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Haematological disorders associated with 
feline retrovirus infections 

M I C H A E L  L. L I N E N B E R G E R  
J A N I S  L. A B K O W I T Z  

Feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) are 
major contagious pathogens in the outbred domestic cat population. 
Persistent viraemia with FeLV is associated with a greater than 80% 
mortality rate over 3 to 4 years, most cats dying from the immunosuppres- 
sive complications of the virus. FeLV has a wide in vivo host cell range, 
including haematopoietic cells, lymphoid cells, and accessory cells within 
the haematopoietic microenvironment, and a significant number of infected 
cats suffer from cytopenias and/or proliferative disorders. Thus, studies of 
the interactions between feline cells and FeLV provide insights into the 
cellular, biochemical, molecular, and genetic events involved in retrovirat- 
mediated deregulation of haematopoiesis and leukaemogenesis. 

FIV, a lentivirus that is biologically similar to human immunodeficiency 
virus (HIV), is found predominantly in older, free-roaming domestic cats. 
Clinical, seroepidemiological, and experimental infection studies have con- 
firmed that chronic FIV infection is causally related to an immunodeficiency 
syndrome characterized by progressive CD4 T-lymphocytopenia. In 
addition, cats with chronic FIV infection, or experimentally induced acute 
FIV infection, develop peripheral blood cytopenias and marrow morpho- 
logical abnormalities that are similar to those seen in patients with late-stage 
or primary HIV infection. Thus, FIV provides a valuable large animal model 
to study the mechanisms of the marrow suppression that is associated with 
the acquired immunodeficiency syndrome (AIDS). 

CLASSIFICATION OF FELINE RETROVIRUSES 

Domestic cats are natural hosts of representatives of each retrovirus 
subfamily, including FeLV (subfamily Oncornavirinae), FIV (subfamily 
Lentivirinae), and feline syncytia-forming virus (FeSFV, subfamily Spuma- 
virinae) (Table 1). Although FeSFV induces cytopathic changes in feline 
cells in vitro and is highly prevalent among some cat populations, it has not 
been related to any feline illness (Scott, 1971; Shroyer and Refaat Shalaby, 
1978). 

Baillibre's Clinical tfaematology-- 73 
Vol. 8, No. 1, March 1995 Copyright © 1995, by Bailli6re Tindall 
ISBN 0-7020-1857-0 All rights of reproduction in any form reserved 



74 M. L. LINENBERGER AND J. L. ABKOWITZ 

Table 1. Classification and characterization of feline retroviruses. 

Classification Characterization 

Subfamily: Oncornavirinae 
Exogenous feline leukaemia virus (FeLV) 

Replication-competent FeLVs 
Subgroup A 

Subgroup B 

Subgroup C 

Replication-defective FeLVs 
Mutant FeLV variants 
Recombinant FeLVs 

Endogenous feline leukaemia virus 
enFeLV 

Endogenous RD-114 virus 

Subfamily: Lentivirinae 
Feline immunodeficiency virus (FIV) 

Subfamily: Spumavirinae 
Feline syncytia-lorming virus 

Ubiquitous; highly contagious; low to 
moderate pathogenicity 

Often isolated from ill cats; arises from 
recombination of FeLV-A with enFeLV 
env gene sequences 

Rarely isolated; associated with pure red 
cell aplasia 

Some pathogenic variants identified 
Isolated from lymphomas and fibrosarcomas 

(FeSVs); viral genome contains 
transduced c-onc sequences 

Germ line FeLV-like sequences; recombines 
with exogenous FeLV; expressed in 
lymphoid turnouts 

Replication is restricted in most feline cells; 
unknown role in disease 

Horizontally transmitted; associated with 
long latency immunodeficiency syndrome 

Cytopathic in vitro; no disease association in 
vivo 

Exogenous FeLVs are classified based on the ability of the provirus to 
replicate and form infectious virions (replication-competent) or on the 
requirement for a 'helper' virus (replication-defective) (Table 1). 
Replication-defective FeLVs contain mutations, deletions, insertions, 
and/or transduced cellular gene sequences which interfere with the pro- 
duction, assembly, and/or packaging of infectious viral particles. Although 
replication-defective FeLV genes may be actively expressed and the proviral 
genome fully transcribed, transmission of the defective virus genome 
requires packaging in a pseudotype virion produced by a coinfecting 
replication-competent helper FeLV. 

Replication-competent FeLVs are subclassified into subgroups A, B, or 
C, based on differences within regions of the viral surface envelope glyco- 
protein that define the host cell range, the in vitro interference pattern, and 
susceptibility to neutralizing antibodies (Sarma and Log, 1971; Sarma et al, 
1975; Jarrett, 1980) (Table 1). Subgroup A virus is found in all FeLV- 
infected cats and is isolated alone in two-thirds of healthy viraemic cats. 
Thus, FeLV-A appears to represent the prototypic, highly contagious FeLV 
with low to moderate pathogenicity (Jarrett et al, 1978). Subgroup B FeLVs 
are always isolated with FeLV-A, and a majority of viraemic cats with 
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clinical illnesses harbour FeLV-B (Jarrett et al, 1978). These observations 
suggest that FeLV-B is more highly pathogenic and/or that the virus arises in 
vivo during long-standing infection with FeLV-A. Subgroup C FeLV also is 
always associated with FeLV-A; however, FeLV-C is only rarely isolated in 
naturally infected cats (approximately 1% of cases) (Jarrett et al, 1978), and 
subgroup C strains are specifically associated with pure red cell aplasia 
(Hoover et al, 1974; Onions et al, 1982). 

Endogenous retroviruses are identified in the uninfected domestic cat 
genome. These include sequences homologous to FeLV (enFeLV) and 
regions genetically unrelated to FeLV (RD-114 viruses) (Table 1). The 
enFeLV sequences, present at 7-12 copies per haploid genome, consist of 
full-length and subgenomic regions that are dissimilar from exogenous 
FeLV in variable regions of the e n v  gene and in the U3 portion of the long 
terminal repeat (Niman et al, 1980; Casey et al, 1981; Soe et al, 1985; Berry 
et at, 1988; Kumar et al, 1989). There is no evidence that full-length enFeLV 
proviruses produce infectious virus; however, these sequences may play a 
role in disease. For example, enFeLV genes are expressed in both FeLV- 
positive and FeLV-negative lymphomas (Niman et al, 1977a; Neil et al, 
1990), and these gene products may be responsible for the associated 
antibodies to an FeLV-related putative tumour-specific antigen (the feline 
oncornavirus-associated cell membrane antigen; FOCMA) (Snyder et al, 
1983). In addition, exogenous subgroup A FeLV can recombine with 
enFeLV e n v  gene sequences to generate FeLV subgroup B variants (Stewart 
et al, 1986; Overbaugh et al, 1988a) which could have increased patho- 
genicity. The RD-I14 sequences are expressed in lymphoid and non- 
lymphoid tumours of FeLV-positive or negative cats (Niman et al, 1977a,b). 
However, cats do not mount a serological response to RD-114 products and 
there is no evidence that RD-114 sequences are involved in recombination 
events with exogenous FeLV. Furthermore, a replication-competent strain 
of endogenous RD-114 is generally considered to be noninfectious in cat 
cells (Dunn et al, 1993), suggesting that RD-114 virus cannot be readily 
transmitted in vivo. Therefore, a pathogenic role of RD-114 remains 
undefined. 

FELINE LEUKAEMIA VIRUS 

Viral structure, genetic organization and FeLV gene products 

Viral C-type particles were recognized by Jarrett and colleagues in 1964 as 
the transmissible agent that induced lymphosarcomas in kittens inoculated 
with a primary tumour cell homogenate (Jarrett et al, 1964a,b). These 
observations were the first to characterize an oncogenic retrovirus in an 
outbred mammalian species. 

The virions of infectious FeLV are 110-120 nm in diameter (Figure 1). 
Virions bind to susceptible host cells through interactions of the surface 
envelope glycoprotein (SU) with subgroup-specific cell membrane receptors. 
After viral entry and provirus integration, viral genes are expressed and SU is 
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Figure 1. Electron micrographs of FeLV virions budding from the membrane  of an infected cell 
(left) and extracellular mature  C-type FeLV particles (right). The mature  virions are 110- 
120 nm in diameter  and contain typical round nucleocapsids.  Photographs courtesy of Dr  Niels 
Pedersen  and Rober t  J. Munn.  

displayed on the host cell membrane. The display of viral SU prevents 
superinfection of the host cell by FeLVs of the same subgroup (i.e. the 
concept of viral interference). Specific cell membrane receptors for subgroup 
A and subgroup B FeLVs have been identified by ligand-receptor bio- 
chemical studies and receptor cross-interference assays, respectively (Ghosh 
et al, 1992; Takeuchi et al, 1992). However, more recent studies have 
revealed that heterogenous SU molecules from closely related strains of 
FeLV can compete for binding to a common cell membrane receptor but that 
superinfection interference may still not be established (Reinhart et al, 1993). 
These observations suggest that FeLV either binds to a family of closely 
related, but distinct, primary cell surface receptors, or that secondary cell 
surface receptors and/or additional membrane-related factors are involved in 
virus entry and establishment of interference. 

Replication-competent FeLV proviral DNA is roughly 8.4 kb in length 
and consists of a 5' long terminal repeat (LTR), gag, pol, and env open 
reading frames, and a 3' LTR (Neil and Onions, 1985; Donahue et al, 1988) 
(Figure 2). Each LTR contains redundant (R) sequences flanked by 5' and 
3' unique regions (U5 and U3, respectively). There are no identified 
accessory genes encoding regulatory proteins in FeLV, as there are in FIV 
and other lentiviruses, or in bovine, simian, and human oncornaviruses. 
Proviral gene expression is regulated by cis-acting promoter and enhancer 
sequences in the U3 region of the LTR. This region contains a cluster of 
consensus sequences that encode putative binding sites for nuclear proteins 
(Figure 1) (Fulton et al, 1990; Plumb et al, 1991). The two major transcrip- 
tion products of proviral DNA are a full-length RNA, which is either 
incorporated as infectious virion RNA or used as the template for trans- 
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Figure 2. Genomic organization of a typical FeLV provirus (upper figure) and FeLV protein 
products (lower figures), Replication-competent proviral DNA is roughly 8.4 kb in length and 
contains gag, pol ,  and ozv structural genes without identified accessory genes encoding 
regulatory proteins. The U3 region of the LTR contains consensus sequences encoding binding 
motifs. Binding motifs identified in the U3 region of FeLV-A/Glasgow-I are depicted (derived 
from data in Fulton et al (1990)). These include sequences homologous to LVB and nuclear 
factor l (NF1) binding sites, the SV 40 core enhancer sequence (CORE), a glucocorticoid 
response element (GRE) sequence, and a novel FeLV-specific binding site (FLV-1), The FeLV 
precursor proteins and the known and deduced mature proteins are discussed in detail in the 
text. 

lation of the gag or gag-pol precursor proteins, and a spliced 3.0kb env 
mRNA (Mullins and Hoover, t990). 

Precursor and mature FeLV protein products have been characterized, in 
part, by peptide sequence data, known and deduced molecular weights, and 
functional activity. These protein products, designated by standard nomen- 
clature (Leis et al, 1988), are illustrated in Figure 1 (Nell and Onions, 1985; 
Mullins and Hoover, 1990). The primary gag and gag-pol gene products 
include: gPrS0 gag, a glycosylated protein that does not undergo further 
modifications; Pr65 gag, a precursor that is cleaved to yield the core viral 
matrix (MA; p15), capsid (CA; p27), nucleocapsid (NC; pl 0) (Copeland et 
al, 1984), and p12 (unclassified) proteins; and Prl80 gag-pol which is 
ultimately processed into the reverse transcriptase (RT; p70), protease (PR; 
13) (Yoshinaka et al, 1985), and putative integration protein (IN; p47). The 
spliced env mRNA is translated and processed to an 80--85 kDa glycosylated 
precursor (Posset al, 1989), gPr 85 env, which is cleaved to form the mature 
surface glycoprotein (SU; gp70) and transmembrane protein (TM; pl5E). 

Viral protein synthesis and virion production usually occur at a high rate 
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in cells infected with replication-competent FeLV. In particular, cells 
produce an excess of the Pr65 gag precursor protein. This excess cytoplasmic 
and extracellular (plasma) gag antigen can be readily detected by immuno- 
assays of clinical blood samples from infected cats (Hardy and Zuckerman, 
1991a). As the detection of intracellular gag antigen in peripheral blood cells 
correlates highly with the ability to isolate virus (Hardy and Zuckerman, 
1991b; Jarrett et al, 1991), such assays have been widely used in veterinary 
practice to diagnose persistent FeLV infection. 

Transmission of FeLV and host immune response 

High titres of infectious, cell-free FeLV are found in the saliva, nasal 
secretions, and plasma of cats with chronic viraemia (Francis et al, 1977). 
The virus is horizontally transmitted by repeated, close social contact 
(mutual grooming, sneezing, shared feeding), and can be vertically trans- 
mitted from queens to fetuses (Hardy et al, 1973, 1976; Jarrett et al, 1973). 

The ultimate consequences of exposure to FeLV depend upon the host 
immune responses. Within 2 to 12 days after oronasal transmission, FeLV 
replicates in tonsillar lymphocytes and macrophages, lymph node follicular 
centre cells, the thymus, spleen, and gut-associated lymphoid tissue (Rojko 
et al, 1979). Serum ~-interferon activity increases within 3 days of experi- 
mental FeLV infection, but e~-interferon levels do not increase (Rojko and 
Kociba, 1991). At 2-6 weeks after exposure, marrow nucleated cells become 
infected, virus is detected in the plasma (gag antigenaemia) and in circulat- 
ing leukocytes, and both cell mediated and humoral immune responses 
develop (Rojko et al, 1979; Charreyre and Pedersen, 1991). In 60% of 
exposed cats, the virus neutralizing antibody and cell mediated immune 
responses eradicate detectable plasma and cell associated FeLV (regressor 
infection). However, one-third to one-half of regressor cats transiently 
harbour latent virus in marrow myelomonocytic cells (Rojko et al, 1982; 
Madewell and Jarrett, 1983; Pedersen et al, 1984) and stromal fibroblast 
cells (Linenberger, 1990), as viral replication can be reactivated by culturing 
these cells in the presence of corticosteroids. Although latent FeLV 
infection has been experimentally reactivated in regressor cats by exogenous 
corticosteroid administration, the frequency of spontaneous reactivation in 
nature is likely to be extremely low. 

Persistent viraemia with FeLV occurs in roughly 30% of exposed cats, 
These animals fail to mount an adequate immune response by 8 weeks after 
exposure and develop chronic productive infection involving the marrow, 
lymph node, epithelial, and glandular tissue cells (Rojko et al, 1979). 
Chronic infection is associated with a greater than 80% mortality rate at 3-4 
years, mostly due to immunosuppressive and/or cytopenic complications 
(McCleUand et al, 1980). 

Approximately 10% of cats with natural infection, and 25% of cats with 
experimental infection, mount an incomplete immune response to virus 
challenge resulting in an atypical or sequestered, active FeLV infection 
(Hoover and Mullins, 1991; Hayes et al, 1992). These animals have non- 
protective virus neutralizing antibody titres, no detectable (or only intermit- 
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tent) antigenaemia or virus in the blood, but evidence of productively infected 
cells (i.e. intracytoplasmic gag antigen expression) in histological sections of 
lymphoid, mammary gland, and occasionally intestinal tissues. This con- 
dition is relevant to other observations that FeLV-exposed, but antigen- 
negative, cats have higher rates of infection and illness than nonexposed cats 
(Swenson et al, 1990), suggesting that the subclinical expression of 
sequestered virus in some cases may play a role in chronic immune dys- 
function. 

Cytopenic and immunosuppressive disorders associated with FeLV 

The acute stage of infection with FeLV (i.e. early viraemia) may be associated 
with transient haematological abnormalities. For example, early viraemia 
induced by disease-associated strains of FeLV is often accompanied by mild 
to moderate pancytopenia with marrow hypocellularity (Pedersen et al, 1977) 
and CD4 + T-lymphocytopenia (Tompkins et al, 1991). These cytopenias 
usually resolve within a few weeks. In addition, inoculation of neonatal 
kittens with an acute immunodeficiency-inducing strain of FeLV (FeLV- 
FAIDS) induces lymphopenia and anaemia associated with rapid weight loss, 
diarrhoea, and opportunistic infections (Hoover et al, 1987). In comparison, 
acute infection with a minimally pathogenic strain of subgroup A FeLV 
(FeLV-A/61E) is not associated with peripheral blood cytopenias (Linen- 
berger, unpublished observation). Thus, the mechanisms responsible for the 
haematological abnormalities induced by acute infection with FeLV appear 
to be related to specific viral strains, and they may also be related to factors 
such as host age, immune response, and viral load, 

Long-term, persistent viraemia with FeLV results in chronic degenerative 
haematolymphatic disorders and/or neoplastic diseases that are frequently 
accompanied by anaemia. Over half of cats with non-neoplastic FeLV- 
related fatal illnesses, and two-thirds with lymphomas (without marrow 
involvement), have a hypoproliferative anaemia (i.e. with a low reticulocyte 
count) (Mackey et al, 1975; Hardy, 1980; Reinacher, 1989). These anaemias 
may be macrocytic yet unresponsive to vitamin B12 or fotate therapy (Ward 
et al, 1969; Weiser and Kociba, 1983). Furthermore, FeLV-induced chronic 
anaemias may be associated with normal iron levels, increased marrow 
myeloid-erythroid (M/E) ratio, and improvement after treatment of co- 
existing infections (Cotter, 1979; Wardrop et al, 1986). Thus, one likely 
mechanism for these anaemias is an inflammatory block of iron utilization 
secondary to the FeLV-associated malignancies and/or oportunistic 
infections. Some cases of anaemia are associated with leukopenia, thrombo- 
cytopenia, and increased numbers of circulating nucleated erythrocytes or 
immature myeloid cells (Mackey et al, 1975; Cotter, 1979). Such cases may 
be associated with marrow cell megaloblastic maturation and increased 
blasts, suggesting that the ineffective haematopoiesis is due to an FeLV- 
induced myelodysplastic syndrome (Maggio et al, 1978; Madewell et al, 
1979; Blue et al, 1988). Studies have not been carried out on such animals to 
determine if FeLV-associated myelodysplasia is due to a clonal stem cell 
process, as it is in man. 
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Severe pure red cell aplasia occurs in less than 1% of viraemic cats and is 
specifically associated with subgroup C FeLV. This association has been 
confirmed by experimental infection studies using biological and molecular 
clones of FeLV-C (Jarrett et al, 1984; Abkowitz et al, 1985; Riedel et al, 
1986). The pathophysiology and pathogenic viral determinants involved in 
FeLV-C-induced pure red cell aplasia are discussed below. 

A minority of FeLV infected cats (15-20%) suffer from a hyperpro- 
liferative anaemia characterized by a high reticulocyte count, decreased 
marrow M/E ratio, and splenic extramedullary haematopoiesis (Cotter, 
1979; Hardy, 1981a). Hyperproliferative anaemias may be related to blood 
loss or may be due to haemolysis secondary to coinfection with Hemo- 
bartonellafelis, or, rarely, anti-erythrocyte antibodies (Scott et al, 1973) or 
oxidant stress (Christopher, 1989). In addition, FeLV-associated hyper- 
proliferative anaemia has been noted to evolve to pancytopenia and 
leukaemia, suggesting that this disorder may represent a myelodySplastic 
process. 

Isolated neutropenia is much less common than anaemia in cats with 
persistent FeLV infection. However, a panleukopenia-like syndrome 
(similar to that caused by feline parvovirus--see Chapter 3), characterized 
by severe leukopenia (with normal platelet and erythrocyte counts), 
enteritis, and dysentery, has been reported as the cause of death in up to 9% 
of FeLV-infected cats (Hardy et al, 1973; Hardy, 1981a, Reinacher, 1989). 
FeLV is assumed to be the causal agent, as this disorder has occurred in cats 
vaccinated against feline panleukopenia virus, and necrotic intestinal tissues 
contain epithelial and lymphoid cells expressing FeLV antigen. However, 
recent studies of an outbreak of panleukopenia-like disease in a specific- 
pathogen-free (SPF) cat colony inoculated with FeLV-A/Glasgow revealed 
the presence of panleukopenia virus antigen in intestinal tissue extracts 
(Lutz et al, 1993), suggesting that low levels of this parvovirus may indeed 
participate in the pathogenesis of this syndrome. Cyclic neutropenia and 
isolated chronic neutropenia have been rarely diagnosed in FeLV-infected 
cats, and some cases have been successfully treated with corticosteroids 
(Gabbert, 1984; Willard, 1985). More commonly, neutropenia is found 
associated with anaemia and thrombocytopenia. In addition to quantitative 
changes, neutrophils from viraemic cats demonstrate functional abnor- 
malities, including impaired chemotaxis and ability to generate an oxidative 
metabolic burst (Lewis et al, 1986; Kiehl et al, 1987). 

Chronic infection with FeLV is commonly associated with a slow decline 
in circulating and tissue lymphocyte populations, qualitative defects in T- 
and B-lymphocyte functions, and eventual clinical immunodeficiency 
(Olsen et al, 1987; Tompkins et al, 1989). It is unclear whether this natural 
history is related to intrinsic viral features, or pathogenic features acquired 
during in vivo viral evolution. Recently, an FeLV strain that induces an 
acute immunodeficiency syndrome (FeLV-FA1DS) has been isolated, and a 
number of replication-defective FeLV variants have been directly cloned 
from tissues of cats infected with FeLV-FAIDS (Overbaugh et al, 1988b). 
Experimental infection with the FeLV-FAIDS isolate, the major variant 
molecular clone (FeLV-61C), or chimeric molecular clones, causes signifi- 
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cant T-lymphopenia, functional lymphocyte defects, and a fatal immuno- 
deficiency syndrome (wasting, diarrhoea, and opportunistic infections) 
(Hoover et al, 1987; Overbaugh et al, 1988b; Quackenbush et al, 1989, 1990; 
Diehl and Hoover, 1992). High levels of unintegrated viral DNA have been 
detected in marrow cells of cats infected with the FeLV-FAIDS strain, 
suggesting that host cell death in vivo is related to a lack of superinfection 
interference by the FeLV-FAIDS variant (Mullins et al, 1986). This 
hypothesis has been supported by in vitro studies that revealed that FeLV- 
FAIDS variant-induced cytopathicity in a T-lymphocyte cell line is related 
to defective post-translational processing of the e n v  precursor protein (Poss 
et al, 1989, 1990), failure to establish superinfection interference, and 
accumulation of unintegrated viral DNA (Donahue et al, 1991). Molecular 
studies have indicated that these phenotypic features, common to multiple 
FeLV-FAIDS-derived variant and chimeric clones, are mediated by 
determinants of the e n v  gene encoding the 34 amino acid C-terminal 
segment of SU (Quackenbush et al, 1990; Donahue et al, t991; Overbaugh 
et al, 1992). Furthermore, the differences in the rapidity and severity of in 
vivo disease, or in vitro cytopathicity, between individual variant clones 
appear to be mediated by determinants of e n v  encoding other regions of SU 
and/or TM (Thomas and Overbaugh, 1993). Thus, alterations in FeLV e n v  

are likely to be important in FeLV-associated immunopathogenesis. It is 
unknown whether similar mechanisms of host cell cytopathicity occur in the 
marrow haematopoietic cells and whether such events may play a causal role 
in the hypoproliferative anaemia associated with FeLV-FAIDS. 

Proliferative haematological disorders associated with FeLV infection 

Lymphomas account for 90% of haematological malignancies in cats. 
Roughly two-thirds of lymphomas occur in FeLV-infected animals (Cotter 
et al, 1975). In addition, many of the FeLV-negative lymphomas occur in 
cats with significant prior exposure to FeLV or with latent virus in marrow 
nucleated cells, suggesting an indirect, or 'hit-and-run' role of the virus in 
these cases (Hardy et al, 1980; Francis et al, 1981). 

The majority of FeLV-associated lymphomas present as metastatic 
thymic turnouts or as a multicentric disease involving multiple nodal and 
extranodal sites (Hardy, 1981b; Hoover and Mullins, 1991). These tumours 
consist of a clonal population of malignant lymphocytes, as identified by 
clonal retroviral integration sites, histochemical staining patterns, cell 
surface antigen expression, and, in some cases, rearrangement of the T-cell 
receptor [3-chain gene (Casey et al, 1981; Rojko et al, 1989). However, 
thymic lymphomas induced by the Rickard strain of FeLV may consist of 
cells bearing either mature T-lineage membrane antigens (e.g. CD4 and/or 
CD8) (Nelson et al, 1993), prothymocyte features (terminal transferase and 
Ia antigens, without CD4 or CD8), or monocyte/nuU cell features (non- 
specific esterase and Ia antigens, but without any lymphoid markers) (Rojko 
et al, 1989; Nelson et al, 1993), suggesting that the transformed host target 
cell may be, in some cases, a monocytic precursor or a multilineage 
precursor. A group of FeLV-associated splenic lymphomas have also been 
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described which contain malignant cells that are not T-lymphocytes (i.e. no 
rearrangement of the T-cell receptor gene) or B-lymphocytes (i.e. no 
rearrangement of the immunoglobulin heavy chain gene), further indicating 
that FeLV has the potential to induce transformation of a wide range of host 
cell phenotypes within lymphoid organs (Levesque et al, 1990). The least 
common type of FeLV-associated lymphoma is alimentary lymphoma, 
which affects predominantly the intestines, mesenteric lymph nodes, and 
visceral abdominal organs; these tumours consist of either malignant T- 
lymphocytes or B-lymphocytes. 

Primary neoplastic disorders involving the marrow occur less frequently 
than lymphomas in FeLV-infected cats. These disorders include myelo- 
dysplastic syndromes, acute nonlymphocytic leukaemias (ANLL), and 
acute lymphocytic leukaemias (ALL). Roughly 75% of cats with myelo- 
dysplastic syndromes, 90% with ANLL and 70% with ALL are infected with 
FeLV, suggesting that FeLV plays a causal role in those disorders (Francis et 
al, 1979; Blue et al, 1988). 

The myelodysplastic syndromes include haematological disorders associ- 
ated with marrow hypercellularity, megaloblastic maturation abnormalities, 
increased reticulin fibrosis and increased numbers of immature cells and 
blasts (5-30% of nucleated cells) (Maggio et al, 1978; Madewell et al, 1979; 
Hardy, 1980; Blue, 1988; Blue et al, 1988). Peripheral blood abnormalities 
include severe hypoproliferative anaemia, erythrocyte macrocytosis, 
occasional pancytopenia, and increased numbers of circulating immature 
erythroid cells. Extramedullary haematopoiesis occurs in the liver and 
spleen of these animals, resulting in organomegaly. These disorders may 
evolve to frank acute leukaemia or persist with morbidity and mortality due 
to severe anaemia, infections, and haemorrhage. An experimental model of 
myelodysplasia and myeloid leukaemia induced by the strain FeLV-AB/ 
GM1 has been characterized (Toth et al, 1986; Testa et al, 1988) and is 
discussed below. 

Acute nonlymphocytic leukaemia is diagnosed in FeLV-infected cats with 
high numbers of circulating myeloid or erythroid blasts or, more commonly, 
in cats with peripheral blood cytopenias and infrequent numbers of circulat- 
ing blasts, but with -> 30% blasts in the marrow (Blue et al, 1988). Hepato- 
splenomegaly with extramedullary leukaemic infiltration is frequently 
found. The leukaemia cells, characterized by morphological and histo- 
chemical features, are most commonly myeloblasts; they are less commonly 
erythroblasts and only rarely consistent with myelomonocytic, basophilic, 
eosinophilic, or megakaryocytic lineages (Fraser et al, 1974; Cotter et al, 
1975; Stann, 1979; Hardy, 1980; Toth et al, 1986; Facklam and Kociba, 
1986; Blue et al, 1988). The incidence of ANLL among FeLV-infected cats is 
thought to be low (10% of all haematological malignancies), however, this 
may be an underestimation, as a careful marrow evaluation is frequently 
required, but often not pursued, to confirm the diagnosis. 

ALL occurs in 8-40% of all FeLV-infected cats diagnosed with lymphoid 
malignancies (Cotter and Essex, 1977; Hardy, 1980). In comparison, 
metastatic involvement of the marrow with malignant lymphocytes occurs in 
one-third of FeLV-infected cats with lymphoma. Primary ALL infrequently 
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presents with leukocytosis or lymphocytosis (only in 10 or 40% of cases, 
respectively) (Cotter and Essex, 1977), and therefore it is most often 
diagnosed after marrow studies are done to evaluate severe neutropenia 
and/or hypoproliferative anaemia. Marrow ALL blasts are recognized by 
positive staining for acid phosphate and periodic acid Schiff (Facklam and 
Kociba, 1986) but the diagnosis usually is made based on morphology of 
Wright-Giemsa stained specimens, the absence of cytochemical staining for 
myeloid markers, and the absence of associated dysmyelopoietic features. 

Abnormal proliferation of marrow mesenchymal cells in FeLV-infected 
cats results in myelofibrosis or osteosclerosis. Increased reticulin staining 
and/or fibrosis have been noted in marrow biopsies from one-third to 
one-half of cats with myelodysplastic syndromes or ANLL (Blue, 1988). As 
FeLV infects a high frequency of fibroblast precursor cells (Linenberger and 
Abkowitz, 1992), this process could result from direct effects of the virus on 
marrow fibroblast cell growth. Alternatively, myelofibrosis could represent 
a reactive process induced by altered cytokine production by infected cells 
within the marrow microenvironment. Medullary osteosclerosis, character- 
ized by an overgrowth of bony trabeculae into the marrow cavity of the long 
bones, is associated with subgroup C FeLV infections (Hoover and Kociba, 
1974). It is undetermined whether the abnormal osteocyte proliferation is a 
direct effect of viral infection or a response to the local effects of FeLV-C 
and/or cytokines. 

Pathogenesis of FeLV-induced pure red cell aplasia 

FeLV-C, although isolated infrequently from community cats, is epidemio- 
logically associated with severe anaemia (Onions et al, 1982). When such 
isolates are inoculated into newborn kittens, the anaemia rapidly develops 
(Mackey et al, 1975; Onions et al, 1982), suggesting that a multistep 
pathogenic process is not required. Similarly, in vivo passaged, in vitro 
passaged, and molecularly cloned FeLV-C/Sarma induce a hypoprolifera- 
tive anaemia in experimentally infected cats (Hoover et al, 1974; Testa et al, 
1983; Abkowitz et al, 1985; Riedel et al, 1986; Dornsife et aL 1989). This 
feline disorder satisfies all criteria for human pure red cell aplasia (PRCA) 
(Ammus and Yunis, 1987); profound anaemia (haematocrits range from 
4-15%), an absence or near-absence of reticulocytes in the blood, and the 
marrow lacks haemoglobinized cells. The erythropoietin level is high and 
ferrokinetic studies confirm that erythropoiesis is severely diminished, but 
that red cell survival is normal (Kociba et al, 1983; Madewell et al, 1983; 
Wardrop et at, 1986). Occasionally, cats with late-stage disease will develop 
associated mild granulocytopenia, thrombocytopenia, and/or osteosclerosis 
(Hoover and Kociba, 1974). 

All cats that are chronically viraemic with subgroup C FeLV develop 
PRCA. The onset of anaemia in neonatal and immunocompromised cats is 
faster than that in adult animals (Boyce et al, 1981; Abkowitz et al, 1985). 
These data suggest that the PRCA results directly from viral replication and 
not as a consequence of a host immune response. Consistent with this, in 
vitro studies have failed to demonstrate aberrant populations of T-cells or 
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autoantibodies that recognize erythropoietin or antigenic determinants on 
normal or infected erythroid progenitor cells in infected cats (Abkowitz et 
al, 1987a). Similarly, feline PRCA fails to respond to immunosuppressive 
therapies such as prednisone, antithymocyte globulin (Zack and Kociba, 
1988), cyclosporine, or cyclophosphamide. Other studies have demon- 
strated that FeLV-C/Sarma-induced PRCA is not a clonal or neoplastic 
disorder (Abkowitz et al, 1985). 

In longitudinal studies of experimentally infected cats, we have character- 
ized FeLV-C/Sarma-induced PRCA from a physiological perspective. 
Within a few weeks of the onset of anaemia, CFU-E decrease in number while 
BFU-E are preserved (Abkowitz et al, 1987b; Abkowitz, 1991). Because 
BFU-E are able to develop into erythroid bursts in vitro, the conditions of the 
methylcellulose culture permit full erythroid maturation. We therefore 
reasoned that the CFU-E were no longer present in the cat and that PRCA 
reflected an in vivo block in the ability of BFU-E to mature to CFU-E. Thus, 
FeLV-C/Sarma has a lineage (erythroid) and stage-specific (BFU-E to 
CFU-E) effect. Other investigators have observed extremely low frequencies 
(or absence) of BFU-E within a few weeks of viral inoculation (Boyce et al, 
1981; Testa et al, 1983). It is possible that this discrepancy reflects a higher 
quantity of viral inoculum, the use of specific pathogen-free versus immuno- 
logically intact cats, the infection of younger (versus adult) animals, or the use 
of different conditions for in vitro BFU-E growth. As lymphoid cells, 
granulocytic cells, megakaryocytes, CFU-GM, and marrow fibroblasts are 
also infected with FeLV-C/Sarma in viraemic animals, this specificity is not 
the result of restricted range of target cells (Hoover et al, 1974; Abkowitz et al, 
1987c; Dean et al, 1992; Linenberger and Abkowitz, 1992a). 

To determine the viral components required for PRCA, Mullins and 
colleagues constructed chimeric retroviruses containing regions of FeLV-A/ 
61E and C/Sarma viruses (Riedel et al, 1988; Brojatsch et al, 1992). 
Although most e n v  sequence is conserved among FeLVs, the nucleotide and 
predicted amino acid sequences of the SU glycoprotein of FeLV-C/Sarma 
(and of FeLV subgroup B viruses) differ from all FeLV-A isolates in four 
discrete regions (designated variable regions 1--4) (VR1-4). Viral constructs 
which contain a 723 base pair region that encodes the N-terminal 241 amino 
acids of SU of FeLV-C/Sarma (which include VR1-3) induce PRCA when 
inoculated into neonatal cats. No anaemia is seen when comparable animals 
are inoculated with viruses which contain the FeLV-A sequences in the 
region of e n v .  Using a similar experimental strategy, Rigby et al (1992) 
demonstrated that the sequences of e n v  encoding the 30 amino acid VR1 
region of FeLV-C/Sarma SU contain the required determinants for 
anaemia. Of major interest, FeLV-A recombinant viruses which contain 
VR-1 from FeLV-C/Sarma retained the ability to infect guinea pig cells in 
culture (Riedel et al, 1988; Brojatsch et al, 1992; Rigby et al, 1992), a unique 
feature of subgroup C viruses. In contrast, viruses lacking the FeLV-C/ 
Sarma VR-1 could not infect guinea pig cells. Thus, it appears that the 30 
amino acid region of SU which is required for anaemia is also necessary to 
infect target cells. These observations suggest the possibility that the cell 
surface receptor for FeLV-C/Sarma is necessary for normal erythroid 
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differentiation (i.e. is essential for BFU-E maturation to CFU-E). 
Theoretically, excess FeLV-C/Sarma SU glycoprotein could impair the cell 
surface expression of this receptor and/or its ability to bind its physiological 
ligand (i.e. the same mechanisms involved in viral superinfection inter- 
ference) and thus inhibit erythropoiesis. In additional studies, the SU 
encoding e n v  gene regions of three additional natural isolates of FeLV-C 
(FZ215, FA27, FS246) were recently sequenced (Brojatsch et al, 1992). The 
VR1 sequence of each clone was unique and distinct from the conserved 
pattern of FeLV-A viruses, suggesting that different structural changes in 
this region can result in a convergent phenotype. 

Does the SU glycoprotein of FeLV-C/Sarma directly impair BFU-E 
differentiation, as implied above? The behaviour of BFU-E, but not 
CFU-GM, from cats with FeLV-C/Sarma-induced PRCA is abnormal in 
vitro. The percentage of BFU-E in the S phase of the cell cycle is two times 
the controls, BFU-E from these cats are usually sensitive to in vitro lysis 
after exposure to complement, and progenitors are poorly responsive to the 
haematopoietic growth factor, kit ligand (Abkowitz et al, 1987b,c, 
Abkowitz, 1991; Abkowitz, unpublished observation). In addition, highly 
enriched populations of BFU-E fail to differentiate in the presence of 
FeLV-C/Sarma in suspension cultures (Abkowitz, unpublished obser- 
vation). 

Could feline PRCA be a non-immune consequence of the effects of 
FeLV-C/Sarma on accessory ceils within the marrow microenvironment? 
Recent studies of Kahn et al (1993) suggest that TNF release by FeLV-C/ 
Sarma-infected monocytes might play a role in PRCA. This is an unlikely 
explanation for the specific and complete inhibition of erythropoiesis, as 
monocytes infected with FeLV-A also induce TNF (though perhaps at a 
lower titre) (Khan eta!, 1993), and many other retroviruses, including FIV, 
induce TNF expression in vivo (see later discussion). However, additional 
effects of the SU glycoprotein and/or other viral components (e.g. the LTR 
(Rojko et al, 1992) ) on microenvironmental and lymphoid target cells could 
influence disease severity. 

Pathogenesis of FeLV-induced lymphomas 

Several virus and host cell mechanisms are likely to be involved in the 
multistep pathogenesis of FeLV-induced lymphomas. Studies of DNA 
sequences from lymphoid tumours have revealed some recurrent patterns of 
viral genotypic features and host genetic alterations with putative direct and 
indirect roles in tumorigenesis. First, thymic lymphomas that developed in 
cats inoculated with a minimally pathogenic molecular clone, FeLV-A/61E, 
were found to contain proviral variants with e n v  gene deletions, truncation 
mutations, and e n v  insertion mutations (Rohn et al, 1994). Such e n v  gene 
mutations may contribute to viral pathogenicity in general by affecting the 
processing and display of SU (perhaps altering superinfection interference) 
or they could contribute more directly to lymphomagenesis by affecting cell 
membrane signalling events and altering cell growth. 

Second, some thymic tumours associated with FeLV-A/61E (Rohn et al, 
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1994) or the Rickard strain of FeLV (FeLV-A/R) (Fulton et al, 1990; Neil et 
al, 1991) and some spontaneous FeLV-associated lymphoid (and myeloid) 
malignancies (Matsumoto et al, 1992) are linked to proviruses that contain 
direct repeats of enhancer motifs in the U3 region of the LTR. These LTR 
repeats likely augment the enhancer and promoter functions of the viral 
LTR; and they would increase the expression of nearby rearranged host 
proto-oncogenes. 

Third, integration of FeLV provirus DNA next to specific host proto- 
oncogene sequences may be an important step in the pathogenesis of 
spontaneous and experimentally induced lymphomas. Insertional 
mutagenesis of the c-myc proto-oncogene has been noted in 7-38% of 
spontaneous FeLV-associated lymphomas and in up to 50-75% of thymic 
lymphomas experimentally induced by FeLV-A/R (Neil et al, 1984; Forrest 
et al, 1987; Miura et al, 1987; Neil et al, 1987; Mullins and Hoover, 1990; 
Rezanka et al, 1992; Levy et al, 1993a). In cases of FeLV-A/R-induced 
lymphomas, the provirus is usually integrated upstream and in the opposite 
orientation of c-myc, suggesting that the enhancer function of the LTR 
drives c-myc overexpression. Recently, a unique common integration site of 
FeLV proviruses, named flvi-2, was identified in spontaneous thymic 
lymphomas and in experimentally induced T-cell lymphomas (Levy and 
Lobelle-Rich, 1992; Levy et al, 1993a). Theflvi-2 locus has been identified as 
the feline homologue of the murine brni-1 gene (Levy et al, 1993b). Murine 
bmi-1 encodes a nuclear protein, and rearrangement of this proto-oncogene 
accelerates the development of B-cell lymphomas in Etx-myc transgenic 
mice infected with Moloney murine leukaemia virus (Haupt et al, 1991; Van 
Lohuizen et al, 1991). In FeLV-positive lymphomas, provirus is generally 
integrated downstream of brni-1, suggesting that the LTR enhancer acti- 
vates the bmi-1 promoter, stimulating an increase in bmi-1 expression. 
Additional studies have revealed a 54% co-occurrence of rearranged, or 
overexpressed, c-myc among 13 natural or experimentally induced FeLV- 
positive tumours with rearranged flvi-2 (Levy et al, 1993a). Thus, proto- 
oncogene cooperativity likely plays a major role in the development of these 
T-cell lymphomas. Additional unique common integration sites, designated 
flvi-1 (Levesque et al, 1990), and fit-1 (Tsujimoto et al, 1993), have been 
identified in four of seven naturally occurring FeLV-associated splenic 
non-T-cell lymphomas and in T-cell tumours induced by recombinant FeLV 
proviruses containing a transduced v-myc gene, respectively. Although the 
flvi-1 gene locus is highly conserved among mammals (Levesque et al, 1991), 
the identity of this putative proto-oncogene and its role in leukaemogenesis 
remain undefined. Similarly, the nucleotide sequence of theflt-I region does 
not show any close match to identified proto-oncogene sequences (Tsuji- 
moto et al, 1993). 

Finally, recombinant FeLV proviruses containing either transduced 
enFeLV sequences or cellular proto-oncogene sequences likely play an 
important role in some lymphomas. Recombinant proviral variants contain- 
ing env gene sequences originating from enFeLV are detected in three- 
fourths of FeLV-positive spontaneous thymic and alimentary lymphomas 
and in one-third of multicentric lymphomas (Sheets et al, 1993). Some of 
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these recombinants contain mutations affecting a region of env that encodes 
an important immunogenic epitope of SU, suggesting that these variants 
might contribute to lymphomagenesis by facilitating escape from immune 
surveillance, enhancing the host cell range of the viruses, and/or by increas- 
ing host cell superinfection and the chance of a mutagenic event. 

Recombinant FeLV variants containing a transduced c-myc gene (FeLV- 
myc isolates) have also been characterized (Levy et al, 1984; Mullins et al, 
1984; Neil et al, 1984; Rezanka et al, 1992). In all isolates tested, infection of 
tissue culture cells or inoculation of neonatal kittens with FeLV-myc (along 
with a helper FeLV) does not result in neoplastic transformation in vitro or 
the acute induction of multiclonal tumours in vivo (Bonham et al, 1987; 
Onions et al, 1987; Levy et al, 1988; Doggett et al, 1989). Rather, these 
recombinants induce shorter-latency, clonal T-cell lymphomas that 
apparently arise after acquisition of additional de novo mutagenic events. 
Experimental evidence for this hypothesis came from observations that 
coinfection of cells with FeLV-myc and a ras-expressing retrovirus resulted 
in in vitro transformation (Doggett et al, 1989). Evidence that additional 
mutagenic events cooperate with FeLV-myc in vivo came with the discovery 
in an FeLV-myc-containing tumour of a second recombinant provirus 
containing a transduced portion of the T-cell antigen receptor [3-chain gene 
(Fulton et al, 1987). This observation, and the finding of rearrangements of 
both c-myc and flvi-2 in individual thymic lymphomas (Levy et al, 1993a) 
support the hypothesis that FeLV-induced lymphomas arise as a result of a 
multistep process. 

Pathogenesis of FeLV-induced myeloid leukaemia 

The FeLV-AB/GM1 strain induces acute myelodysplasia and myeloid 
leukaemia in neonatal kittens. Inoculated animals develop trilineage 
marrow morphological abnormalities within 2 weeks, pancytopenia and 
increased marrow blasts at 3-5 weeks, and frank myeloblastic or myelo- 
monocytic leukaemia after 7 weeks (Toth et al, 1986; Testa et al, 1988). 
Marrow culture studies performed on inoculated cats reveal an early 
polyclonal expansion of CFU-GM (starting at week 2), with an apparent 
enhanced sensitivity of progenitor cells to low levels of colony-stimulating 
activity in serum (Testa et al, 1988). This pattern is followed by a decrease in 
CFU-GM frequencies and an increase in the growth of small cell clusters 
correlating with increased marrow blasts. Long-term marrow cultures from 
cats with myelodysplasia induced by FeLV-AB/GM1 maintain CFU-GM 
poorly, consistent with an additional effect of the virus on the marrow 
microenvironment (Testa et al, 1988). Inoculation of kittens with a mixture 
of molecular clones of subgroup A and subgroup B viruses derived from 
fibroblasts infected with FeLV-AB/GM-1 induced early expansion of the 
marrow CFU-GM population followed by a later appearance of small cell 
clusters in clony-forming assays (Tzavaras et al, 1990). However, marrow 
morphological and peripheral blood changes did not occur in the majority of 
these animals, and only FeLV-A was isolated in the one cat that developed 
myeloid leukaemia. 
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These observations suggest that specifc strains of FeLV may directly alter 
the growth of marrow progenitors and the function of marrow accessory 
cells, promoting rapid evolution to myeloid leukaemia. The causal role of 
the FeLV-B variants in this experimental model of myeloid leukaemia has 
not been defined, and therefore it is unclear whether enFeLV sequences 
may be important. Furthermore, additional molecular studies are needed to 
determine the roles of viral factors such as mutations of e n v  or other genes, 
LTR duplications, or transduced host cell proto-oncogene sequences in the 
pathogenesis of FeLV-induced myeloid leukaemias. Genes important in 
myeloid cell growth and differentiation may be deregulated by FeLV 
insertional mutagenesis or transduction events, analogous to the findings 
with FeLV-associated lymphomas. 

Effects of  FeLV within the m a r r o w  m i c r o e n v i r o n m e n t  

Accessory cells within the marrow microenvironment provide the structural 
framework, cytoadhesive molecules, and growth-regulatory cytokines 
necessary for normal haematopoiesis. As marrow macrophages, T- 
lymphocytes, and stromal fibroblasts are known targets of FeLV in vivo, 
alteration of the haematopoietic-supporting function of these accessory cells 
could play a role in FeLV-induced haematological diseases. 

Infection of feline embryonic fibroblasts with subgroup A or subgroup C 
FeLV induces the secretion of soluble multilineage colony-stimulating 
activity (CSA) (Abkowitz et al, 1986). Theoretically, such an effect on 
accessory cells in the marrow microenvironment in vivo could indirectly 
promote leukaemogenesis by stimulating the proliferation and outgrowth of 
a neoplastic haematopoietic cell clone. Heterogenous long-term marrow 
culture stromal cells infected with FeLV support the generation of two- to 
three-fold greater numbers of nonadherent CFU-GM and total non- 
adherent cells, compared to uninfected stromal cells (Linenberger and 
Abkowitz, 1992b). Further studies, however, have revealed that FeLV 
infection down-modulates the production of soluble progenitor growth- 
inhibitory activity by heterogenous marrow stromal cells or marrow fibro- 
blasts, without altering production of soluble CSA by these stromal cells 
(Linenberger and Abkowitz et al, 1992c). 

Some studies have revealed impaired in vitro growth of marrow stromal 
cells from cats infected with highly pathogenic strains of FeLV. For 
example, fibroblast colony-forming units (CFU-F) or long-term marrow 
culture stromal cells from cats viraemic with the anemogenic Kawakami- 
Theilen (KT) strain of FeLV (Wellman et al, 1988) or the leukaemogenic 
strain FeLV-AB/GM1 (Testa et al, 1988) grow poorly in culture, suggesting 
that FeLV can adversely affect the proliferation and viability of marrow 
microenvironmental cells. Furthermore, in vitro incubation of normal feline 
bone marrow cells with purified TM (p15E) protein signifcantly decreases 
CFU-F-derived colony formation (Wellman et al, 1988). 

Together, these observations indicate that FeLV and/or viral proteins can 
affect marrow accessory cell viability, growth, and/or production of 
haematopoietic progenitor growth-regulating substances. Furthermore, 
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these effects appear to occur in a virus strain-specific and host cell lineage- 
specific manner. In addition, infected marrow microenvironmental cells 
provide a reservoir of latent virus (Rojko et al, 1982; Madewell and Jarrett 
1983; Pedersen et al, 1984; Linenberger, 1990), which likely plays a role in 
the ultimate incidence and severity of disease in nonviraemic, FeLV- 
exposed cats (Francis et al, 1981; Swenson et al, 1990). Thus, complex 
interactions occur between accessory cells, accessory cell products, virus, 
viral products, and haematopoietic progenitor cells ultimately resulting in 
the cytopenic or proliferative haematological diseases associated with 
FeLV. 

FELINE IMMUNODEFICIENCY VIRUS 

Viral structure, genetic organization and FIV gene products 

Feline immunodeficiency virus was initially isolated and characterized in 
1987 (Pedersen et al, 1987). The index cases were communal FeLV-negative 
cats suffering from emaciation, chronic diarrhoea, oral infections, and skin 
lesions. The transmissible agent in these cases was a T-lymphotropic retro- 
virus that expressed Mg2+-dependent RT activity. The infectious virions 
were 120-150 nm in size and contained typical bar-shaped lentivirus nucleo- 
capsids (Figure 3). Subsequent serological surveys, immunoassays, and 
proviral D N A  sequence analyses showed that this feline lentivirus is 
antigenically and genetically distinct from primate and ungulate lenti- 

Figure 3. Electron micrographs of FIV virions budding from the membrane of an infected cell 
(left) and extracellular mature particles (right). Mature FIV virions are 120-150 nm in size and 
contain bar-shaped nucleocapsids typical of lentiviruses. Photographs courtesy of Robert J. 
Munn; original photograph (right) from Pedersen et al (1987), © 1987 by the AAAS, reprinted 
with permission. 
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viruses, and is causally associated with an immunodeficiency-like illness 
(reviewed in Pedersen et al (1989) and Sparger et al (1989)). 

Numerous proviral genomes of FIV have been molecularly cloned 
(Olmsted et al, 1989; Talbott et al, 1989; Miyazawa et al, 1991; Morikawa et 
al, 1991; Maki et al, 1992; Siebelink et al, 1992). The typical FIV genome is 
about 9500 bases, including open reading frames (ORFs) encoding known 
and putative regulatory proteins, in addition to gag, pol, and env genes 
(Figure 4). Although FIV is biologically and virologically similar to HIV, 
some genetic features are more closely related to other nonprimate lenti- 
viruses. For example, the FIV pol gene contains sequences encoding 
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Figure 4. Genomic organization of the FIV molecular clone pF34 (upper figure) and FIV 
protein products (lower figures). The FIV genome contains open reading frames encoding 
putative and characterized regulatory proteins (designated by white boxes), in addition to the 
gag,pol ,  and env structural genes (see text). The U3 region of the pF34 LTR contains sequences 
encoding putative functional binding domains (described in the text). The precursor env 
protein product gPrl50 ¢"v is processed to gPrt30 e ' '  by cleavage of the leader (L) region. The 
gag-pol precursor protein has not been defined. The other precursor and mature protein 
products are described in the text. Genomic organization of pF34 was derived from data in 
Talbott et al (1989) and adapted from figures in Sparger et at (1992), with permission of the 
author and Academic Press. 
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deoxyuridine triphosphatase (DU), an enzyme that converts deoxyuridine 
triphosphate (dUTP) to a monophosphate (dUMP) (Wagaman et al, 1993). 
This feature is similar to DU-encoding regions of pol in the ungulate 
lentiviruses (i.e. equine infectious anaemia virus (EIAV); caprine arthritis- 
encephalitis virus (CAEV); and visna virus), but different from pol in the 
primate lentiviruses (i.e. HIV; and simian immunodeficiency virus (SIV)) or 
the type-C oncornaviruses) (Elder et al, 1992). In addition, FIV does not 
appear to encode a gene product with transcriptional transactivation function 
(i.e. analogous to the tat protein produced by HIV), suggesting that FIV gene 
expression may be regulated by mechanisms similar to that of the visna virus 
(Sparger et al, 1992). FIV does contain a rev gene, which is encoded by ORF L 
and ORF H (exon 1 and exon 2, respectively, of rev) (Kiyomasu et al, 1991; 
Phillips et al, 1992). The FIV rev gene product most likely functions like the 
HIV rev protein, as it has been localized to the nucleoli of cells, and putative 
rev-responsive elements (RRE) have been identified in sequences in the 3' 
end of env (Phillips et al, 1992). The FIV ORF 1 appears to encode the vii 
gene, as the primary gene transcript is a singly spliced mRNA species similar 
to the HIV viftranscript, and cell-free virions generated from ORF 1 mutants 
have significantly impaired infectivity (Tomonaga et al, 1992). The role of 
ORF 2 in FIV gene regulation has not been defined, however studies with 
frameshift mutants suggest that this region is required for efficient viral 
replication in T-lymphocytes (Tomonaga et al, 1993). 

The FIV LTR is approximately 360 bases in length. Sequence analyses of 
molecular clones described to date have identified multiple putative 
functional domains (see Figure 4) (Kawaguchi et al, 1992; Sparger et al, 
1992). Studies utilizing plasmids containing FIV LTR or LTR mutants 
linked to the bacterial chloramphenicol acetyltransferase (CAT) gene have 
revealed a high basal promoter activity in some transfected feline and 
human cell lines (Miyazawa et al, 1992; Sparger et al, 1992). Constitutive 
LTR-CAT activity is altered by mutation of putative ATF, AP-1, 5' AP-4 or 
NF-KB sites in some cell lines but not in others (Sparger et al, 1992). These 
observations suggest that multiple transcription factors, with perhaps over- 
lapping activities, provide sufficient signals for basal FIV replication. Other 
studies have revealed that AP-1 and AP-4 sites mediate transcription acti- 
vation of LTR-CAT in feline T-cells stimulated with phytohaemagglutinin 
and dibutyryl c-AMP, respectively, suggesting that these sequences are 
important in the inducible expression of FIV genes (Miyazawa et al, 1993). 
Host cell infection with feline herpesvirus type 1 (Kawaguchi et al, 1991), 
but not FeLV (Sparger et al, 1992), enhances the promoter activity of a 
transfected LTR-CAT construct. In comparison, only modest enhancement 
of FIV LTR-CAT activity is noted in some cell lines cotransfected with 
full-length FIV molecular clones (Sparger et al, 1992). Thus, the FIV LTR is 
a strong basal promoter that is activated by host cell factors responding to 
exogenous stimulation, or by herpesvirus infection; however, LTR activity 
is only modestly affected by FIV proviral transactivation. FIV replication 
and gene expression may be most dependent on host cell rather than viral 
regulatory mechanisms. 

The FIV gene products are depicted in Figure 4. The sizes of the 
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precursor and mature proteins have been estimated by DNA sequence 
analysis or determined by immunological methods, isolation of purified 
protein products, and by ion spray mass spectrometry (Egberink eta | ,  1990; 
North et al, 1990; Steinman et al, 1990; Stephens et al, 1991; Elder et al, 
1993). Similar to FeLV, the FIV gag proteins are produced in great excess 
compared to other gene products (Elder et al, 1993). The FIV CA protein 
(p25) appears to share immunogenic epitopes with CA proteins of EIAV, 
SIV, and HIV, as determined by radioimmunoprecipitation assay, Western 
blot assays, and epitope mapping studies (Egberink et al, 1990; Steinman et 
al, 1990; Matsuo et al, 1992). Thus, lentivirus gag gene products are related 
and highly conserved among species. 

The FIV pol  gene products, generated from a putative gag-pol precursor 
protein, include: a PR protein (p13) that cleaves a family of substrate 
peptides, similar to the function of HIV-I PR (Farmerie et al, 1991); an RT 
protein (p67) with RNase H activity that is inhibited by drugs that inhibit the 
RT of other lentiviruses (Cronn et al, 1992); a DU protein (p14) that likely 
functions to limit misincorporation of uracil into proviral DNA (by keeping 
the level of dUTP low) (Wagaman et al, 1993); and a putative IN protein 
that has not been characterized. 

The primary env gene precursor protein (gPr 150 env) is rapidly processed 
to a secondary precursor (gPr 130 env) which is ultimately cleaved to generate 
SU (gp 95) and TM (gp 40) (Stephens et al, 1991; Verschoor et al, 1993). The 
FIV env gene contains multiple variable regions with sequences that are 
divergent among the clones described to date (Morikawa et al, 1991 ; Pancino 
et al. 1993a). These variable regions encode immunodominant epitopes in SU 
and TM (Avrameas et al, 1992; Lombardi et al, 1993; Pancino et al, 1993b; 
Siebelink et al, 1993), and therefore they may be important in the escape of 
FIV from immune surveillance. In addition, FIV env gene variable regions 
may encode determinants that are important in host cell tropism, infectivity, 
and pathogenic phenotypic features, analogous to HIV. Evidence that env 
gene products may play a role in host cell cytopathicity, at least in a host cell 
lineage-specific fashion, come from one study that showed a correlation 
between the induction of syncytia and cell death with an altered SU 
glycosylation pattern (Posset al, 1992). 

Transmission of FIV and host immune response 

FIV, unlike FeLV, is not commonly transmitted by infrequent social 
contact. Chronic asymptomatic FIV infection is associated with a very low 
number of infected circulating mononuclear cells and low titres of cell-free 
virus in serum, plasma, saliva, and cerebrospinal fluid. In comparison, virus 
is readily recovered from peripheral blood cells and bodily fluids of sick cats 
with late-stage disease (Yamamoto et al, 1989; Sparger, 1993). Experi- 
mental transmission studies and demographic data of infection rates among 
field cats (Hosie et al, 1989; Ishida et al, 1989; Shelton et al, 1989a; 
Yamamoto et al, 1989; O'Connor et al, 1991) indicate that horizontal FIV 
transmission occurs primarily by biting and fighting. However, proviral 
DNA and FIV RNA have been detected in peripheral blood and marrow 
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cells of seronegative cats chronically exposed to docile infected cats 
(Dandekar et al, 1992), and therefore social contact transmission may occur 
under certain circumstances. Venereal transmission of FIV has not been 
documented. FIV can be transmitted to kittens via maternal milk from 
queens experimentally infected either during gestation (Wasmoen et al, 
1992) or immediately post-partum (Sellon et al, 1994). Vertical transmission 
to kittens does not appear to occur from queens in the asymptomatic, 
chronic stage of infection. 

Chronic, active FIV infection is associated with a sustained humoral 
immune response that fails to eradicate virus-infected cells. Thus, chronic 
FIV infection, like HIV infection, is most easily diagnosed by identifying 
serum anti-FIV antibodies using Western blot and/or enzyme immunoassay 
methods (Barr et aL 1991; Egberink et al, 1991). Utilizing such techniques, 
large seroepidemiological surveys in the USA, UK, Italy, and Japan have 
revealed FIV infection prevalence rates of 1.2-11% in healthy domestic cats 
and 9-89% in sick cats (Hosie et al, 1989; Shelton et al, 1989a; Yamamoto et 
al, 1989; O'Connor et al, 1991; Bandecchi et al, 1992). Most studies have 
found no association between FIV seropositivity and FeLV antigenaemia; 
the peak incidence of FIV infection occurs in outdoor, free-roaming male 
cats at 5-10 years of age, whereas the peak incidence of FeLV infection 
occurs in 1-5-year-old cats. In contrast, FIV infection has been highly 
associated with FeSFV coinfection (Yamamoto et al, 1989; Bandecchi et al, 
1992). 

Virus-host cell interactions and host immune responses have been 
characterized during experimental primary infection with FIV. Within 4 
weeks after inoculation, lymphadenopathy develops, plasma viraemia is 
detectable, circulating total and CD4 + T-lymphocyte numbers decrease, 
and FIV-infected peripheral blood CD4 + T-lymphocytes, CD8 + T- 
lymphocytes, and B-lymphocytes become readily detectable (Yamamoto et 
al, 1988; Tompkins et al, 1991; English et al, 1993). Significantly decreased 
responses of peripheral blood mononuclear cells (PBMC), spleen cells, and 
lymph node ceils to mitogens such as conconavalin A (Con A), phyto- 
haemagglutinin (PHA), and pokeweed mitogen (PWM) are noted within 
the first 3 weeks post-inoculation, indicating that functional abnormalities 
rapidly develop in T-lymphocytes during primary infection (Lawrence et al, 
1992). However, interleukin-2 (IL-2) generation by these cells does not 
appear to be significantly altered, Anti-FIV antibodies, against gag and env 
gene products and FIV RT, often appear by week 3-4 post-inoculation, 
however seroconversion may be delayed for many weeks in cats inoculated 
with a low infectious dose of FIV (Hosie and Jarrett, 1990; Fevereiro et al, 
1991; Egberink et al, 1992). 

From weeks 4-20 post-FIV inoculation, generalized lyrnphadenopathy 
persists, systemic symptoms (fever, diarrhoea, depression) develop, and 
neutropenia occurs (Yamamoto et al, 1988), During this time the CD4 + 
T-lymphocyte count recovers and the CD8 + T-lymphocyte numbers 
increase, resulting in a persistently decreased CD4/CD8 ratio (Barlough et 
al, 1991; Willett et al, 1993). In some experimentally infected cats, particu- 
larly neonatal kittens and cats aged 7-12 years, CD4 + lymphopenia persists 
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(George et al, 1993). The increased CD8 + population includes cells that 
display a low level of CD8 antigens and a relatively high level of major 
histocompatibility (MHC) class II antigens, suggesting that this population 
could include natural killer cells (Willett et al, 1993). PBMC of cats at week 
7 post-inoculation and beyond, demonstrate MHC class I-restricted, CD8 + 
T-cell mediated cytolytic activity against FIV-infected target cells (Song et 
al, 1992). Cell mediated immunity is likely important in the abatement of the 
high viral replicative activity during acute infection. By 12 weeks post- 
inoculation, increased numbers of FIV-infected B lymphocytes, and 
relatively fewer infected T-lymphocytes, are detected in peripheral blood 
(English et al, 1993). In addition, cats inoculated with acutely immuno- 
suppressive, macrophage-tropic strains of FIV, but not apathogenic strains, 
have increased numbers of provirus-containing monocytes in their circu- 
lation (Dow et al, 1993). Defective responses of peripheral blood B- 
lymphocytes to mitogenic stimulation with lipopolysaccharide (LPS), and of 
T-lymphocytes to recall antigens have been noted at 8-20 weeks post- 
inoculation (Barlough et al, 1991). Plasma TNF has been detected at high 
levels in some cats (Lawrence et al, :1992) but not others (Lehmann et al, 
1992) with acute FIV infection, thus, the role of inflammatory mediators in 
the pathophysiology of acute FIV inflection remains unclear. 

Clinical signs and symptoms associated with experimentally induced acute 
FIV infection usually resolve by week 20 post-inoculation, but generalized 
lymphadenopathy may persist for 9 to 12 months. As with HIV infection, 
primary infection with FIV is associated with a significant viral burden in the 
lymphoid tissue. Immunohistochemical studies of FIV gag antigen expres- 
sion (Toyosaki et al, 1993), or in situ hybridization assays for viral RNA 
(Beebe et al, 1994), have revealed infected T-lymphocytes, macrophages, 
and undefined paracortical cells (possibly dendritic cells) in the lymph nodes 
of cats necropsied at 3-20 weeks after experimental infection. It is yet to be 
demonstrated whether there is a relationship between the viral load during 
primary infection and the subsequent rapidity and severity of the immuno- 
pathogenesis during late-stage chronic FIV infection (after an asymptomatic 
stage of many months to many years). 

Late stages of natural or experimental chronic FIV infection are character- 
ized by weight loss, opportunistic infections, lymphoid depletion (occasion- 
ally following a recurrence of persistent generalized lymphadenopathy), and 
haematological abnormalities (Sparger et al, 1989; Yamamoto et al, 1989; 
Pedersen and Barlough, 1991; Ishida et al, 1992). Additional clinical 
disorders noted in field cats include neurological/behavioural abnormalities, 
ocular disorders, renal disease~ haematological malignancies, and squamous 
cell carcinoma of the mouth and skin (Pedersen and Barlough, 1991). These 
clinical disorders are associated with a progressive decrease in the number of 
circulating CD4 + T-lymphocytes (Ackley et al, 1990; Novotney et al, 1990; 
Barlough et al, 1991; Hoffmann-Fezer et al, 1992). Concomitant abnor- 
malities are detected in the in vitro proliferative responses of PBMC to 
B-cell mitogens (LPS), T-cell mitogens (Con A and IL-2), a T-cell- 
dependent B-cell mitogen (PWM), and a T-cell antigen (keyhole limpet 
haemocyanin) (Lin et al, 1990; Siebelink et al, 1990; Barlough et al, 1991; 
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Torten et al, 1991; Bishop et al, 1992). The production of IL-2 by Con 
A-stimulated PBMC from cats with long-standing experimental FIV 
infection is also decreased (Siebelink et al, 1990). Functional T-cell defects 
are demonstrable in vivo. as the antibody response to a T-cell-dependent 
immunogen is significantly impaired in cats beyond 2 years post-FIV inocu- 
lation. Polymerase chain reaction (PCR) assays of purified peripheral blood 
lymphocyte populations from cats with chronic experimental or natural FIV 
infection have revealed that B-lymphocytes are the most frequently infected 
circulating host cell, with lower infection rates among CD4 + and CD8 + 
T-lymphocytes (English et al, 1993). As the numbers of peripheral blood 
B-lymphocytes and CD8 ÷ T-lymphocytes do not significantly change during 
chronic infection, these host cells are apparently not susceptible to the 
cytopathic mechanisms involved in CD4 T-lymphocytopenia (Bishop et al, 
1993). 

Haematological disorders associated with FIV 

Peripheral blood cytopenias and marrow morphological abnormalities 
frequently occur during experimental acute FIV infection and during the 
late, symptomatic stages of chronic infection. The characteristics and 
frequency of these disorders closely resemble the haematological mani- 
festations of HIV infection, suggesting that the pathogenesis of the marrow 
suppression associated with both of these related lentiviruses is similar. 

Neutropenia (i.e. neutrophil count <2500/~l) develops in a majority of 
cats inoculated with in vivo and in vitro passaged FIV isolates (Yamamoto et 
al, 1988; Mandell et al, 1992; Callanan et al, 1992b; Moraillon et al, 1992; 
George et al, 1993; Linenberger et aL 1994). Neutropenia usually occurs 
within 4-8 weeks of inoculation and may persist for 2-18 weeks, with nadir 
counts ranging from 200-2000cells/txl. Neutropenia is severe (i.e. 
< 500 cells/~l) in FIV-inoculated neonatal kittens (George et al, 1993) and 
in cats with pre-existing asymptomatic FeLV infection (Pedersen et al, 
1990). Dually infected cats have more severe clinical signs of primary FIV 
infection and a higher rate of fatal infections and/or gastrointestinal compli- 
cations. Significant decreases in the mean circulating eosinophil count have 
been noted at weeks 6-13 post-inoculation with FIV Petaluma (Mandell et 
al, 1992); however, peripheral blood monocyte counts, platelet counts, and 
haematocrits are not significantly altered during experimental primary FIV 
infection (Yamamoto et al, 1988; Mandell et al, 1992; George et al, 1993). 

Histological marrow evaluations during the neutropenic phase of experi- 
mental acute FIV infection occasionally reveal myeloid hyperplasia with a 
shift to immature precursors, lymphoid follicles, and/or marrow lympho- 
cytosis (Pedersen et al, 1990; Beebe et al, 1992; Callanan et al, 1992b, 
Mandell et al, 1992). However, serial marrow aspirates on a cohort of 
inoculated cats failed to detect significantly increased frequencies of marrow 
lymphocytes, plasma cells, or eosinophils when compared to uninfected 
control cats (Mandell et al, 1992). 

Infected marrow mononuclear cells and megakaryocytes are detectable 
by in situ hybridization assays for FIV nucleic acids in histological marrow 
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sections from cats with experimental acute FIV infection (Beebe et al, 1992; 
Linenberger et al, 1995). Double-labelling studies have identified some of 
these mononuclear cells as infected T-lymphocytes and monocyte/ 
macrophages (Beebe et al, 1993). High frequencies of infected cells have 
also been detected in cats with experimental acute FIV infection and 
pre-existing FeLV infection (Beebe et al, 1992). As maturing marrow 
myeloid and erythroid precursors in these sections do not appear to harbour 
proviral DNA, these lineages apparently are either not major targets of FIV 
or infected progenitors do not survive to give rise to infected progeny. 
Marrow buffy coat cells from cats at weeks 4-1.2 post-FIV inoculation 
produce infectious cell-free virus in culture (Linenberger et al, 1994). 
Furthermore, indirect immunofluorescence assays for intracytoplasmic FIV 
CA protein or in situ hybridization assays for FIV nucleic acids identify 
infected mononuclear and macrophage cells in these cultures. These obser- 
vations support the hypothesis that marrow accessory cells (monocyte/ 
macrophages and T-lymphocytes) are targets of FIV during acute infection 
and that these cells, and/or their extracellular products, may play a role in 
the pathogenesis of neutropenia. 

The asymptomatic stage of chronic FIV infection lasts from many months 
to many years and is not usually associated with peripheral blood cytopenias 
(Shelton et al, 1990a). The marrow during this stage may contain increased 
numbers of tymphocytes, plasma cells, or eosinophils, but the myeloid. 
erythroid, and megakaryocytic lineages mature normally (Shelton et al, 
1990a). Similarly, marrow culture studies on asymptomatic, FIV-sero- 
positive cats with normal peripheral blood counts demonstrate normal 
frequencies of CFU-GM, BFU-E, and CFU-E, with normal progenitor cell 
cycle kinetics and in vitro growth responsiveness to haematopoietic growth 
factors (Linenberger et al, 1991). In situ hybridization studies of marrow 
sections and soluble FIV CA antigen assays of marrow buffy coat cell 
cultures often fail to identify virus-producing cells during this stage of 
infection (Beebe et al, 1992; Linenberger, unpublished observation). Thus, 
haematopoiesis is unperturbed during asymptomatic infection and marrow 
cell viral replication occurs at only a very low level, if at all. Drug-induced 
haematological complications may occur more frequently in these animals. 
For example, severe neutropenia has been reproducibly induced in 
asymptomatic FIV-seropositive cats but not in seronegative animals by 
exposure to griseofulvin (Shelton et al, 1990b). This observation is 
analogous to the increased sensitivity of HIV-infected individuals to the 
cytopenic adverse effects of certain drugs. The griseofulvin-induced neutro- 
penia in FIV-infected cats appears to be mediated by binding of antibody or 
immune complexes to circulating neutrophils, facilitating their clearance by 
the reticuloendothelial system (Abkowitz, unpublished observation). 

Cats suffering from late-stage FIV-related symptoms, including fever, 
weight loss, persistent generalized lymphadenopathy, neurological dis- 
orders, diarrhoea, opportunistic infections, and malignancies, frequently 
have peripheral blood cytopenias (Hosie et al, 1989; Ishida et al, 1989; 
Yamamoto et al, 1989; Shelton et al, 1990a; Fleming et al, 1991; Sparkes et 
al, 1993). Anaemia, neutropenia, and thrombocytopenia are found in 
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roughly 30, 25, and 6-16%, respectively, of clinically ill FIV-seropositive 
cats. Anaemia and thrombocytopenia are more common in FIV-infected 
cats with more severe clinical illness. Coinfection with FeLV produces 
similar cytopenias but with more frequency than that seen with FIV 
infection alone (Shelton et al, 1990a). As these abnormalities occur in cats 
without coexistent infection with FeLV, Hemobartonella felis, Toxoplasma 
gondii, and feline coronavirus, FIV and/or factors related to profound 
late-stage immune dysfunction likely play a direct causal role in marrow 
suppression. An increased neutrophil count has been noted in 23-35% of 
FIV-infected cats in some studies, often in association with purulent 
bacterial infections (Yamamoto et al, 1989; Fleming et al, 1991; Sparkes et 
al, 1993). Thus, FIV-infected animals can mount an appropriate leukaemoid 
response under some conditions. Similarly, haemolytic anaemia due to 
Hemobartonella felis infection has been noted in some FIV-infected cats 
(Sparkes et al, 1993), demonstrating that appropriate compensatory 
erythropoiesis can also occur. 

Marrow morphological abnormalities are found in 72% of cats with 
symptomatic FIV-associated illnesses: myeloid and erythroid cell hyper- 
plasia; erythroid megaloblastic maturation abnormalities; infiltration with 
reactive lymphocytes and plasma cells; and, less commonly, infiltration with 
neoplastic lymphoid or myeloid cells (most commonly in cats coinfected 
with FeLV) (Shelton et al, 1990a). In situ hybridization studies have 
identified FIV-infected marrow cells in cats with late-stage terminal ill- 
nesses, and double-labelling studies have further identified cells as pre- 
dominantly monocyte/macrophages (Gluckstern et al, 1993). Late-stage 
FIV infection therefore appears to be associated with increased virus repli- 
cation in marrow accessory cells, ineffective haematopoiesis with dysplastic 
marrow cell maturation, and peripheral blood cytopenias. 

Haematological malignancies associated with FIV 

Chronic infection with FIV is associated with an increased risk of developing 
lymphoma. A retrospective serological survey revealed an overall adjusted 
5.1-fold relative risk of lymphoma in cats infected with FIV, compared to 
uninfected cats matched for age, sex, geographic location, and time of study 
(Shelton et al, 1990c). The relative risks of developing lymphoma in cats 
infected with FeLV alone, or coinfected with FIV and FeLV were 62.1-fold 
greater, or 77.3-fold greater, respectively, than controls. The tumours 
associated with FIV infection were predominately multicentric nodal or 
extranodal. FIV-associated lymphomas develop in cats at a mean age of 8.7 
years old, compared to mean ages of 3.8 or 6.3 years old in cats with 
lymphomas associated with FeLV infection, or FIV and FeLV coinfection, 
respectively (Shelton et al, 1990c). These observations agree with other 
reports of lymphomas among retrospective surveys of cats with spontaneous 
FIV infection (Hosie et al, 1989; Ishida et al, 1989; Yamamoto et al, 1989). 

FIV-associated lymphomas differ from FeLV-induced tumours in the 
anatomical locations involved and the phenotype of the malignant cells. 
Extranodal sites of tumour involvement are common in FIV seropositive 
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cats. These sites include the liver, kidneys, spleen, and periorbital tissues 
(Shelton et al, 1990c; Hutson et al, 1991; Callanan et al, 1993). Similar 
lymphomas have occurred, albeit rarely, in cats experimentally infected 
with FIV (Callanan et al, 1992a, 1993). Histological, immunophenotypic, 
and molecular analyses of spontaneous and experimental FIV-associated 
lymphomas have revealed clonal populations of immunoblastic B-cells 
(Callanan et al, 1993). These tumour cells do not harbour FIV provirus, and 
they do not contain rearrangements of c-myc. In comparison, one turnout in 
a cat coinfected with FeLV consisted of neoplastic T-cells containing FeLV 
proviral DNA (Callanan et al, 1993). Thus, FIV infection appears to pre- 
dispose cats to clonal outgrowths of malignant B-lymphocytes, similar to the 
association of lymphomas and HIV infection in man. The pathogenic 
mechanisms involved in FIV-associated tumorigenesis remain undeter- 
mined; impairment of immune surveillance and dysregulation of B- 
lymphopoiesis likely play permissive roles. 

Myeloid leukaemia has been rarely diagnosed in FIV seropositive cats 
(Yamamoto et al, 1989; Hutson et al, 1991; Sparkes et al, 1993). There has 
been one report of myeloid leukaemia developing within 2 months after 
inoculation of a kitten with FIV Petaluma (Yamamoto et al, 1988). Other 
reports of myeloproliferative disorders in FIV seropositive cats involved 
animals coinfected with FeLV. Collectively, these observations do not 
strongly support an association between FIV infection and nonlymphoid 
haematological malignancies. Long-term prospective studies of large 
cohorts of FIV-infected cats will be required to identify such an association. 

Potential mechanisms of FIV-associated haematological disorders 

Productively-infected marrow T-lymphocytes, monocytic/macrophages, 
and megakaryocytes are detected during primary and late-stages of FIV 
infection. In contrast, myeloid and erythroid precursors cells do not appear 
to be major targets of FIV in vivo. This pattern of host cell range is similar to 
that of HIV-1, and suggests that FIV-associated marrow suppression is 
mediated by mechanisms similar to those implicated by studies with HIV. 
Such mechanisms include suppression of haematopoietic progenitors by 
marrow accessory cells, accessory cell products, extracellular virus, and/or 
viral products (Scadden et al, 1989; Louache et al, 1992; Zauli et al, 1992). 
However, FIV differs from HIV-1 in some respects, and these differences 
could relate to additional or alternative mechanisms of marrow suppression. 
For example, FIV infects a significant number of B-lymphocytes and CD8 + 
T-lymphocytes in vivo, whereas these host cell phenotypes do not appear to 
be major targets of HIV in vivo. Thus, these cells may be more directly 
involved in the pathogenesis of marrow suppression associated with FIV. 
Other susceptible or infected host cells in the marrow microenvironment 
could also be important. The broader in vivo host cell range of FIV, 
compared to HIV, is explained by the recent observations that the major 
receptor for FIV is not feline CD4 (Norimine et al, 1993) but rather a 24 kDa 
protein (Willett et al, 1994). The putative FIV receptor is constitutively 
expressed on susceptible cell lines, neutrophils, macrophages, and astro- 
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cytes, and it is inducible on T-lymphocytes by Con A and IL-2 exposure 
(Hosie et al, 1993). Although this receptor is expressed on neutrophils, 
these cells are not infected with FIV, suggesting that additional factors likely 
are involved in virus entry and/or integration. Receptor-bearing cells in the 
marrow could be affected by interactions with extracellular FIV or the SU 
protein, without virus entry and integration, analogous to the effect of HIV 
e n v  proteins on human marrow progenitor and accessory cells (Sugiura et al, 
1992; Zauli et al, 1992). 

FIV-induced marrow suppression could be related to dysregulation of 
cytokine production in the marrow microenvironment. Peritoneal macro- 
phages from FIV-infected cats have an impaired ability to produce 
interleukin-lfollowing LPS stimulation (Lin and Bowman, 1992), suggesting 
that the haematopoietic-supporting function of these cells in the marrow 
could also be compromised. Some studies have detected increased levels of 
plasma TNFtx in cats with experimental acute FIV infection (Lawrence et al, 
1992) and increased levels of plasma interleukin-6-1ike activity in cats with 
chronic natural FIV infection (Ohashi et al, 1992). In vitro, TNFoLinhibits the 
growth of feline haematopoietic progenitors (Khan et al, 1992). TNFe~ also 
enhances apoptotic death of FIV-infected fibroblastic cells in culture (Ohno 
et al, 1993). Thus, inflammatory mediators may contribute to marrow 
suppression by adversely affecting progenitor survival or growth or by 
enhancing the cytocidal effects of FIV in infected marrow accessory cells. 

Studies of haematopoiesis during the asymptomatic stage of natural FIV 
infection reveal no abnormalities in haematopoietic progenitor frequencies, 
cell cycle kinetics, and in vitro growth characteristics. In addition, sera from 
these cats do not contain progenitor growth inhibitory activity or 
complement-fixing antibodies that recognize progenitors (Linenberger et al, 
1991). These observations concur with others (see above) that suggest that 
progenitors are not major targets of FIV and that factors associated with 
high levels of virus expression and/or progressive immune dysfunction likely 
play significant roles in marrow suppression during primary or late-stage 
infections. Long-term follow-up studies of a cohort of naturally FIV infected 
cats showed that peripheral neutrophil and lymphocyte counts gradually 
decrease over time and that episodes of transient neutropenia are occasion- 
ally seen (Shelton et al, 1994). In marrow culture studies on these cats, the 
frequencies of BFU-E were significantly decreased with long-term asympto- 
matic infection, but the in vitro growth response of the BFU-E to exogenous 
colony-stimulating activity, or to autologous or normal cat sera, was un- 
perturbed. These resemble the decreased erythroid progenitor frequencies 
seen in asymptomatic HIV seropositive patients (Bagnara et al, 1990), and 
suggest that these progenitors are more susceptible to the marrow suppres- 
sive mechanisms associated with chronic lentivirus infection. 

Comprehensive studies of haematopoiesis in cats with symptomatic late- 
stage natural FIV infection have not been performed. One cat with chronic 
FIV infection, weight loss, severe lymphopenia, and persistent neutropenia 
was found to have an inhibitory activity in the serum that suppressed the in 
vitro growth of autologous CFU-GM, but not erythroid progenitors 
(Shelton et al, 1989b). This activity was not mediated by an antibody, and it 
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only weakly inhibited the growth of normal cat CFU-GM. Because 
frequency of progenitors were not altered in the marrow of this cat, this 
inhibitory activity likely impaired the proliferation or differentiation of the 
CFU-GM progeny. 

A number of marrow abnormalities occur during the period of peripheral 
blood neutropenia and high levels of virus replication in cats with experi- 
mentally induced acute FIV infection (Linenberger et al, 1994). Frequencies 
of marrow CFU-E, BFU-E, and CFU-GM are significantly increased at 
weeks 1.5--4 post-inoculation but uniformly depressed at weeks 6-12, when 
neutropenia occurs. In addition, the percentages of progenitors in the 
DNA-synthetic phase of the cell cycle are frequently high at weeks 6-12 
post-inoculation. Sera from cats at weeks 4-12 post-inoculation frequently 
contain activity that inhibits the in vitro growth of autologous CFU-GM, 
whereas progenitor inhibitory activity is not found in sera of cats at weeks 
1.5 or 3 post-inoculation. These progenitor and serum changes correlate 
with the appearance of productively FIV-infected accessory cells in the 
marrow and peak levels of viraemia. Thus, virus, viral antigens, accessory 
cells, and/or accessory cell products may mediate the suppression of 
progenitor growth and/or viability, resulting in the transient neutropenia. 
Anaemia is not seen in this setting, probably because of the long life-span of 
erythrocytes and the absence of factors that shorten red cell survival, like 
haemolysis and haemorrhage. As these abnormalities mimic those seen in 
late stages of FIV and also HIV infections (when cytopenias and high levels 
of virus replication also occur), further studies of haematopoiesis during 
acute FIV infection could provide insights to the viral and host cell factors 
important in marrow suppression associated with chronic lentivirus 
infection. 

SUMMARY 

Feline oncornavirus and lentivirus infections have provided useful models to 
characterize the virus and host cell factors involved in a variety of marrow 
suppressive disorders and haematological malignancies. Exciting recent 
progress has been made in the characterization of the viral genotypic 
features involved in FeLV-associated diseases. Molecular studies have 
clearly defined the causal role of variant FeLV e n v  gene determinants in two 
disorders: the T-lymphocyte cytopathicity and the clinical acute immuno- 
suppression induced by the FeLV-FAIDS variant and the pure red cell 
aptasia induced by FeLV-C/Sarma. Variant or enFeLV e n v  sequences also 
appear to play a role in FeLV-associated lymphomas. Additional studies are 
required to determine the host cell processes that are perturbed by these 
variant e n v  gene products. In the case of the FeLV-FAIDS variant, the 
aberrant e n v  gene products appear to impair superinfection interference, 
resulting in accumulation of unintegrated viral DNA and cell death. In other 
cases it is likely that the viral e n v  proteins interact with host products that are 
important in cell viability and/or proliferation. Understanding of these 
mechanisms will therefore provide insights to factors involved in normal 
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lymphohaematopoiesis. Similarly, studies of FeLV-induced haematological 
neoplasms should reveal recombination or rearrangement events involving 
as yet unidentified host gene sequences that encode products involved in 
normal cell growth regulation. These sequences may include novel proto- 
oncogenes or sequences homologous to genes implicated in human 
haematological malignancies. 

The haematological consequences of FIV are quite similar to those 
associated with HIV. As with HIV, H V  does not appear to directly infect 
myeloid or erythroid precursors, and the mechanisms of marrow suppres- 
sion likely involve virus, viral antigen, and/or infected accessory cells in the 
marrow microenvironment. Studies using in vitro experimental models are 
required to define the effects of each of these microenvironmental elements 
on haematopoietic progenitors. As little is known about the molecular 
mechanisms of FIV pathogenesis, additional studies of disease-inducing 
FIV strains are needed to identify the genotypic features that correlate with 
virulent phenotypic features. Finally, experimental FIV infection in cats 
provides the opportunity to correlate in vivo virological and haematological 
changes with in vitro observations in a large animal model that closely 
mimics HIV infection in man. 
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