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Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that
a model of the enzymatic step catalized by phosphofructokinase (PFK), a step which is responsible for the appearance of
homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than
a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and equal
diffusion coefficients are assumed for ATP and ADP. We identify the enzyme concentration and the glycolytic flux as the
possible regulators of the pattern. To the best of our knowledge, this is the first closed example of Turing pattern formation in
a model of a vital step of the cell metabolism, with a built-in mechanism for changing the diffusion length of the reactants, and
with parameter values that are compatible with experiments. Turing patterns inside cells could provide a check-point that
combines mechanical and biochemical information to trigger events during the cell division process.
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INTRODUCTION
Concentration gradients inside the cytosol are a vital piece of the

cell’s machinery. They underlie morphogenesis [1], and are

involved in cell migration [2], cell growth [3], cell division [4], and

the mechanical responses that follow fertilization, among other

functions [5]. Stationary concentration gradients can spontane-

ously emerge from a homogeneous background in the presence of

instabilities. In 1952 Alan Turing proposed a hypothetical

sequential route for cell differentiation, based on a reaction-

diffusion process [6]. Starting from a spatially uniform state he

proved that stable inhomogeneities in ‘‘morphogen’’ concentration

could spontaneously emerge through a diffusion-driven symmetry-

breaking instability. His highly idealized model stimulated a large

amount of work which eventually led to the observation of Turing

patterns in open chemical reactors [7,8]. Nevertheless, the

occurrence of Turing patterns has not been unequivocally proven

for a biochemical reaction in which reaction rates, concentrations

and diffusion coefficients are within realistic physiological values.

We do so in this paper. More specifically, we show the existence of

cell-sized Turing patterns in a model of glycolysis, using realistic

parameter values and equal diffusion coefficients of ATP and ADP.

The general concept behind Turing patterns involves a combi-

nation of short-range activation and large-range inhibition [9].

Several reaction-diffusion models have been proposed in the

literature to explain, among others, coat patterns in mammals [9],

skin patterns in fish [10] or shell patterns in mollusks [11].

However, none of these models identifies the ‘‘morphogens’’

involved and some of the reaction schemes lack a biological

motivation. This gives almost unrestricted freedom to choose

kinetic parameters and diffusion ratios. Thus, the astonishing visual

similarities often observed between the predicted and the real

patterns might be unrelated to the actual biological phenomena.

One of the early attempts to look for an example of a symmetry

breaking mechanism in biology was due to I. Prigogine et al. [12].

They analyzed a spatially extended version of the (adiabatically

reduced) 2-variable Selkov model of glycolysis, derived in [13] (see

also [14,15]). Namely, they added diffusion terms to each of the two

differential equations describing the time evolution of the concen-

trations of ATP and ADP. It followed from their study that Turing

patterns could only exist provided that ATP and ADP diffused at

sufficiently unequal rates. This condition seems difficult to be met

a priori, given the similarities between ATP and ADP. More recently,

Hasslacher et al. [16] presented numerical simulations of Turing

pattern formation in a closely related model [17] that were obtained

assuming that ATP diffused 25 times faster than ADP. The authors

gave a qualitative justification for their choice of diffusivities making

an analogy between the role of enzymes in the glycolytic pathway

and that of the immobile color indicators used for visualization in

open chemical reactors [7,8] which effectively reduce the transport

rate of one of the species involved in the reactions [18]. However, the

argument that applied to the latter case cannot be translated to the

case of the glycolytic pathway without a deeper analysis. Firstly,

enzymes affect both the dynamics of ATP and ADP. Thus, the

rescaling of diffusion coefficients may occur in such a way so as to

prevent the formation of patterns. Second, when the 2-variable

reaction-diffusion model is obtained by the adiabatic reduction of the

larger set of equations in which the enzyme dynamics is explicitly

considered [19], the elimination of the fast variables (the enzymes)

introduces changes of the same order of magnitude in both the

diffusion and the reaction terms [20]. Thus, both changes need to be

considered simultaneously in order to analyze Turing pattern

formation in this setting. Finally, this theoretical discussion remains

meaningless unless reasonably sized patterns can be shown to exist

for realistic values of the reaction rates and of the free diffusivities.

In this paper we overcome the drawbacks of these previous works

by showing that the full 5-variable Selkov model describing the PFK-

controlled steps of the glycolytic pathway supports Turing patterns

for realistic reaction rates and equal diffusivities of ATP and ADP. We

show that Turing structures of subcellular size (10 mm) may be found

by increasing the glycolytic flux and the enzyme concentration while

keeping fixed the set of kinetic constants that give good agreement

with the classic experimental results on homogeneous oscillations in
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yeast extracts [21,22,23,24,14]. The emergence of these patterns can

be traced back to the differential interactions of ATP and ADP with

PFK and its complexes. We then conclude that the key enzymatic

step responsible for glycolytic oscillations may also provide a robust

mechanism for the formation of steady state inhomogeneities in the

concentration of ATP and ADP at the cellular and supracellular level.

RESULTS
The 5-variable Selkov model reads [13]:
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where E is the free enzyme (PFK), which can form the complexes,

ES2
c and S1ES2

c; the substrate, S1 (ATP) is supplied by an external

source at the rate, n1, and the product, S2
c (ADP) is removed by a first

order reaction at rate n2[S2]. From scheme (1) it is clear that the

enzyme is inactive unless it has c product molecules bound, forming

the complex ES2
c. As done in [13], we set c = 2 all throughout this

paper. It is this activating step of the allosteric enzyme which

provides the mechanism responsible for the instabilities. We assume

that ATP and ADP diffuse while the enzyme and its complexes are

immobile, due to the larger mass. We also assume that, initially, all

concentrations are spatially uniform. Using mass action kinetics, the

reaction-diffusion equations describing this model can be written, in

dimensionless form, as:
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where the dimensionless concentrations are:
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with e0, the total concentration of enzyme which remains constant

and uniform throughout the evolution. The other quantities are
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The dimensionless space and time coordinates are obtained by

dividing the dimensional ones by an arbitrary length-scale, L, and

T:
kz2zk{1

e0kz1kz2
, ð5Þ

respectively. Assuming that the diffusion coefficients of ATP (D1) and

ADP (D2) are equal (D;D1 = D2), we take L;10(DT)1/2. Using the

diffusion coefficients in vivo, D,150 mm2 s21 [25], we obtain

L = 122 mm (T s21)K. while the dimensionless diffusion coefficients

are d1 = d2 = 0.01. The relatively small amount of enzyme used in

experiments implies that e%1. For this reason, a quasi-steady state

approximation of Eqs. (2) was analyzed in [13] considering,

furthermore, spatially uniform concentrations.

We now constrain the values of the various parameters of Eqs.

(2) according to previous estimations and measurements

[13,15,26,21,22,23]. Under the experimental conditions of [22],

in which experiments are done using yeast extracts, the values of n1

and n2 at which the oscillations start are n1*,5.8 mMs21 and

n2*,0.04 s21 [15]. The enzyme is very diluted in these experi-

ments, with e0* between 3 and 10 mM, the average concentrations

of ATP and ADP are [S1*] = 630 mM and [S2*] = 150 mM,

respectively, while the period of the oscillations, T, is between 3

and 5 min [15]. It has been shown unequivocally that the

transition to oscillatory behavior in glycolysis is due to a Hopf

bifurcation [24]. This means that the transition can be generically

encountered by varying only one parameter. Equations (2) have

a single homogeneous fixed point solution that depends on several

parameters, which indeed undergoes a Hopf bifurcation. Thus,

there are various ways by which this bifurcation can be reached.

Among them, we choose the set of parameter values that are

compatible with the observed frequency of oscillations and ATP

and ADP concentrations. In particular, we find that at g = g* = 0.15,

n = n*<0.0041, e = e* = 1026, a = 15, K1 = 1500, K3 = 1, a Hopf

bifurcation occurs for the set of Eqs. (2) in the spatially homogeneous

case. Using the definitions of these dimensionless quantities in terms

of dimensional ones and the experimentally determined values,

n1*,5.8 mMs21 and n2*,0.04 s21, we obtain that the total amount

of enzyme at the Hopf bifurcation is e0 = e0*,7.9 mM and that the

various reaction rates satisfy

kz2&178 s{1,
1zK1

kz1
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kz3
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These numbers imply that, at the Hopf bifurcation, the stationary

homogeneous solution of Eqs. (2) occurs at [S1*],150 mM and

[S2*],145 mM, and that the dimensional period of the oscillations is

T*,2.7 min, which agrees with the experimentally determined

values. We show the oscillatory behavior of [ATP] and [ADP] close to

this bifurcation in Fig. 1 (a).

Given these previous estimates, we explore the behavior of Eqs.

(2), in the spatially extended case, varying the parameters n, g, and

e and keeping the purely kinetic constants, a, K1 and K3 fixed at the

previously mentioned values. We obtain the set of parameter

values for which the homogeneous stationary solution of Eqs. (1) is

unstable against spatially inhomogeneous perturbations (i.e., the

Turing space) by analyzing the dispersion relation of the linearized

evolution equations. We show in Fig. 1(b) the (dimensionless)

linear growth rate, q, of the unstable modes as a function of the

square of the (dimensionless) wavenumber, k, for n = 0.03,

g = 1.215, e = 0.0003. There is a bounded band of unstable
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modes for k?0, while for k = 0 (see the inset) the fixed point is

stable. We show in Fig. 1(c) the Turing space on the (n,g) plane for

e = 0.0003. As it may be observed, patterns may exist for larger

values of n1 as n2 also gets larger, i.e., as the glycolytic flux

increases. A similar picture holds on the (e,g) plane (data not

shown): no pattern is possible at low enzyme concentration (if

e#1024). We show in Fig. 1(d) the wave-length of the most

unstable mode, lc, when g and n are varied in the shaded region of

Fig. 1(c). We then conclude that the characteristic size gets smaller

as the rate of product removal, n2, becomes larger. We observe

that, for the parameter values considered, the length-scale is

always less than 23 mm, so that it can fit inside a typical cell. Using

the definition of e with the value of K1 = 1500 and the previous rate

constant estimates (Eqs. (6)) obtained at the Hopf bifurcation,

which we assume remain fixed, we conclude that e0$800 mM for

the Turing instability to occur. As we discuss later, the patterns

arise due to the effective rescaling of the diffusion coefficients of

ADP and ATP that the enzyme produces. This rescaling gets

smeared out as e0 decreases, leading, in turn, to the disappearance

of the patterns.

We finally integrate numerically Eqs. (2) in a square domain of

side 8L = 84.5 mm with periodic boundary conditions, using

a finite-difference scheme on a 1506150 square grid. Fig. 2 shows

the resulting pattern in S1 after 10 min have passed since the initial

situation, at which the concentrations are given by the homoge-

neous stationary solution ([S1] = 2.4 mM and [S2] = 71 mM), with

10% added noise. The typical size of the pattern agrees with the

critical wavelength of the linear stability analysis, lc <12 mm. The

simulation shows that Eqs. (2) support stable Turing patterns with

equal diffusion coefficients of ATP and ADP. The existence of these

patterns can be understood in terms of the reduced set of equations

obtained in the quasi-steady state approximation [19,20,27]. The

effective diffusion coefficients of ATP and ADP that are obtained in

this approximation are different due to the different interaction of

ATP and ADP with the enzymes that belong to the pathway. In this

scheme, ATP cannot bind to the immobile activated complex

unless c = 2 ADP molecules are already bound. Thus, the effective

diffusivity of ADP –which plays the role of the activator of the step–

is reduced by a larger amount than that of ATP.

DISCUSSION

Conlusions
In this paper we have provided the first closed example of Turing

pattern formation in a model of a vital piece of a cell’s real

biochemistry, with a built-in mechanism for the change of the

morphogens diffusion length, and with parameter values that are

compatible with experiments. Our results suggest that the pattern

of enzyme regulation that gives rise to the glycolytic oscillations

may also provide the basis for the formation of stationary spatial

structures both at the cellular and supracellular level. The model

we have used is highly idealized and cannot account for certain

observations. However, we think that some of its basic dynamical

features should be common to those of more sophisticated models

[22,28] and of the real system. In particular, it does reproduce the

oscillations that are observed for dilute enzyme concentrations

[22,23], and has helped the finding of rotating spirals in vitro [29].

There are studies that show that the Turing and Hopf bifurcations

are intimately related in systems with immobile species [30]. Thus,

we expect all these models to share the existence of a Turing

bifurcation at large enough (immobile) enzyme concentration and

a Hopf bifurcation at lower ones. Our study has shown that the

interactions involved in the PFK catalyzed step of the glycolytic

pathway change the ‘‘effective’’ diffusion coefficients of ATP and

ADP in the necessary direction for Turing pattern formation.

These results could be tested in the type of open reactors that have

especially been conceived for the investigation of spatio-temporal

dynamics in glycolysis [31].

We have also found that the patterns can fit inside a typical cell

and that the time it takes for the patterns to form is relatively short

(of the order of minutes). The formation of Turing patterns in this

biochemical pathway could then be related to organizing centers

in eukaryotic cells, playing a role during cell division [4]. The fact

that the Turing patterns have an intrinsic length-scale implies that

there could be zero, one or several spots of high [ATP] inside the

cell, depending on the relationship between the cell and the

pattern sizes (see Fig. 2). In particular, there are two properties

Figure 1. Behaviors predicted by the 5-variable Selkov model for
different parameter values. (a) Glycolytic oscillations in S1 (solid curve)
and S2 (dashed curve) for g = 0.15, n = 0.00345, e = 1026, a = 15,
K1 = 1500, K3 = 1. (b) Linear growth rate of the unstable modes as
a function of the square of the wavenumber, k for g = 1.215, n = 0.03,
e = 0.0003, a = 15, K1 = 1500, K3 = 1, and d1 = d2 = 0.01. Inset: Evolution of
[S1] in the spatially homogeneous case for the same parameter values.
(c) Turing space (shadowed domain) as a function of the (dimension-
less) input and output rates of ATP (n) and ADP (g), for the same
parameter values as in (b). (d) Predicted value of the wave-length of the
most unstable mode at each point in the Turing space of (c).
doi:10.1371/journal.pone.0001053.g001

Figure 2. Turing pattern obtained with the 5-variable Selkov model
in two space dimensions. Stationary pattern in [ATP] achieved after
10 min from an initial condition randomly distributed around the
Turing-unstable fixed point. White corresponds to [ATP] = 2.47 mM and
black to 1.1 mM. The simulation was done for g = 1.3, n = 0.0175,
e = 0.0005, a = 15, K1 = 1500, K3 = 1, and d1 = d2 = 0.01.
doi:10.1371/journal.pone.0001053.g002
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which imply that the number of high [ATP] spots could change

during the cell division cycle. First, the pattern size decreases as the

strength of the glycolitic flux increase. This flux must increase

during interphase for biosynthesis and growth. Thus, the pattern

size might become small enough to fit inside the cell only after the

glycolytic flux has increased sufficiently. The change of the cell size

also acts in the same direction, allowing more ‘‘room’’ for more

high [ATP] spots to fit as the cell grows during interphase. In this

way, the change in the number of high [ATP] spots as the cell

grows could provide a check-point that combines mechanical

information (cell size) and biochemistry to trigger the subsequent

chain of events in the cell division process. If a key stage of the

replicating machine of every eukaryotic cell strongly relies on

a metabolic pathway, it would be unlikely that such pathway had

evolved after the appearance of the first eukaryotic cell. The

pathway should be old and highly conserved. The glycolytic

pathway shares both properties.
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