with previous reports, our model predicts that these genes induce 
the expression of the proinflammatory cytokines IL-15 and IFNG 
(21, 22). Therefore, the hyperinflammatory condition in patients 
with severe COVID-19 symptomatology is maintained by the redun-
dant secretion of proinflammatory cytokines and signaling through 
extracellular matrix proteins that reinforces their induction.
IL-10 induces the expression of proinflammatory cytokines 
in macrophages
In addition to the maintenance of proinflammatory cytokine release 
through interconnected feedback loops in patients with severe 
symptomatology, our model predicts that IL-10 induces proinflam-
matory molecules, including IL-18, FN1, PLAU, and VCAN, in a 
subpopulation of macrophages, despite its known role as an anti- 
inflammatory cytokine (23). IL-10 signaling has been shown to sup-
press proinflammatory cytokine expression through the activation 
of the signal transducer and activator of transcription 3 (STAT3). 
In addition, it also can activate STAT1 and STAT5 (24). Because of the 
induced expression of proinflammatory cytokines in our model, we 
investigated which downstream TFs are activated by IL-10 signaling 

Fig. 4. Prediction of immunomodulatory proteins in patients with severe COVID-19. (A) A feedback loop between T cells, secretory epithelial cells, and macrophages 
maintain T cell recruitment in patients with mild symptoms. (B) Expression of CXCR6 across cell populations in mild and severe cases. (C) Predicted scores for each potential 
target protein expressed as the percentage of inflammatory feedback loops inhibited after computational perturbation. (D) Uninterrupted feedback loops after compu-
tational inhibition of VCAN in patients with severe symptoms.
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in our model and observed that only STAT1, but not STAT3, is ac-
tivated in macrophages. This finding is consistent with a previous 
study demonstrating that IL-10 is reprogrammed toward STAT1 
induction in the presence of IFNG, which establishes a proinflamma-
tory gene expression profile (25). To further support this finding, we 
investigated whether known proinflammatory target genes of IL-10 
signaling are elevated in this subpopulation compared to patients 
with mild symptoms where IL-10 signaling activates both STAT1 and 
STAT3. We observed a statistically significant increase in the expres-
sion of IL-6, CXCL8, vascular endothelial growth factor, and IL-17R 
(P < 6.58 × 10−7), the major targets of IL-10 (25, 26). Together, this 
indicates that IL-10 signaling contributes to the establishment of a 
proinflammatory gene expression profile in a subpopulation of 
macrophages by activating STAT1, but not STAT3.

Modulating inflammation in patients with severe  
COVID-19 symptomatology
After characterizing the molecular differences and commonalities in 
patients with mild and severe COVID-19 pathologies, we set out to 
identify potential target genes for modulating the immune response. 
Therefore, we sought to identify genes that could be targeted for 
modulating the immune response in patients with severe symptom-
atology. On the basis of the identified positive feedback loops in 
patients with mild and severe symptomatology, we simulated the ef-
fect of inhibiting ligands and receptors, by manually removing each 
gene individually from the positive feedback loops. Then, we ranked 
the perturbed genes by their ability to disrupt feedback loops unique 
to severe disease cases (see Materials and Methods for details). As a 
result, our simulation identifies VCAN and TLR2 as the top-ranking 
target genes whose inhibition disrupts 76 and 75% of the intercon-
nected feedback loops unique to severe cases, respectively, while not 
interfering with immune response mechanisms common to both 
cases (Fig. 4C). In particular, the maintenance of IL-6, IL-18, IL-15, 
and IL-27 and the induction of proinflammatory cytokines by IL-10 are 
fully disrupted according to our model, while the anti-inflammatory, 
autocrine feedback of IL-21 in regulatory T cells remains intact 
(Fig. 4D). However, to date, no approved compound inhibiting VCAN 
exists. In addition, adapalene has been identified as an inhibitor of 
TLR2. However, its current application form (topical administration) 
is not readily suitable for patients with COVID-19.

Last, we aimed at validating the predicted molecules using two 
independent bronchoalveolar lavage fluid samples from German 
patients with severe symptomatology (27). Using our methodology, 
we reconstructed the positive feedback loops and compared it against 
the previously detected positive feedback loops of patients with mild 
symptomatology. As a result, TLR2 and VCAN were able to disrupt 
the fifth and sixth most feedback loops, only exceeded by CCR6, its 
cognate ligand CCL20, IL-2RG, and syndecan 1. In contrast to the 
cell-cell interactome of the German patients where the interaction 
between CCL20 and CCR6 is present, it could not be detected in the 
cell-cell interactomes of Chinese patients, since the receptor was not 
significantly associated with the expression of downstream TFs, which 
warrants the comparison to samples from patients with mild symp-
toms having the same genetic background.

DISCUSSION
In this study, we proposed a computational model for predicting 
immunomodulatory compounds and target proteins to treat severe 

symptomatology in patients with COVID-19. The model integrates 
both intra- and extracellular signaling interactions with gene regu-
latory networks. Unlike current strategies for identifying potential 
immunomodulatory proteins and compounds, our method detects 
and exploits the amplifying feedback loops governing the dysregu-
lated inflammatory response, thereby providing a holistic view of the 
extracellular cell-cell communication network underlying the disease 
pathology. In addition, not only the extracellular signaling is modeled 
by evidence-based cognation of ligand and receptors, but it is also 
further scrutinized in light of the compatibility with downstream 
intracellular signaling cascades. In contrast to current strategies for 
predicting immunomodulatory proteins and compounds, to our 
knowledge, this is the first method incorporating molecular infor-
mation about inflammatory processes.

The proposed methodology relies on positive feedback loops, 
which play a key role in the amplification of the immune response 
to pathogenic factors (8, 9). Although positive feedback loops can 
be observed in physiological immune reactions, a runaway inflam-
mation is prevented through the establishment of negative feedback 
loops (28). In contrast, pathological inflammation is characterized 
by the presence of positive feedback loops whose amplification is 
insufficiently restricted by negative feedback loops. Therefore, it is 
expected to find positive feedback loops under both conditions. In 
this regard, the proposed strategy of targeting positive feedback loops 
unique to pathological immune responses constitutes a rational 
approach for modulating inflammation, since it disrupts loops that 
are newly established and amplified because of the absence of suffi-
cient negative feedback.

The validity of our method was further corroborated by predicting 
immunomodulatory proteins and compounds targeting them in the 
context of 12 diseases characterized by a pathological immune re-
sponse. In particular, we were able to validate 93% of the top-ranking 
proteins with previous studies highlighting the efficacy of targeting 
these predicted genes. In the context of COVID-19, using our method, 
we were able to identify VCAN and TLR2 as potential targets for 
immunomodulatory attempts, which was further confirmed by 
analyzing two independent patients with severe symptomatology. 
VCAN is an extracellular matrix glycoprotein, which creates a strongly 
adhesive environment for monocytes and T cells (29, 30). In response 
to an acute inflammation, VCAN accumulates in the extracellular 
matrix of the inflamed tissue leading to accumulation of leukocytes 
(31). Previous studies showed that interference with VCAN signifi-
cantly dampens virus-induced inflammation and CCL2-induced 
monocyte migration (32). We hypothesize that the overexpression 
of VCAN in severe disease cases results in the excessive accumulation 
of proinflammatory monocytes in the lung, which is further supported 
by an increased number of monocytes. Thus, VCAN constitutes a 
plausible, novel target gene for modulating the hyperinflammatory 
response in patients with COVID-19 with severe symptomatology.

Despite the demonstrated ability of our method to predict immuno-
modulatory proteins and compounds, it has limitations. Namely, it 
requires single-cell RNA-seq data of tissues displaying pathological 
and physiological immune responses, which is currently not widely 
available. However, the steadily increasing availability of single-cell 
technologies and publicly available single-cell RNA–seq datasets 
is expected to alleviate this issue in the future. In addition, our 
method focuses on the effect of ligand-receptor–mediated cell-cell 
communication. Nevertheless, other signaling mechanisms exist 
that are important for establishing a proper inflammatory response, 
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such as through the exchange of exosomes (33), which could extend 
the current scope of this method. Last, accurate predictions of our 
method require the correct clustering and annotation of the input 
data. Although the inherent heterogeneity in single-cell data is an 
advantage in the detection of strong cell-cell interactions, artificial 
heterogeneity as a result of inaccurate cell type identification is a notable 
impediment to the detection of feedback loops. In particular, the asso-
ciation of ligands to causally dependent receptors inducing their ex-
pression requires the presence of a sustained regulatory path, which 
is crucially dependent on the cell type each cell is associated with.

In summary, the presented method provides the first strategy to 
systematically identify immunomodulatory proteins and the com-
pounds targeting them. Thus, we believe that it will be of great 
utility in the characterization of pathological immune responses 
and in the design of novel therapeutic interventions for a wide range 
of diseases associated with exuberant or persistent inflammation, 
including COVID-19.

MATERIALS AND METHODS
Single-cell RNA-seq data processing
Single-cell RNA-seq datasets were obtained from publicly available 
databases (table S2). Whenever possible, datasets were obtained in 
processed form. In case this was not possible, each dataset was pro-
cessed according to the guidelines in the original studies reporting 
them. Cell type identification for COVID-19 samples of German pa-
tients was performed by transferring the labels of COVID-19 samples 
of Chinese patients using Seurat’s “TransferData” function (34, 35).

Assembly of cell-cell communication scaffolds, intracellular 
signaling, and TF-gene regulatory interactions
A cell-cell communication scaffold was generated by manual curation 
of PPIs contained in iRefIndex (version 16, 09.10.2019) (36) and in 
a previously published dataset (37). PPIs from iRefIndex were se-
lected that showed taxon ID “9606,” interaction type “MI:0407 
(Direct Interaction)” and contained an HGNC (HUGO Gene 
Nomenclature Committee) symbol information for both interactors. 
Furthermore, the interaction had to involve one ligand and receptor, 
respectively, based on the definition provided in the Cell-Cell Inter-
action Database (38, 39). An interaction was included in the dataset 
if the binding occurred extracellularly.

The intracellular signaling network is composed of pathway in-
teractions included in OmniPath (40), Reactome (41), or MetaCore 
from Thomson Reuters. In particular, all pathways from MetaCore 
were obtained including all signal transduction interactions while 
discarding transcriptional gene regulatory interactions.

Gene regulatory interactions were obtained from MetaCore from 
Thomson Reuters, a manually curated resource of gene-gene inter-
actions, on 01.04.2019 for human genes. Only transcriptional regu-
latory interactions with known effects, i.e., activation or inhibition, 
were selected by filtering for “direct interactions” with reported effects 
“activation” or “inhibition.”

Inference of the cell-cell interactome
The main algorithm consists of four steps. First, preserved TFs of 
each cell type are detected. For that, the method discretizes the ex-
pression matrix, such that (non)zero counts become “1” (“0”), 
respectively, and selects TFs that are expressed in (i) at least 5% of 
cells of a given cell type and (ii) the 95 percentile of cells.

Second, preserved TFs are connected to the receptors inducing 
their expression using a Markov chain model of intracellular signaling, 
called SigHotSpotter (42). SigHotSpotter relies on single-cell RNA-seq 
data of a single cell type and an intracellular signaling network to 
simulate the traversal of an extracellular signal through the network 
as a discrete time Markov chain. Genes with the highest steady-state 
probability are selected and defined as being active or inactive depending 
on their compatibility with downstream, preserved TFs. Compatibility 
is determined by assessing the sign of all shortest paths between an 
intermediate molecule and its downstream TF targets. A path is con-
sidered activating if it consists an even number of inhibitions and 
inhibiting otherwise, such that both the intermediate and downstream 
TFs have to be expressed in case of an activating path and not expressed 
in case of an inhibiting path. An intermediate molecule is considered 
compatible if a significant number of its target is compatible and as-
sessed with a hypergeometric test (P cutoff = 0.05). Following the same 
rationale, receptors are identified that target intermediate molecules, 
which establishes a connection between receptors and preserved TFs.

Third, ligands expressed in at least 5% of cells of each cell type are 
selected. Last, ligand-receptor interactions are established between two 
cell populations if (i) the receptor was selected in the first step for the 
first population, (ii) the ligand was selected in the second step for the 
second population, and (iii) the receptor-ligand interaction is contained 
in cell-cell communication scaffold. Every interaction is augmented with 
an interaction strength defined as the product of the average receptor 
expression and average ligand expression in all cells of a population ex-
pressing the receptor or ligand, respectively. Significance of each inter-
action is determined on the basis of the scores of all cell-cell interactions 
in the cell-cell communication scaffold between the two interacting 
populations. Scores in the top quantile are considered significant.

Detection of positive feedback loops
Causal feedback loops were inferred following three steps. Initially, 
we linked each receptor in the cell-cell communication network to 
its coexpressed ligands in each cell population having a conserved 
regulatory path from the receptor. For that, we first transformed 
the expression data into binary values as described for the selection 
of preserved TFs. Then, significantly coexpressed ligands and re-
ceptors are detected by comparing the fraction of cells agreeing 
in binary receptor and ligand expression to a random distribution 
composed of coexpression values of randomly paired ligands and 
receptors in the same population. A P value below 0.05 is deemed 
significant. Eventually, conserved shortest paths between the recep-
tor and its coexpressed ligands are calculated on the TF-gene inter-
actomes (see above) using igraph (43). In particular, starting from 
TFs being targeted by the receptors in the cell-cell interactomes, the 
fraction of cells in a subpopulation sharing a shortest path to a co-
expressed ligand is computed when the receptor is active and inactive, 
respectively. A user-defined threshold for the minimum (maximum) 
fraction of cells having a conserved path when the receptor is active 
(inactive) links receptors to ligands intracellularly. Here, minimum 
and maximum thresholds of 0.4 and 0.25 were used, respectively.

To identify causal feedback loops, we combined cell-cell interac-
tions and intracellular links between receptors and the coexpressed 
ligands in a global network representation using igraph (43).

Identification of target proteins and compounds
Using the network of identified positive feedback loops under two 
conditions, the method computes potential target proteins defined 
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as being unique to the feedback loops of the pathologic condition. 
Each potential protein is scored as follows: First, the number of 
ligands participating in pathological feedback loops is computed on 
the basis of a manually assembled list. Subsequently, the strongly 
connected components of the pathological feedback loop graphs are 
computed after removing the potential target gene. Last, the fraction 
of removed ligands within strongly connected components is com-
puted, which serves as the score for the protein. Compounds inhibiting 
the top-scoring proteins are obtained from a list of drugs and their 
inhibited target proteins originally retrieved from DrugBank (16).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/6/eabe5735/DC1

View/request a protocol for this paper from Bio-protocol.
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