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Abstract: Proteins are responsible for all biological activities in living 
organisms. Thanks to genome sequencing projects, large amounts of DNA and 
protein sequence data are now available, but the biological functions of many 
proteins are still not annotated in most cases. The unknown function of such 
non-annotated proteins may be inferred or deduced from their neighbors in  
a protein interaction network. In this paper, we propose two new methods to 
predict protein functions based on network neighborhood properties. FunPred 
1.1 uses a combination of three simple-yet-effective scoring techniques: the 
neighborhood ratio, the protein path connectivity and the relative functional 
similarity. FunPred 1.2 applies a heuristic approach using the edge clustering 
coefficient to reduce the search space by identifying densely connected 
neighborhood regions. The overall accuracy achieved in FunPred 1.2 over  
8 functional groups involving hetero-interactions in 650 yeast proteins is around 
87%, which is higher than the accuracy with FunPred 1.1. It is also higher than 
the accuracy of many of the state-of-the-art protein function prediction 
methods described in the literature. The test datasets and the complete  
source code of the developed software are now freely available at 
https://code.google.com/p/cmater-bioinfo/. 
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INTRODUCTION 
 

Proteins are the most versatile macromolecules in living systems. They serve 
crucial functions in essentially all biological processes. Determining protein 
functions experimentally is a laborious and time-consuming task, so computational 
methods of predicting functions are the focus of extensive research. These 
methods are based on aspects of molecular biology such as the gene and protein 
sequence and structure, the gene neighborhood, gene fusions, cellular 
localization, and protein–protein interactions (PPI).  
The prediction of protein functions based on protein interaction information is an 
emerging area of research. In this approach, the functions of non-annotated 
proteins are determined by looking at their neighborhood properties in the 
protein interaction network. It is reliant on the fact that the neighbors of a given 
protein have similar function. 
In the work of Schwikowski [1], a neighborhood-counting method is proposed to 
assign k functions to a protein by identifying the k most frequent functional 
labels among its interacting partners. It is simple and effective, but the full 
topology is not considered and no confidence scores are assigned for the 
annotations.  
In the chi-square method, Hishigaki et al. [2] assigns k functions to a protein with 
the k largest chi-square scores. For a protein P, each function f is assigned a score: 

(nf – ef)
2 

ef 
where nf is the number of proteins in the n-neighborhood of P that have the 
function f and ef is the expectation of this number based on the frequency of  
f among all proteins in the network.  
Chen et al. [3] extends this neighborhood property to higher levels in the 
network. They developed an algorithm to assess the functional similarity 
between a protein and its neighbors from its Level –1 and Level –2.  
Many graph algorithms have been applied for this type of functional analysis. 
Vazquez et al. [4] assign proteins to a function to maximize the connectivity of  
a protein assigned with the same function. They map this problem into an 
optimization problem using simulated annealing, where they maximize the 
number of edges that connect proteins (non-annotated or previously annotated) 
assigned with the same function. Karaoz et al. [5] apply a similar approach to  
a collection of PPI data and gene expression data. They construct a distinct 
network for each function in gene ontology. For a particular state of function of 
each annotated protein v equals +1 if v has the function f, and –1 if v has  
a different function.  
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Nabieva et al. [6] proposes a flow-based approach to predict protein function 
from the protein interaction network. Considering both the local and global 
properties of the graph, this approach assigns a function to a given non-
annotated protein based on the amount of flow it receives during simulation, 
whereas each annotated protein is the source of functional flow.  
Deng et al. [7] proposes an approach employing the theory of the Markov 
random field where they estimate the posterior probability of a protein of 
interest. Letvsky and Kasif [8] use loopy belief propagation with the assumption 
of a binomial model for local neighbors of protein annotated with a given time. 
Similarly, Wu et al. [9] propose a related probabilistic model to annotate 
functions of unknown proteins and PPI networks based on the structure of the 
PPI network.  
In the work of Samanta et al. [10], a network-based statistical algorithm is 
proposed. It assumes that if two proteins share a significantly larger number of 
common interacting partners, they share a common functionality. Another 
application, proposed by Arnau et al., is UVCLUSTER. It is based on bi-
clustering that iteratively explored distance datasets [11].  
Bader and Hogue [12] proposed molecular complex detection (MCODE), where 
dense regions are detected according to some heuristic parameters. Altaf-ul-Amin 
et al. [13] also use a clustering approach. It starts from a single node in a graph 
and clusters are gradually grown until the similarity of every added node within 
a cluster and the density of clusters reaches a certain limit.  
Spirin and Mirny [14] use a graph clustering approach where they detect densely 
connected modules within themselves and modules that are sparsely connected 
with the rest of the network based on super paramagnetic clustering and the 
Monte Carlo algorithm. Pruzli et al. [15] use a graph theoretic approach where 
clusters are identified using Leda’s routine components and those clusters are 
analyzed by highly connected sub-graphs (HCS) algorithm. King et al. [16] 
proposed applying the restricted neighborhood search clustering algorithm 
(RNCS) to partition the interaction networks into clusters using a cost function. 
Clusters are then filtered according to their size, density and functional 
homogeneity. Krogan et al. [17] used the Markov clustering algorithm to predict 
protein function.  
In the work of Wang and Ding [18], the problem of predicting protein 
interactions is formulated from a new mathematical perspective: sparse matrix 
completion. A novel non-negative matrix factorization-based matrix completion 
approach is proposed to predict new protein interactions from existing protein 
interaction networks. Via manifold regularization, this method has been 
developed to integrate different biological data sources, such as protein 
sequences, gene expressions, and protein structure information. Extensive 
experimental results on four species (Saccharomyces cerevisiae, Drosophila 
melanogaster, Homo sapiens and Caenorhabditis elegans) have shown that 
these new methods outperform related state-of-the-art protein interaction 
prediction methods.  
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This survey reveals that there is scope for the application of domain-specific 
knowledge to improve the performance of protein function prediction from 
protein interaction network. Motivated by this, we propose a neighborhood-
based method for predicting the function of an uncharacterized protein by 
computing the neighborhood scores on the basis of protein functions. The 
uncharacterized protein is assigned with the function corresponding to the 
highest neighborhood score. We have developed two neighborhood selection 
approaches where protein functions are predicted on the basis of the functions of 
direct and indirect neighbors.  
 
DATASET 
 

We used the Munich Information Center for Protein Sequences (MIPS; 
ftp://ftpmips.gsf.de/yeast/PPI/) database for this study. MIPS is located at the 
Institute for Bioinformatics (IBI), which is part of the GSF National Research 
Center for Environment and Health. The MIPS focuses on genome-oriented 
bioinformatics, in particular the systematic analysis of genome information 
including the development and application of bioinformatics methods in genome 
annotation, expression analysis and proteomics.  
The database incorporates the protein–protein interaction data of yeast 
(Saccharomyces cerevisiae), which contains 15613 genetic and physical 
interactions. Discarding self-interactions leaves a set of 12487 unique binary 
interactions involving 4648 proteins. The complete dataset and the lists of all 
functional groups are given as supplementary files and available at 
https://code.google.com/p/cmater-bioinfo/.  
It has been observed that there are over 2000 different interaction types. 
However, most of the proteins are found to be involved in the 8 functional 
groups considered in our work. These functional groups are cell cycle control 
(O1), cell polarity (O2), cell wall organization and biogenesis (O3), chromatin 
chromosome structure (O4), nuclear-cytoplasmic transport (O5), pol II transcription 
(O6), protein folding (O7) and protein modification (O8). For each functional group, 
90% of the proteins are chosen as training samples using a random sub-sampling 
technique and the remaining 10% are considered as test samples.  
Since we have considered both Level –1 and Level –2 neighbors, the protein 
interaction network formed for each protein in any functional group is large and 
complex. Therefore, in this study, we are focusing on only 10% of the available 
proteins in each functional group as the test set. Fig. 1 shows the complete 
protein interaction network considered in this study, where the training set 
proteins are marked with an elliptical shape and the non-annotated proteins are 
indicated with a triangle. Table 1 shows the detailed composition of the test 
dataset for the various functional groups. 
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Fig. 1. The overall PPI network considered in this study is shown. The training set proteins 
are marked as elliptical shapes and the non-annotated proteins are highlighted with 
triangular shapes. 
 
 
Table 1. Protein pairs distributed in 8 functional groups that are considered in this study. 
 

Functional groups Annotated proteins Non-annotated proteins 

Cell cycle control 78 8 

Cell polarity 90 9 

Cell wall organization and biogenesis 85 9 

Chromatin chromosome structure 122 13 

Nuclear-cytoplasmic transport 18 2 

Pol II transcription 85 9 

Protein folding 29 3 

Protein modification 81 9 

Total 588 62 
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DEFINITIONS AND NOTATIONS 
 

Protein–protein interaction network 
Protein–protein interactions occur when two or more proteins bind together, 
often to carry out their biological function. These protein interactions form  
a network-like structure that is known as a protein interaction network. A protein 
interaction network is generally represented as a graph consisting of a set of 
nodes connected by edges or links. Proteins are represented as nodes in the 
graph and the edges signify interactions between two proteins. Here, the protein 
interaction network is represented as a graph Gp, which consists of a set of 
vertices V (nodes) connected by edges E (links). Thus, G = (V, E). 
 

Sub-graph 
A graph G'p is a sub-graph of Gp if the vertex set of G'p is a subset of the vertex set 
of Gp and if the edge set of G'p is a subset of the edge set of Gp. That is, if G'p = 
(V', E') and Gp = (V, E) then G'p is called a sub-graph of Gp if ܸ′ ⊆ ܸ and	ܧ′ ⊆  .ܧ
G'p can be defined as a set of ሼ ୙ܲ| ஺ܲሽ, where ୙ܲ represents the set of non-
annotated proteins while ஺ܲ represents the set of annotated protein. 
 

Level –1 Neighbors 
For any vertex ݒ in G'p all those vertices in G'p that are connected with v through 
an edge are deemed Level –1 neighbors of v. 
 

Level –2 Neighbors 
In G'p, Level –2 neighbors are those that are directly connected neighbors of 
Level –1 neighbors of that particular vertex. 
 

Neighborhood ratio	 
The neighborhood ratio	 ୓ܲ౟

୪  for any protein is defined as the ratio of the number 
of Level െ 1 (or	Level െ 2) neighbors (ܭ) corresponding to a functional group 
Oi to the total number of Level െ 1 (or Level െ 2) neighbors (ܲ). Here, Oi 

represents any element of 8 functional groups and l denotes Level –1 and Level 

–2 . It may be defined as ைܲ೔ሺసభ..ఴሻ
௟ሺୀଵ,ଶሻ ൌ

௄

௉
. 

 

Protein neighborhood ratio score 
The protein neighborhood ratio score ܲ݁ݎ݋ܿݏ	௟

ሺୀଵ,ଶሻ is defined as the 
neighborhood ratio 	 ୓ܲ౟

୪  of a particular functional group assigned to a unique 
protein belonging to that respective functional group. Here, Oi represents any 
element of 8 functional groups, and l denotes Level –1 and Level –2 . 
Fig. 2 shows a detailed illustration of the neighborhood relationship between 
proteins with a non-annotated protein YAL003w from our test dataset. From ܩ୮, 
ଢ଼୅୐଴଴ଷ୵ is taken as an example and its Level′ܩ െ 1 neighbors are YAL023c, 
YAL028w and YAL013w. The Level െ 2	neighbors of YAL003w are YFR028c, 
YAR033w, YOR284w, YIL169c, YAL041w and YNL126w. Two functional 
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groups (protein folding and cell polarity) are involved in both Level െ 1 and 
Level െ 2 which is shown in Fig. 1. Of the Level െ 1 neighbors, 2 are for 
protein folding (O7) and 1 is for cell polarity (O2). So, the neighborhood ratio of 
this protein in Level െ 1 for functional group protein folding is computed as: 

ைܲళ
ଵ ൌ

ଶ

ଷ
	ൌ 	0.666. Using the same procedure, ைܲమ

ଵ , 	 ைܲళ
ଶ 	and	 ைܲమ

ଶ are computed 

and their respective values are 0.333, 0.50 and 0.50. We assigned these 
computed neighborhood ratios for a given functional group to the protein 
ݎ݋ܿݏܲ) 	݁

௟ሺୀଵ,ଶሻሻ	of Level –1 and Level –2 belonging to that group. 
 

 
 

Fig. 2. The sub-graph ܩ´୮ of Protein YALOO3w and its Level –1 and Level –2 neighbors.  
 

Relative functional similarity 
To compute the functional centrality of the proteins, we take into consideration 
that the protein functional annotations are in ancestor–descendent relationships. 
Therefore, the higher the relative functional similarity score [20], the greater the 
functional similarity between the two proteins. Thus, the relative functional 
similarity method is a quantitative measure of the similarity of functions between 
two proteins taking into account its hierarchical structure. It is defined as: 
 

୳ܹ,୴
୪ሺୀଵ,ଶሻ ൌ ሺሺ݄݉ܽݐ݌݁݀ݔܽ݉/݄ݐ݌݁݀ݔ ൅ ݇ሻ ∗ ݆ሻ	/	ሺ݆ ൅ ݄ሻ; 

 

where, ݑ	 ∈ 	 ஺ܲ, ݒ	 ∈ ௎ܲ  , maxdepth is the maximum depth of the PPI network, 
 ݆ measures maximum number of common ancestors shared between ݑ and ݒ in  
a single path, ݄ is the value of the longer distance between ݑ and ݒ to their 
closest leaf node, ݇ measures shortest distance between ݑ and ݒ, and ݈ denotes 
Level –1 or Level –2. 
 

Protein path connectivity score 
Protein path connectivity score [21] is defined as a measure for network 
connectivity. It is based on paths between two proteins in an interaction network 
and is calculated as:  

ܳ௨,௩
௟ሺୀଵ,ଶሻ ൌ ෍ ሺܲሻ	ܮ/1

௣∈୙௫
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where ݑ	 ∈ ஺ܲ, ݒ	 ∈ ௎ܲ, ܷ௫ is the set of all paths between ݑ and ݒ with  
a maximum length of ݌ ,ݔ is a path with the length ܮሺ݌ሻ as a member of ܷ௫, and 
݈ denotes the level number (Level –1 and Level –2). According to this definition, 
proteins with more paths and shorter path-lengths are more tightly connected in 
the interaction network. See Fig. 3 for an illustration of the sub-graph created for 
a pair of annotated and non-annotated proteins. The corresponding path 
connectivity score is shown in Table 2. 
 

 
 

Fig. 3. The sub-graph ܩ´୮ for ݔ	 ൌ 3, considering two nodes YDR485c (non-annotated 
protein) and YGL149w (annotated protein). 
 

Table 2. Estimation of the path connectivity score from Fig. 2. 
 

Connectivity (ݔ) Path description Score (1/ܮሺܲሻ) 

1 െ 		ݕܽݓ YDR485c - YGL149w 1/1 

2 െ 		ݕܽݓ YDR485c - YML032C - YGL149w 1/2 

2 െ 		ݕܽݓ YDR485c - YDL134c - YGL149w 1/2 

3 െ 		ݕܽݓ YDR485c - YML032c - YLR087c - YGL149w 1/3 

3 െ 		ݕܽݓ YDR485c - YDL134c - YML032c -YGL149w 1/3 

3 െ 		ݕܽݓ YDR485c - YKL118w - YDL134c - YGL149w 1/3 

3 െ 		ݕܽݓ YDR485c - YML032c - YDL134c - YGL149w 1/3 

ܳሺ௒ீ௅ଵସଽ௪,௒஽ோସ଼ହ௖ሻ
ଵ 	ൌ 1/1 ൅ 1/2 ൅ 1/2 ൅ 1/3 ൅ 1/3 ൅ 1/3 ൅ 1/3 ൌ 3.33	

 

Edge clustering coefficient 
The connections between nodes are denser in a PPI complex than with the rest in 
network. The edge clustering coefficient [22] describes how close two proteins 
are. It is widely used to identify the modularity of networks. The edges with  
a higher clustering coefficient are more likely to be involved in the community 
structure in a network. Therefore, a node has a high probability of being 
essential if it possesses more adjacent edges with higher edge clustering 
coefficients. Proteins with a high degree may become non-essential if the edge 
clustering coefficients of their adjacent edges are relatively low. By contrast, 
those proteins with low connectivity are essential because the edge clustering 
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coefficients of their adjacent edges are relatively high. The edge clustering 
coefficient is mathematically defined as follows: 
 

୳,୴ܥܥܧ
୪ሺୀଵ,ଶሻ ൌ ܼ௨,௩/݉݅݊	ሺܭ௨ െ 1, ௩ܭ െ 1ሻ 

 

where ݑ ∈ ஺ܲ, ݒ ∈ ௎ܲ, ܼ௨,௩ is the number of triangles built on the edge (ݑ, ௨ܭ ,(ݒ  

and	ܭ௩ are the degrees of nodes ݑ and ݒ respectively, ݉݅݊ሺܭ௨ െ ௩ܭ ,1 െ 1ሻ is 
the maximal possible number of triangles that might potentially include the edge 
ሺݑ,   .ሻ, and ݈ is the level-numberݒ
 

Neighborhood score  
The neighborhood score ሺܰOkሻ

௟  for any protein is defined initially as the summation 

of ܲ݁ݎ݋ܿݏ	௟
ሺୀଵ,ଶሻ, ܳ௨,௩

௟ሺୀଵ,ଶሻ and ୳ܹ,୴
୪ሺୀଵ,ଶሻ	in FunPred 1.1. In FunPred 1.2 it also 

incorporates ܥܥܧ୳,୴
୪ሺୀଵ,ଶሻ. Here, OK represents any element of 8 functional groups 

and l denotes Level –1 and Level –2.  
 
PROPOSED METHOD 
 

We have proposed two methods for the prediction of protein function from the 
protein interaction network. These two methods differ in selection of the 
neighborhood of the non-annotated proteins over different aspects of 
neighborhood properties defined in the previous section. 
 

FunPred 1.1  
In FunPred 1.1, the prediction technique is based on the combined score of the 
neighborhood ratio, protein path connectivity and relative functional similarity 
(as discussed before). This method attempts to find the maximum of the 
summation of three scores thus obtained in each level and assign the non-
annotated protein to the corresponding functional group of the protein having the 
maximum value. Given 	ܩ′௉, a sub-graph of the protein interaction network, 
consisting of proteins as nodes associated with any protein of set ܱ ൌ	 ሼ ଵܱ, ܱଶ, 
ܱଷ,…,଼ܱሽ; where ௜ܱ represents a particular functional group, this method maps 
the elements of the set of non-annotated proteins ௎ܲ  to any element of set ܱ. 
Steps associated with this method are described as Algorithm 1. 
 

Algorithm 1. Basic methodology of FunPred 1.1 
Input: Non-annotated protein set ௎ܲ 
Output: The elements of the set of non-annotated proteins ௎ܲ are mapped to any 
element of set ܱ. 
Step 1: Take any protein as an element from set ௎ܲ. 
Step 2: Count Level –1 and Level –2 neighbors of that protein in ܩ′௉associated with set ܱ . 

Step 3: Compute ைܲ೔ሺసభ,..,ఴሻ
௟ሺୀଵ,ଶሻ and assign this score to each protein (ܲݎ݋ܿݏ 	݁

௟ሺୀଵ,ଶሻ) ∈ 	 ஺ܲ, 

belonging to the respective functional group. 

Step 4: Compute ܳ୳,୴
୪ሺୀଵ,ଶሻ, ୳ܹ,୴

୪ሺୀଵ,ଶሻ for each edge in Level –1 and Level –2. 
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Step 5: Obtain the neighborhood score, i.e.  

ሺܰOkሻ
௟ ൌ ଵ݁ݎ݋ܿݏሺ൫maxሺܲݔܽܯ ൅ ܳ୳,୴ଵ ൅ ୳ܹ,୴

ଵ ሻ൯, ൫maxሺܲ݁ݎ݋ܿݏଶ ൅ ܳ୳,୴ଶ ൅ ୳ܹ,୴
ଶ ሻ൯ሻ 

Step 6: Assign the non-annotated protein from the set ௎ܲ to the functional group ܱ௞. 
 

FunPred 1.2  
In FunPred 1.1, for any non-annotated protein, we consider all Level –1 
neighbors and Level –2 neighbors belonging to any of 8 functional groups. 
Prediction is done on the basis of neighborhood property where computation 
considers all Level –1 and Level –2 neighbors.  
However, if the computation is done only on significant neighbors that have 
maximum neighborhood influence on the protein of interest, then exclusion of 
non-essential neighbors may reduce the time of computation. This is the basis of 
our heuristic adopted in FunPred 1.2. Here, we only consider a region or portion 
of a graph where neighbors are more connected; i.e., densely connected 
neighbors are considered to be more significant. Using the heuristic that a higher 
neighborhood ratio may exist in densely connected sub-graphs, the search space 
in FunPred 1.2 is reduced. It may not always happen that in a densely connected 
region, the neighbors belong to same functional group. A protein may have 
many neighbors from different functional groups. Without calculating 
neighborhood ratios for all of them, this method looks for the promising regions 
and only then is the calculation of ሺܰOkሻ

௟  done. Here, the edge clustering 
coefficient (ECC) of each edge in Level –1 and Level –2 (as mentioned in the 
earlier section) is calculated. The edges with relatively low ECC get eliminated. 
The original network is thus reduced. The original FunPred 1.1 algorithm is 

applied to this reduced PPI network with the incorporation of the ܥܥܧ୳,୴
୪ሺୀଵ,ଶሻ 

value for each edge in each of the two levels while calculating the value of 
neighborhood score ሺܰOkሻ

௟ . The computational steps associated with FunPred 1.2 
are described as Algorithm 2. 
 

Algorithm 2. Basic methodology of FunPred 1.2 
Input: Non-annotated protein set ௎ܲ 
Output: The elements of the set of non-annotated proteins ௎ܲ are mapped to any 
element of set O. 
Step 1: Take any protein as an element from set ௎ܲ. 
Step 2: The protein interaction network of the selected protein is constructed with 
identification of its Level –1 and Level –2 neighbors. 

Step 3: Compute ܥܥܧ୳,୴
୪ሺୀଵ,ଶሻ for each edge in Level –1 and Level –2. 

Step 4: Eliminate non-essential annotated proteins (neighbors) associated with 

edges having lower values of ECC୳,୴
୪ሺୀଵ,ଶሻ both in Level –1 and Level –2, thus 

generating a densely connected reduced protein interaction network. 
Step 5: Count Level –1 and Level –2 neighbors of that protein in G′୔ associated 
with set ܱ. 
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Step 6: Compute ୓ܲ౟ሺసభ,..,ఴሻ
୪ሺୀଵ,ଶሻ and assign this score to each protein (ܲ݁ݎ݋ܿݏ୪ሺୀଵ,ଶሻ)	∈ ஺ܲ 

belonging to the respective functional group.  

Step 7: Compute ܳ୳,୴
୪ሺୀଵ,ଶሻ, ୳ܹ,୴

୪ሺୀଵ,ଶሻ for each edge in Level –1 and Level –2. 
Step 8: Obtain the neighborhood score i.e.  

ሺܰOkሻ
௟ 		= Mܽxሺ൫maxሺܲ݁ݎ݋ܿݏଵ ൅ ܳ୳,୴ଵ ൅ ୳ܹ,୴

ଵ ൅ ୳,୴ଵܥܥܧ ሻ൯, ൫maxሺܲ݁ݎ݋ܿݏଶ ൅ ܳ୳,୴ଶ ൅
ܹu,v2൅ܥܥܧu,v2ሻሻ 
Step 9: Assign the non-annotated protein from the set ௎ܲ to the functional group ܱ௞. 
 

The FunPred 1.2 algorithm is illustrated with an example in Fig. 4. Let us 
consider the non-annotated protein YCL003w taken from our test dataset. From 
the sub-graph shown in Fig. 4, the Level –1 neighbors of YCL003w are 
YAL013w and YAL028w, and their respective next immediate neighbors are 
YFR028c, YAL041w and YNL126w and YAR033w and YIL169c. Now the 
edge clustering coefficient of each edge is calculated. The ECC value of the edge 
(YCL003w, YAL013w) is estimated as 0.581 while that of (YCL003w, 
YAL028w) is 0.081, which is below our heuristically estimated threshold, 
߬ ൏ 0.1. Therefore, the edge (YCL003w, YAL028w) gets eliminated, resulting 
in the formation of a densely connected sub-graph. In this process, YAL028w 
and its next level neighbors are ignored. The computation of the neighborhood 
score ୓ܰౡ

୪  is the same as for FunPred 1.1, except for the addition of an ECC score 

into	 ୓ܰౡ
୪ .  

 
 

Fig. 4. The sub-graph of YCL003w, including its Level –1 and Level –2 neighbors. Here, 
only the densely connected region with protein YAL013w is retained and highlighted after 
ECC computation. 
 
RESULTS AND DISCUSSION 
 

As discussed in the database section, we analyzed 12487 hetero-interactions 
involving 4648 proteins. However, the 8 functional groups considered in this 
study cover 650 proteins (see Table 1 for details). In both FunPred 1.1 and 
FunPred 1.2, 10% of the proteins from each functional group are considered as 
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non-annotated proteins using random sub-sampling. The training results for the 
݅௧௛ functional group are evaluated using standard performance measures, such as 
Precision (P), Recall (R) and F-Score (F) values, which are calculated using the 
following equations:  

௜ܲ 	 ൌ
∑ ௞p೛∈ೇ

∑ ௠p೛∈ೇ
 , ܴ௜ 	ൌ

∑ ௞p೛∈ೇ

∑ ௡p೛∈ೇ
௜ܨ , 	ൌ

ଶሺ௉೔	ൈோ೔ሻ

ሺ௉೔ାோ೔ሻ
 

 

where for any protein ݌ ∈ ܸ, ݇௣ is the number of correctly predicted proteins for 
the ݅௧௛ functional group, ݉௣is the total number of proteins predicted in the ݅௧௛ 
functional group and	݊௣ is the number of all protein in the functional group ݅. 
Table 3 shows detailed performance analysis of the two methods for each 
functional group with respect to Precision, Recall and F-score values. The 
overall accuracy of any method is estimated using the following formulation: 
 

Accuracy ൌ
∑ ௞೛
ఴ
೔సభ

்௢௧௔௟	௡௨௠௕௘௥	௢௙	௨௡௔௡௡௢௧௔௧௘ௗ	௣௥௢௧௘௜௡௦
 . 

 

 

The overall accuracies of FunPred 1.1 and FunPred 1.2 are 75.8% and 87%, 
respectively. Functional group-wise Precision, Recall and F-scores of the two 
methods are given in Table 3. The average Precision of FunPred 1.2 is estimated 
as 85.9 ± 11.9% (Table 4). Although we observe relatively low values of Recall 
and F-scores for the two methods, the high Precision scores indicate that our 
algorithm returns substantially more relevant results than irrelevant ones. 
  
Table 3. Performance evaluation of FunPred 1.1 and FunPred 1.2 for eight functional 
groups. 
 

Functional groups Methods Precision Recall F-Score 

Cell cycle control FunPred-1.1 0.62 0.35 0.46 

FunPred-1.2 0.87 0.50 0.64 

Cell polarity FunPred-1.1 0.88 0.50 0.64 

FunPred-1.2 1 0.56 0.72 

Cell wall organization and biogenesis FunPred-1.1 0.88 0.66 0.75 

FunPred-1.2 0.88 0.66 0.75 

Chromatin chromosome structure FunPred-1.1 0.84 0.78 0.81 

FunPred-1.2 0.92 0.85 0.88 

Nuclear-cytoplasmic transport FunPred-1.1 1 0.66 0.80 

FunPred-1.2 1 0.66 0.80 

Pol-II transcription FunPred-1.1 0.77 0.43 0.55 

FunPred-1.2 0.77 0.43 0.55 

Protein folding FunPred-1.1 0.66 0.40 0.50 

FunPred-1.2 0.66 0.40 0.50 

Protein modification FunPred-1.1 0.44 0.25 0.32 

FunPred-1.2 0.77 0.43 0.55 
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F-score is a balanced performance measure that estimates the harmonic mean of 
Precision and Recall. For several functional groups, such as chromatin 
chromosome structure and nuclear-cytoplasmic transport, we obtained high F-score 
values. The high standard deviation across the estimated performance measures 
across different functional groups indicates the inherent complex nature of the 
problem and wide variability in the data samples. 
 

Table 4. Means and standard deviations of Recall, Precision and F-Score for FunPred 1.1 
and FunPred 1.2. 
 

Methods Mean/SD Precision Recall F-Score 

FunPred-1.1 Mean 0.7613 0.5038 0.6019 

Standard deviation 0.1792 0.1810 0.1770 

FunPred-1.2 Mean 0.8588 0.5613 0.6724 

Standard deviation 0.1192 0.1545 0.1357 

 

As discussed in the previous section, FunPred 1.2 significantly reduces the 
neighborhood network. As a result, FunPred 1.2 performs better than FunPred 
1.1. For example, in Table 3, we can see an improvement in Precision of 33% in 
the functional group protein modification and 25% in cell cycle control. In our 
experiment, the protein folding functional group performs worse than the other 
groups. In almost all other cases we registered good prediction performances with 
FunPred 1.1 or obtained significant performance improvement with FunPred 1.2.  
A limitation of our current study is the overall low Recall scores, which 
indicates that we are unable to retrieve most of the relevant results. The best 
performance is achieved in the functional group chromatin chromosome 
structure, where the respective Recall scores for FunPred 1.1 and FunPred 1.2 
were 78% and 85%, respectively. It may also be worth mentioning here that in 
our database, we have the highest number of test samples for this particular 
functional group, and we could annotate this important protein group 
successfully. Likewise, the low performance in protein folding may be attributed 
to the lack of availability of annotated proteins. 
We identified four state-of-the-art neighborhood analysis methods and compared 
their performances for our Saccharomyces cerevisiae dataset with each other and 
with our methods. We chose the neighborhood counting method of Schwikowski 
et al. [1], the chi-square method of Hishigaki et al. [2], a recent version of the 
neighbor relativity coefficient (NRC) of Moosavi et al. [21] and the FS-weight 
based method of Chua et al. [23]. 
The work of Moosavi et al. [21], clearly the strongest of the four methods, focuses 
on the prediction of three functional groups. The average Precision, Recall and  
F-scores obtained using their NRC method are 0.374, 0.434 and 0.368, 
respectively. The performance of our method across 8 functional groups (Table 4) 
highlights the fact that in terms of average prediction scores, our method is better 
than the NRC method. This may be because we considered both Level –1 and 
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Level –2 neighbors and explored a variety of scoring techniques in the protein 
interaction network, such as neighborhood ratio, protein path connectivity and 
relative functional similarity. We not only incorporated successors of a specific 
non-annotated protein but also its ancestors (in relative functional similarity 
feature) while estimating neighborhood score for function prediction.  
For chi-square methods (Chi-square #1 and Chi-square #1 and #2), the weak 
prediction outcomes may be due to the network sparseness. As claimed by 
Hishigaki et al. [2], the chi-square methods work better on dense parts of the 
interaction network.  
Simultaneous use of both Level –1 and Level –2 neighbors increases the 
prediction performance for all other methods considered here except the chi-
square method. The neighborhood counting method, despite its simplicity, has 
notable performance benefits when it uses both Level –1 and Level –2 
neighbors. However, since it does not consider any difference between direct 
and indirect neighbors, it produces lower performance than NRC, FS-weight #1 
(only direct neighbors are considered) and FS-weight #1 and #2 (both direct and 
indirect neighbors are considered) methods in most cases. None of these 
methods reduces network size by eliminating edges through some scoring 
techniques to improve prediction accuracy as implemented in FunPred 1.2. Fig. 5 
shows a detailed performance comparison of among the four methods (and their 
variants) along with our proposed systems. 
  

 
Fig. 5. Comparative analysis of the function prediction performances of related studies on 
the yeast interaction network is shown. The analysis involved various methods: NRC,  
FS-weight #1, FS-weight #1 & #2, neighborhood counting using direct neighbors 
(Neighborhood counting #1), neighborhood counting using both Level –1 and Level –2 
neighbors (Neighborhood counting #1 & #2), Chi-square with n = 1 (Chi-square #1) and 
Chi-square with n = 2 (Chi-square #1 & #2), along with our methods FunPred 1.1 and 
FunPred 1.2. 
 



CELLULAR & MOLECULAR BIOLOGY LETTERS 
 

689 
 

Our data show that our proposed FunPred 1 software has better performance 
than existing function prediction methods. They also show that the network 
structure may be pruned based on the edge coefficients, leading to improved and 
faster functional prediction in complex and diverse protein–protein interaction 
networks. The dataset used in this study and the complete source codes of the 
FunPred 1 software package are available in the public domain for non-
commercial research use at http://code.google.com/p/cmater-bioinfo/. 
For performance improvements, domain–domain affinity information may be 
incorporated in prediction of the protein functions. The PPIs may be 
decomposed into physical interactions between constituent domains of proteins, 
using the method proposed in one of our earlier works [19].  The use of domain 
interaction information in the prediction of protein function may be considered 
as a future extension of this study.  
Different physicochemical properties of amino acids have strong influence on 
protein structures and their interactions [24]. The use of the physicochemical 
properties of a protein sequence may give useful information in the prediction of 
protein function and can be considered as a future study.  
This study currently considers 8 functional groups in the yeast PPI network. We 
would like to extend this to encompass other significant functional groups. Also, 
we will explore the effectiveness of this method in other organisms, such as in 
human protein–protein interactions with even more complex network architecture. 
In a nutshell, we are proposing two useful sets of features for the prediction of 
protein functions in the complex yeast PPI network with reasonable accuracy. 
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