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Abstract
Background: As a part of a larger study investigating the effects of α-tocopherol on gene
expression in type 2 diabetics we observed a pro-oxidant effect of α-tocopherol which we believe
may be useful in interpreting outcomes of large intervention trials of α-tocopherol.

Methods: 19 type 2 diabetes subjects were randomised into two groups taking either 1200 IU/day
of α-tocopherol or a matched placebo for 4 weeks. On day 0 and 29 of this study oxidative DNA
damage was assessed in mononuclear cells from fasted blood samples and following a 2 h glucose
tolerance test (GTT).

Results: On day 0 there was no significant difference in oxidative DNA damage between the two
groups or following a GTT. On day 29 there was no significant difference in oxidative DNA damage
in fasted blood samples, however following a GTT there was a significant increase in oxidative DNA
damage in the α-tocopherol treatment group.

Conclusion: High dose supplementation with α-tocopherol primes mononuclear cells from
patients with type 2 diabetes for a potentially damaging response to acute hyperglycaemia.

Background
Type 2 diabetes is associated with an increased risk of
atherosclerosis. Increased oxidative stress and damage to
lipoproteins, cell membrane components and chromo-
somal DNA may play a role in this increased risk of
atherosclerosis [1,2]. Increased susceptibility to oxidative
DNA damage has been reported in type 2 diabetes [3,4],
and we have shown recently an inverse relationship
between oxidative DNA damage and telomere length in
blood monocytes from patients with type 2 diabetes [5].
The potential role of oxidative stress in atherogenesis

made antioxidant interventions appealing as a vascular
risk reduction strategy, but there has subsequently been a
lack of evidence of improved vascular outcomes in large
scale antioxidant clinical trials [6,7]. A recent meta-analy-
sis has also suggested an increased risk of all-cause mortal-
ity from vitamin E supplementation [8]. Potential reasons
for this lack of benefit have been reviewed [9], as has the
possible pro-oxidant effect of antioxidants in disease
processes with existing high background levels of oxida-
tive stress [10].
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In this report we show an increase in oxidative DNA dam-
age in mononuclear cells from patients with type 2 diabe-
tes who had been supplemented with 1200 IU/d α-
tocopherol, following a glucose tolerance test. This level
of supplementation was chosen as we previously have
shown no effect on DNA strand breaks or oxidisability
with a lower dose of 400 IU α-tocopherol daily [3], but
higher doses have shown a reduction in DNA single
strand breaks using the comet assay [11].

Subjects and Methods
Subjects
All subjects gave written informed consent which was
approved by the local ethics committee. We studied 19
subjects with type 2 diabetes, all Caucasian males between
50 and 65 years, who were recruited if they were non
smokers, not taking dietary supplements, had never
received gliclazide, antihypertensives, or angiotensin con-
verting enzyme inhibitors, which have antioxidant or
anti-inflammatory properties. Subjects were treated with
diet alone (n = 5), metformin alone (n = 3), sulphonylu-
reas alone (n = 4), metformin and sulphonylureas in com-
bination (n = 3), and insulin alone or in combination
with metformin (n = 4). Thirteen of the 19 subjects were
taking an HMG CoA reductase inhibitor ('statin'). The vol-
unteers were randomised into two groups, taking either
1200 IU α-tocopherol/d (n = 10) or matching placebo (n
= 9) for 4 weeks. Compliance was monitored by pill count
and plasma α-tocopherol concentrations. Table 1 summa-
rises the clinical features of the two groups.

Materials
On day 0 and day 29 of the study fasting blood samples
were collected into vacutainer CPT tubes (Becton Dickin-
son, Oxford, UK). Volunteers were given a standard oral

75 g glucose tolerance test (GTT), and a further blood
sample taken after 2 h. Mononuclear cells were separated
by centrifugation. Oxidative DNA damage was assessed by
measuring 8-oxoguanine (8-OG) using a Biotrin OxyDNA
test kit (Biotrin International, Dublin, Ireland), as we
have previously described [5]. In brief, 1 × 106 mononu-
clear cells were incubated with 1% paraformaldeyde for
15 min on ice, washed once with PBS, resuspended with
70% ethanol and kept at -20°C until analysed. Cells were
washed with PBS then incubated with blocking buffer at
37°C for 1 h, washed twice, then incubated with FITC-
labelled 8-OG probe for 1 h. The cells were washed twice
and analysed by flow cytometry. Plasma insulin was
measured using a human insulin-specific (no cross-reac-
tivity with proinsulin) ELISA (Dako Cytomation, Ely, UK)
and glucose by the glucose oxidase method. Plasma α-
tocopherol was measured by HPLC as previously
described [3].

Data are expressed as mean and one standard error (SE) or
95% confidence intervals (CI). Differences between
groups were analysed by paired or unpaired two-tailed t-
tests and significance taken as p < 0.05.

Results
Both subject groups were matched for age, BMI and
plasma insulin. However, by chance, the subjects allo-
cated to the α-tocopherol treatment group had a signifi-
cantly longer duration of diabetes (p < 0.01) and a higher
fasting plasma glucose concentration than the placebo
treatment group (p < 0.01).

Baseline data
At the start of the study no differences were apparent in
DNA damage, as assessed by 8-OG mean fluorescence

Table 1: Clinical and biochemical data groups in type 2 diabetes treated with 1200 IU α-tocopherol/day or placebo for 4 weeks

α-tocopherol Group (n = 10) Placebo Group (n = 9)

Day 0 Day 29 Day 0 Day 29

Age (Y) 62.7 (1.81) __ 61.9 (1.92) __
Diabetes duration 11.1 (2.52) __ 2.6 (0.4)a __
BMI 29.9 (1.2) __ 29.4 (1.3) __
WHR 0.92 (0.026) __ 0.94 (0.021) __
Fasting plasma glucose (mmol/L) 10.7 (0.94) 10.2 (0.86) 7.6 (0.39)a 7.7 (0.41)b

Fasting plasma insulin (mU/L) 49.6 (6.67) 56.2 (9.91) 55.5 (7.81) 54.5 (6.87)
Post-GTT plasma glucose (mmol/L) 20.2 (1.25)c 19.1 (1.26)c 15.1 (0.94)c 15.0 (1.32)c

Post-GTT plasma insulin (mU/L) 135 (37.1)d 124 (31.9)d 218 (47.7)c 261 (87.0)d

HbA1c (%) 8.4 (0.6) __ 7.2 (0.3) __
Plasma α-tocopherol (μmol/L) 28.9 (1.82) 66.5 (7.26)e 24.4 (1.71) 25.0 (1.78)
8-oxoquanine fluorescence (MFI) 462 (28.0) 456 (19.0) 506 (27.1) 495 (15.2)

Data shown are means (SE)
a p < 0.01 placebo v α-tocopherol; b p < 0.05 placebo v α-tocopherol;
c p < 0.01 Fasting v post-GTT; d p < 0.05 Fasting v post-GTT
e p < 0.01 Day 0 v Day 29
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intensity (MFI), in the mononuclear cells of the two
groups (Table 1).

Day 0, post GTT (GTT1)
No significant change in the level of DNA damage was
detected following a GTT in the mononuclear cells of
either group (fig 1).

Day 29, fasting sample
Following the 4 week intervention, plasma α-tocopherol
was significantly increased (p < 0.01) in the α-tocopherol
supplemented group but there was no significant change
in mononuclear cell DNA damage in either treatment
group (Table 1).

Day 29, post GTT (GTT2)
There was a significant increase in DNA damage, assessed
as a 13.6% (95% CI: 6.3–20.9) increase in 8-OG fluores-
cence, in the mononuclear cells from the α-tocopherol
supplemented group following GTT (Fig 1).

A correlation (R = 0.649, p = 0.045), using simple linear
regression, was observed between duration of diabetes
and the percent change in 8-OG florescence following a
GTT in the α-tocopherol supplemented group on day 29.

Discussion
This study shows that after a relatively high dose of α-
tocopherol for 4 weeks there was no change in oxidative
DNA damage in mononuclear cells from subjects with
type 2 diabetes, as we have reported previously [3]. How-
ever, following a glucose load with increased oxidative

Change in oxidative DNA damage, assessed by 8-oxoguanine fluorescence, in mononuclear cells isolated from type 2 diabetes patients before (GTT1) and after (GTT2) taking 1200 IU/day α-tocopherol or matched placebo for 4 weeks, following a glu-cose tolerance testFigure 1
Change in oxidative DNA damage, assessed by 8-oxoguanine fluorescence, in mononuclear cells isolated from 
type 2 diabetes patients before (GTT1) and after (GTT2) taking 1200 IU/day α-tocopherol or matched placebo 
for 4 weeks, following a glucose tolerance test. Data shown are means; error bars represent 95% confidence intervals. 
AT: α-tocopherol, GTT: Glucose Tolerance Test
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stress [2] the level of oxidative DNA damage increased sig-
nificantly in α-tocopherol-supplemented type 2 diabetes
patients which correlated with the duration of diabetes.
This increase in oxidative DNA damage was not apparent
in the placebo group. These data suggest that the high
dose α-tocopherol treatment has primed a damaging
response to acute hyperglycaemia in type 2 diabetes and
may be related to the duration of the disease.

The ability of α-tocopherol to act as a pro-oxidant and
increase peroxidation of lipids has been long known in
vitro [12,13] and increased DNA damage, attributed to α-
tocopherol, in cultured cells has been described following
an insult capable of generating reactive oxygen species
(ROS) [14,15]. Upon encountering ROS, α-tocopherol
within lipid becomes oxidised forming its own radical,
which requires co-antioxidants (e.g ascorbic acid) in order
for the α-tocopherol to be regenerated. If the tocopherol
radical is not eliminated there is an increase in lipid per-
oxidation, a process known as tocopherol-mediated per-
oxidation (TMP) [16]. These peroxidised lipids can
produce a range of ROS which are able to damage DNA.
H2O2, generated by TMP, while not damaging to DNA
directly, is able to cross membranes and can react with
transition metals (Fe, Cu) associated with DNA to gener-
ate hydroxyl radicals (•OH), by the Fenton reaction, to
cause damage to DNA [17,18]. In addition Cu,Zn-Super-
oxide dismutase has been reported to release free copper
when it is oxidatively damaged [19,20] which could lead
to increased generation of •OH.

Alpha-tocopherol has been reported to reduce γ-tocophe-
rol concentrations in blood plasma [21] which could have
a disadvantageous effect. Gamma-tocopherol is a potent
scavenger of reactive nitrile species (RNS) such as nitric
oxide (•NO) and peroxynitrate (ONOO-) [22], which
may also damage biomolecules such as DNA. Peroxyni-
trate can also oxidise tetrahydrobioptrein (BH4), a co-fac-
tor of nitric oxide synthase (NOS) which causes
uncoupling of NOS, resulting in the generation of super-
oxide (•O2) instead of nitric oxide (•NO) [23].

The timing of ingestion of supplements relative to meal
times has been shown to effect markers of inflammation
and may have an effect on oxidative stress [24], but the
effects were seen following a single dose of vitamin E,
whilst subjects on the current study, although only
instructed to take supplements daily, had sustained ele-
vated plasma levels of α-tocopherol. Other factors which
may affect the outcomes of vitamin E supplementation
have been discussed in a recent review [25].

High α-tocopherol intakes, at least without co-supple-
mentation with other antioxidants such as vitamin C,
which can reduce the α-tocopherol-induced lipid peroxi-

dation observed in vitro [26], may result in amplification
of ROS generated in response to an increase in oxidative
stress and increased RNS due to suppression of γ-tocophe-
rol bioavailability. High dose vitamin C, used in EDTA
chelation therapy, has been shown to have a pro-oxidant
effect [27] and ceruloplasmin, a copper containing metal-
loenzyme, has been suggested to have a pro-oxidant effect
in conditions of increased oxidative stress, such as diabe-
tes, by the disruption of copper binding [28]. A recent
report [29] has suggested that the optimal serum concen-
tration of α-tocopherol to reduce mortality from cardio-
vascular disease and cancer is 30–33 μmol/L. The mean
plasma α-tocopherol concentration achieved in the sup-
plemented group in this study was 66.5 μmol/L which
may be high enough to be detrimental rather than benefi-
cial.

In a recent review of oxidative stress and antioxidant use,
Johansen et al [30] point out that most clinical trials con-
ducted to date were not designed to specifically assess the
effects of antioxidant use in diabetic patients, who experi-
ence a high level of oxidative stress, and that endpoints
measured did not include specific markers of oxidative
stress. However, in the current study we measured levels
of 8-oxoguanine, a specific marker of oxidative DNA dam-
age formed during free radical damage to DNA.

Limitations
This study does have some limitations. First, the patient
numbers are too low to form definitive conclusions. Sec-
ond, the patients are taking different pharmacological
treatments, although only subjects who had never
received gliclazide, antihypertensives or ACE inhibitors,
which have anti-oxidant or anti-inflammatory properties,
were included in this study. Thirdly, there is a mismatch
in duration of diabetes and plasma glucose between the
two groups, which could affect the results. However
HbA1c was not significantly different between each group
and neither group differed significantly in their fasting
levels of mononuclear cell oxidative damage either at the
beginning or end of the study, nor showed any significant
change following a GTT prior to supplementation.

Conclusion
This report is to our knowledge the first to show a pro-oxi-
dant action of α-tocopherol associated with increased
DNA damage in patients with type 2 diabetes. Although
this is a small sample these preliminary findings, given the
observed correlation between duration of diabetes and
increase in oxidative damage, suggest the possibility that
high dose vitamin E is potentially more damaging in
patients with longer duration of disease and needs further
investigation. This data may be useful in interpreting neg-
ative vascular outcomes in large α-tocopherol interven-
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tion trials in subjects with increased basal levels of
oxidative stress such as type 2 diabetes or atherosclerosis.
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