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PCLAF promotes neuroblastoma G1/S cell cycle progression

via the E2F1/PTTG1 axis
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PCLAF (PCNA clamp-associated factor), also known as PAF15/ KIAA0101, is overexpressed in most human cancers and is a
predominant regulator of tumor progression. However, its biological function in neuroblastoma remains unclear. PCLAF is
extremely overexpressed in neuroblastoma and is associated with poor prognosis. Through the analysis of various data sets, we
found that the high expression of PCLAF is positively correlated with increased stage and high risk of neuroblastoma. Most
importantly, knocking down PCLAF could restrict the proliferation of neuroblastoma cells in vitro and in vitro. By analyzing RNA-seq
data, we found that the enrichment of cell cycle-related pathway genes was most significant among the differentially expressed
downregulated genes after reducing the expression of PCLAF. In addition, PCLAF accelerated the G1/S transition of the
neuroblastoma cell cycle by activating the E2F1/PTTG1 signaling pathway. In this study, we reveal the mechanism by which PCLAF
facilitates cell cycle progression and recommend that the PCLAF/E2F1/PTTG1 axis is a therapeutic target in neuroblastoma.
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INTRODUCTION

Neuroblastoma, a malignant tumor originating in the sympathetic
nervous system, is the most common extracranial tumor in
childhood [1-3]. The primary clinical manifestation of neuroblas-
toma is the appearance of tumor masses of different sizes in the
adrenal glands or sympathetic ganglia, and the clinical prognosis
largely hinges on the stage of the disease [4, 5]. Treatment
strategies for neuroblastoma are tailored according to the risk
classification of the disease as well as clinical and tumor biological
markers [6]. Patients in the low-risk group often relapse
spontaneously and are ordinarily treated with observation and
surgical resection. For high-risk cancer patients, exhaustive
medical treatment is required. Therefore, surviving patients
frequently are subjected to multitudinous sequelae, and the
recurrence rate of high-risk cases reaches up to 50%, which cannot
be cured once they relapse [7, 8]. Therefore, we need to explore
the aberrant signaling pathways in neuroblastoma to screen
appropriate inhibitors to replace conventional chemotherapy,
which will diminish the dose required for drug treatment and
reduce the toxic side effects. Comprehending the underlying
molecular biological mechanisms of neuroblastoma is indispen-
sable for exploring up-and-coming strategies to enhance prog-
nostic stratification and further ameliorate the prognosis of
patients.

PCLAF (PCNA clamp-associated factor), also known as PAF15/
KIAA0101, was determined as a PCNA-binding partner. PCLAF is a
nucleoprotein with a molecular weight of 15 kDa that was initially
identified by yeast two-hybrid screening and can bind to PCNA
(proliferating cell nuclear antigen) [9]. As one of the proteins that

can interact with PCNA, the role of PCLAF is closely associated
with the function of PCNA. PCNA acts as a cofactor of the DNA
polymerase delta during binding to the DNA template. PCLAF is
also one such cofactor and can regulate the binding of DNA
polymerase and PCNA [10, 11]. Many reports have shown that
PCLAF also has a multitude of essential biological functions. For
example, it participates in DNA damage repair to affect cell
survival, is involved in cell cycle regulation, and affects cell
proliferation. PCLAF silencing can reduce the proliferative ability of
anaplastic thyroid cancer and cervical cancer cells, prevent the
DNA synthesis and colony formation of pancreatic cancer and
adrenal cancer cells, and augment the number of GO/G1 cells in
adrenal cancer and cervical cancer cells [12-17]. In this study, we
demonstrated that PCLAF is highly expressed in neuroblastoma,
which can accelerate neuroblastoma cell proliferation and cell
cycle progression and restrain cell apoptosis, and is related to the
poor prognosis of patients. In the cell cycle signaling pathway, the
mMRNA level of PTTG1 decreases most significantly after PCLAF
expression is downregulated. At the same time, our analysis of
neuroblastoma databases and clinical tissue samples confirmed
that PCLAF showed a significantly positive correlation with PTTG1.
Subsequent mechanistic studies confirmed that PCLAF could
stimulate the expression of PTTG1, affecting the G1-S transition of
neuroblastoma cells. Subsequently, we found that E2F1 mediates
PCLAF-induced PTTG1 expression, and our database analysis
showed a positive correlation between E2F1, PCLAF, and PTTG1. In
conclusion, we clarify the existence of the PCLAF/E2F1/PTTG1 axis,
which has an imperative role in cell cycle progression in
neuroblastoma cells.
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MATERIALS AND METHODS

Tissue Specimens

In our study, a total of 75 patients with primary neuroblastomas that had a
pathological diagnosis were selected from September 2012 to February
2015 at the Xinhua Hospital affiliated to Shanghai Jiaotong University
School of Medicine. See the Supplementary Material for details.

Tissue microarray and immunohistochemistry (IHC)

The selected tissue samples were divided into tiny parts, fixed in 4%
paraformaldehyde overnight, trimmed, and embedded in paraffin accord-
ing to the arrangement of the experimental plan. As previously described
[18, 19], see the Supplementary Material for details.

Cell culture and transfection
Human neuroblastoma cell lines SK-N-BE (2), IMR-32, SH-SY5Y, and SK-N-SH
were purchased from the Chinese Academy of Sciences. SK-N-AS was
obtained from the American Type Culture Collection (ATCC). See the
Supplementary Material for details.

Lentivirus-mediated silencing of PCLAF and overexpression of
E2F1

Lentivirus, including complementary oligonucleotide sequences (Table S1)
and non-target control shRNA (NC), were established and synthesized by
Genomeditech (Shanghai, China). At 72h post-transfection, 2 ug/ml
puromycin (Cat. #ST551; Beyotime, China) was added to select for the
stably transfected cell lines. A E2F1 overexpressing lentivirus with Flag was
purchased from Genomeditech (Shanghai, China). E2F1 overexpression cell
lines were constructed in SK-N-BE (2) and SH-SY5Y cells.

Animal experiments

Six-week-old female nude mice were obtained from Shanghai Slack
Laboratory Animal Co., Ltd., China. All experiments were approved by the
Animal Care and Use Committee of Xinhua Hospital, and all procedures
have been described previously [18], see the Supplementary Material for
details.

Cell viability analysis
Cell Counting Kit-8 (CCK-8) (Yeasen, Shanghai, China) was used to analyze
cell viability. See the Supplementary Material for details.

EDU incorporation test

For flow cytometry analysis of the proliferating cells, a Cell-Light EdU Apollo
488 In Vitro Flow Cytometry Kit (RiboBio, Guangzhou, China) was used to
examine EdU-positive cells according to the manufacturer’s protocol. The
fluorescence signal at 488 nm was measured with a flow cytometer.

Cell cycle detection

Using the Cell Cycle and Apoptosis Analysis Kit (C1052), the cells were
collected and stained with propidium iodide according to the manufac-
turer's instructions. Then the cell cycle was measured by flow cytometry.

Annexin V-FITC/propidium iodide (PI) flow cytometry

SK-N-BE (2) and SH-SY5Y cells were plated in a 6-well plate and transfected
with siPCLAF after 24 h. After 48 h, an Annexin V-FITC kit (BD Biosciences,
San Diego, CA, USA) was used to examine cell apoptosis according to the
manufacturer’s protocol.

Western blotting
Western blotting was implemented as mentioned previously [18]. See the
Supplementary Material for details.

Quantitative real-time PCR
See the Supplementary Material for details.

PCLAF-related gene enrichment analysis
The “Similar Gene Detection” module of GEPIA2 was analyzed to acquire
the top 100 PCLAF-related target genes based on all TCGA tumor and
typical tissue data sets.

See the Supplementary Material for details.
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RNA sequencing analysis

SK-N-BE (2) cells were stably transfected with ShPCLAF and shNC, and 2 ug
total RNA of each sample was extracted using TRIzol reagent (Thermo
Fisher Scientific, USA). See the Supplementary Material for details.

Chip sequencing analysis process

Chip sequencing data were obtained from Gene Expression Omnibus
(GEO) or Encyclopedia of DNA Elements (ENCODE) (Table S3). See the
Supplementary Material for details.

Neuroblastoma data set analysis

The neuroblastoma patient data sets in the R2 Genomics Analysis and
Visualization Platform (http://r2.amc.nl) were used for analyses of clinical
information. Four publicly available data sets were analyzed: Kocak (GEO:
GSE45547), SEQC (GEO: GSE49710), NRC (GEO: GSE85047), and Fischer
(GEO: GSE120572).

Statistical analysis

All analyses were performed using GraphPad Prism 8 (GraphPad Software,
Inc, La Jolla, CA, USA) and Windows version SPSS 25.0 software (SPSS,
Chicago, IL, USA). Pearson’s chi-squared test and Fisher's exact test were
performed for qualitative data and Student’s t-test (two-tailed) for
guantitative data. Correlations were examined using the Spearman rank
correlation. The survival rate was analyzed by Kaplan-Meier analysis. Two-
tailed Student’s t-test was used for group comparisons. The effects of age
at diagnosis, clinical stage, high-risk, and MYCN amplification as prognostic
factors for clinical outcome were measured by stepwise multivariate Cox
regression analysis. The results were expressed as the mean * standard
error of the mean (SEM). A p value of < 0.05 was considered to indicate a
statistically significant difference. Significance was expressed as: *p < 0.05,
**p <0.01, ¥**p < 0.001, and ****p < 0.0001.

RESULTS

High expression of PCLAF in neuroblastoma is a significant
adverse prognostic factor

To determine whether PCLAF has potential clinical significance in
neuroblastoma, PCLAF IHC was performed on a neuroblastoma
TMA. We enrolled 70 cases for the subsequent analysis. Among
the 70 neuroblastoma samples, 41 were from male patients, and
29 were from female patients. The IHC results showed that PCLAF
was predominantly distributed in the nuclei, and the expression of
PCLAF differed in neuroblastoma of distinct pathological types. A
semi-quantitative grading system (0 to 4) was implemented on
the basis of the number of positive cells: grade 0 (8.60%), grade 1
(22.90%), grade 2 (25.70%), grade 3 (28.60%), and grade 4
(14.20%) (Fig. 1A, Supplementary Fig. TA). Next, we selected frozen
fresh samples for western blot analysis to confirm further that the
expression of PCLAF was significantly higher in neuroblastoma
patients compared with and GNB (ganglioneuroblastoma) and GN
(ganglioneuroma)patients (Fig. 1B, C). On the basis of the TMA
data, we evaluated the relationship between PCLAF expression
and 3-year overall survival (OS). Kaplan—-Meier analysis demon-
strated that patients in the high PCLAF expression group were
significantly correlated with unfavorable OS than those with low
expression of PCLAF (p = 0.0034; Fig. 1D). Considering the size of
the sample, to further explore the clinical significance of PCLAF in
human neuroblastoma, we analyzed three neuroblastoma data-
bases (Kocak: GSE45547; SEQC: GSE62564; and NRC: GSE85047).
First, survival differences in terms of event-free survival (EFS) and
OS were assessed by Kaplan-Meier analysis. Analysis of the three
data sets showed that patients with high PCLAF mRNA levels had
worse OS and EFS (Fig. 1E-H, Supplementary Fig. 1B, C). Next, the
relationships between PCLAF expression pattern and clinical
characteristics were analyzed and showed that the expression of
PCLAF was positively associated with the clinical stage of
neuroblastoma. Intriguingly, from stage | to stage IV, PCLAF
expression escalated with the clinical stage, but dropped
significantly at stage IVs (Fig. 1I-K). This indicated that PCLAF is a
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Fig. 1 Expression and roles of PCLAF in neuroblastoma. (A) Representative pictures of distinct levels (0-4) of IHC staining of PCLAF and the
proportions of five levels; (B, C) T0NB, 8GNB and 8GN tumor tissue proteins extracted for Western Blot to discover PCLAF expression, and
Image J was used to quantify protein bands. The data in (C) were analyzed by Mann-Whitney U-test (n = 28); (D) Kaplan-Meier analysis of OS in
TMA of 70 neuroblastoma samples based on PCLAF expression with the log-rank test P value indicated; (E-H) Kaplan-Meier analysis of OS and
EFS for the SEQC data set (n = 498) and the NRC data set (n = 275), based on PCLAF expression with the log-rank test p value indicated; (I-K)
PCLAF expression levels in stage (St) 1-4 S tumors was show in box plot. (*p < 0.05, ***p < 0.001and ****p < 0.0001, and bar graphs represent
the mean + SEM).
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potential poor prognostic factor in neuroblastoma. In addition, we
found that PCLAF was significantly overexpressed in children aged
over 18 months, in patients at high risk, and in tissue with MYCN
amplification (Supplementary Fig. 1D-F, Supplementary Tables 4-
6). At the same time, multivariate analysis showed that in the
SEQC and NRC data sets, the higher the expression of PCLAF, the
greater the clinical stage. Patients over 18 months of age were
associated with more inferior OS and EFS (Supplementary Tables
7, 8). These results indicated that there were differences in the
expression of PCLAF in neuroblastoma tissues of diverse
pathological types, and high PCLAF gene expression in neuro-
blastoma tissues indicated poor patient prognosis.

PCLAF can accelerate neuroblastoma proliferation and inhibit
cell apoptosis in vitro

To explore whether PCLAF can inhibit the proliferation of
neuroblastoma cells, we evaluated PCLAF expression in five
neuroblastoma cell lines (SK-N-BE (2), SK-N-AS, SH-SY5Y, SK-N-SH,
and IMR32). We selected two cell lines with higher PCLAF
expression levels, SH-SY5Y and SK-N-BE (2), for the subsequent
experiments (Fig. 2A). First, we tested the silencing efficiency of
siRNA targeting PCLAF (Fig. 2B, C). We transfected SK-N-BE (2) and
SH-SY5Y cell lines with PCLAF siRNA, and CCK-8 assay was
performed to continuously monitor changes in cell proliferation at
24, 48, 72, and 96 h after transfection. Imaging analysis was
performed after 48 h. Interestingly, the number of cells was
significantly reduced after silencing PCLAF, indicating that the
decreased expression of PCLAF could inhibit the proliferation of
neuroblastoma cells (Fig. 2D, E). The results of the EDU experiment
showed that after knocking down PCLAF, the percentage of
positive signals marked by EDU decreased significantly (Fig. 2F),
indicating that the DNA replication activity of the cells had
decreased and that the cell proliferation ability was weakened. We
further used western blotting and RT-qPCR to detect cell
proliferation-related proteins. The decrease in PCLAF gene
expression significantly downregulated CyclinA2, CyclinB1,
CyclinD1, CyclinE2, CDK2, and CDK6 (Fig. 2G, Supplementary Fig.
2A, B), which further showed that downregulation of PCLAF can
inhibit the proliferation of neuroblastoma. Apoptosis was eval-
uated in neuroblastoma cells with PCLAF knockdown after 48 h.
The cells were harvested and stained with annexin V-FITC and
propidium iodide. Apoptosis analysis showed that the average
percentage of apoptotic cells increased significantly after PCLAF
knockdown (Fig. 2H), and the results of western blotting detection
of apoptosis-related proteins demonstrated that inhibiting the
expression of PCLAF can attenuate the expression of antiapoptotic
protein BCL-2 and augment the expression of pro-apoptotic
proteins PARP, cleaved PARP, caspase 3, cleaved caspase 3,
caspase 9, cleaved caspase 9, and BAX (Fig. 2I). In summary, we
demonstrated that PCLAF can promote the proliferation of
neuroblastoma cells and inhibit cell apoptosis.

PCLAF knockdown can attenuate the transition of G1/S phase
To explore the relevant molecular mechanisms by which PCLAF
promoted cell proliferation, we first used the Similar Gene
Detection module of GEPIA2 to obtain the top 100 targeted
genes related to PCLAF based on all TCGA tumor and standard
tissue data sets. We performed KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway analysis. We found that these
genes were mainly enriched in the “cell cycle,” especially in “cell
cycle G1/S phase transition” (Fig. 3A, B), highlighting the
hypothesis that PCLAF promoted cell proliferation by accelerating
the G1/S transition in the cell cycle. To explore the importance of
PCLAF in neuroblastoma cell cycle progression, we established SK-
N-BE (2) and SH-SY5Y cell lines stably transduced with lentiviruses
expressing PCLAF-specific short hairpin  RNA (shPCLAF) or
scrambled shRNA (shNC). After testing the silencing efficiency of
shRNA (Supplementary Fig. 3A-C), we performed RNA sequencing
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(RNA-seq) analysis in SK-N-BE (2) cell lines. Map analysis identified
a total of 922 DEGs (|Log2 fold change | > 1 and adjusted p-value <
0.05). Among them, 468 genes were upregulated and 454 genes
were downregulated (Fig. 3C, D). Gene ontology (GO) analysis
results revealed that DEGs were mainly enriched in the cell cycle
process, such as “cell division” and “cell cycle.” (Fig. 3E,
Supplementary Fig. 3D). Kyoto Encyclopedia of Genes and
Genomes pathway analysis showed that cell cycle pathways were
also enriched and had the most significant difference (Fig. 3F,
Supplementary Fig. 3E). These results indicated that PCLAF plays
an essential role in neuroblastoma cell cycle progression. At the
same time, the cell cycle analysis results showed that reducing the
expression of PCLAF in SK-N-BE (2) and SH-SY5Y cell lines could
increase the percentage of cells in the G1 phase of the cell cycle
(Fig. 3G, H). We further performed a control experiment on a
PCLAF nonexpressing cell line (IMR32) and found that compared
with SK-N-BE(2) and SH-SY5Y cell lines, knocking down PCLAF had
little effect on the G1/S cycle process and the proliferation of
IMR32 cells (Supplement Fig. 2C, D). This further indicates that
high expression of PCLAF can promote the proliferation of
neuroblastoma and G1/S cell cycle transition.

PCLAF can regulate PTTG1 to promote G1/S cell cycle
transition

To further analyze the cell cycle signaling pathway, we analyzed
the results of RNA-seq. We found that the mRNA level of PTTGT
(pituitary tumor-transforming gene 1) was most significantly
decreased after PCLAF expression was downregulated (Fig. 4A,
B). Therefore, we speculated that PCLAF might regulate the
expression of PTTG1. Western blotting revealed that PTTG1 was
expressed at higher levels in different neuroblastoma cell lines
(Fig. 4Q). In addition, we analyzed the expression pattern of PTTG1
in neuroblastoma samples. After analyzing clinical tissue samples
by western blotting and TMA, we found that PCLAF and PTTG1
were significantly correlated (r=0.774, p<0.01; Fig. 4D, E,
Supplementary Fig. 4A, B). At the same time, we found that there
was also a remarkable positive correlation between PCLAF and
PTTG1 in three neuroblastoma databases (Supplementary Fig. 4C).
In addition, patients with high PTTGT mRNA levels had worse OS
(p =8.6e — 19) and EFS (p = 3.1e — 20) (Supplementary Fig. 4D, E),
indicating that PTTGT is also a potential prognostic factor in
neuroblastoma and may have similar biological functions to
PCLAF. To prove that PCLAF can regulate the expression of PTTG1,
we transfected SH-SY5Y and SK-N-BE (2) cell lines with siPCLAF,
and PTTG1 expression at both the mRNA and protein level was
measured by real-time PCR and western blotting, respectively. This
demonstrated that the protein and mRNA levels of PTTG1 were
significantly diminished after PCLAF interference (Fig. 4F, G),
indicating that PCLAF can promote the expression of PTTG1. It is
reported in the literature that reducing the expression of PTTG1
can augment the number of cells in G1 phase and diminish the
number of cells in S phase [20]. After we knocked down PTTGT in
neuroblastoma cells (Fig. 4H, 1), we showed that the number of
cells in the G1 phase was also significantly increased (Fig. 4J, K). In
summary, PCLAF can regulate the expression of PTTG1 to facilitate
G1/S cell cycle transition.

PCLAF-induced PTTG1 activation is mediated by E2F1

We demonstrated that PCLAF can upregulate the expression of
PTTG1. Transcription factors participate in the transcription
initiation complex and play an indispensable role in regulating
gene expression. We first analyzed the RNA-seq data to explore
whether the DEGs were associated with some transcription events
after PCLAF is exhausted. Intriguingly, we found that the E2F family
of transcription factors was one of the most enriched pathways
(Fig. 5A). In 2009, Zhou et al. reported that E2F1 could stimulate
the expression of PTTG1 in pituitary tumors [21]. Then we
analyzed the relationship between PCLAF and PTTG1 genes and
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Fig. 2 PCLAF is highly expressed and promotes the proliferation of neuroblastoma cells. (A) Western blotting examined the protein
expression of PCLAF in 5 neuroblastoma cell lines; (B, C) Interference efficiency of 2 small interfering RNAs with different sequences on PCLAF
in SK-N-BE (2) and SH-SY5Y cell lines, detected by gRT-PCR and Western blotting; (D) The in vitro proliferation function of PCLAF was evaluated
by CCK-8; (E) SK-N-BE(2) and SH-SY5Y cell lines with PCLAF siRNA performed imaging analysis after 48 h; (F) The in vitro proliferation function
of PCLAF was evaluated by flow cytometry EdU labeling detection; (G) Western blotting was used to detect cell proliferation-related proteins;
(H) PCLAF knockdown led to cell apoptosis in a flow cytometric apoptosis assay; (I) Apoptosis related markers were detected by western blot
in neuroblastoma cells. (*p < 0.05, **p <0.01, ***p < 0.001and ****p < 0.0001, and bar graphs represent the mean + SEM).
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Fig.3 PCLAF triggers pathways related to cell cycle regulation in RNA-seq data. (A, B) Heatmap of Gene Ontology (GO) enriched terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched terms colored by p-values; (C) The volcanic map was drawn according to the
gene distribution. The abscissa is log2FoldChange, and the ordinate is -log10(p value); (D) Cluster heat map of 6 samples. Red represents high
expressed genes and green represents low expressed genes; (E) The GO enrichment analysis results of differentially expressed genes; (F) The
KEGG enrichment analysis results of differentially expressed genes. Select the top 20 pathways with the smallest p value for display; (G, H)
Flow cytometry was used to analyze the cell cycle of neuroblastoma cell lines. (*p < 0.05, **p < 0.01, ***p < 0.001and ****p < 0.0001, and bar
graphs represent the mean + SEM).
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Fig. 4 PCLAF can regulate PTTG1 to promote G1/S cell cycle transition. (A, B) RNA-seq analyzed the mRNA level of the cell cycle signaling
pathway after PCLAF knockdown; (C) Western blotting examined the protein expression of PCLAF in 5 neuroblastoma cell lines; (D) The
expression of PTTG1 and PCLAF in clinical tissues was measured by western blot; (E) Spearman correlation analysis of the relationship
between PCLAF and PTTGT1 in identical clinical tissues (r = 0.774, P < 0.01); (F, G) gRT-PCR and Western blot were used to detect the changes in
PTTG1 mRNA and protein levels after interference PCLAF in SK-N-BE(2) and SH-SY5Y cell lines; (H, 1) Interference efficiency of 3 small
interfering RNAs with different sequences on PTTG1 in SK-N-BE (2) and SH-SY5Y cell lines, detected by qRT-PCR and Western blotting; (J, K)
Flow cytometry was used to analyze the cell cycle of neuroblastoma cell lines. (*p < 0.05, **p < 0.01, ***p < 0.001and ****p < 0.0001, and bar

graphs represent the mean + SEM).
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Fig. 5 PCLAF regulates PTTG1 by the transcription factor E2F1. (A) Family analysis of transcription factors based on the RNA sequencing
data; (B) Spearman analysis was used to detect the correlations between PCLAF and E2F1 and PTTG1 in the neuroblastoma database; (C, D)
Prediction of the sequence logo of E2F1 and the binding sites of E2F1 on the PTTG1 promoter region were predicted by JASPAR; (E) Graphical
representation of enrichment for E2F1 on the regulatory regions of PTTG1 in Hela, K562, and LM2 cells. Red boxes show regions with E2F1
enrichment; (F) The mRNA level of PTTG1 after decreasing E2F1 by siE2F1 in SK-N-BE (2) and SH-SY5Y cell lines; (G) The protein levels of PTTG1
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E2F1 in the neuroblastoma database and found that E2FT was
related to PCLAF and PTTG1 (Fig. 5B). Next, we used the JASPAR
database to predict the recognition sequence of E2F1, and further
analysis found that E2F1 can bind to multiple sequences in the
PTTG1 promoter region (Fig. 5C, D). Furthermore, public ChIP-
sequencing data show striking E2F1 binding peaks in the
regulatory area of PTTGT in Hela, K562, and LM2 cell lines (Fig.
5E). In addition, we found that diminishing the expression of E2F1
can reduce the protein and mRNA levels of PTTG1, which indicates
E2F1 can alter PTTG1 expression in neuroblastoma by binding to
the promoter of PTTG1 (Fig. 5F, G). The previous results showed
that PCLAF was positively correlated with E2F1, and both PCLAF
and E2F1 could change the expression of PTTG1. Therefore, we
explored whether PCLAF can regulate the expression of PTTG1
through E2F1. After reducing PCLAF expression, we found that
E2F1 was dramatically diminished at the mRNA and protein level
(Fig. 5H, I). Similarly, we overexpressed E2F1 in SK-N-BE(2) and SH-
SY5Y cells (Supplementary Fig. 5A, B). Western blot and g-PCR
results showed that the mRNA and protein levels of PTTG1
increased significantly (Supplementary Fig. 5C, D) upon E2F1
overexpression. To further confirm that PCLAF does regulate the
expression of PTTG1 through E2F1, we transfected siPCLAF and
E2F1-flag plasmid into SK-N-BE(2) and SH-SY5Y neuroblastoma
cells. We found that overexpression of E2F1 reversed the
suppression of PTTG1 levels caused by PCLAF downregulation
(Supplementary Fig. 6A). In addition, overexpression of E2F1 and
PTTG1 can attenuate the decrease of cell proliferation and the
increase of G1/S cells cycle transition that resulted from the
silencing PCLAF in SK-N-BE(2) and SH-SY5Y cells (Supplementary
Fig. 6B-E). Taken together, these results demonstrated that E2F1 is
responsible for PCLAF-mediated activation of PTTG1.

PCLAF enhances tumor proliferation potential in vivo

Our in vitro experiments demonstrated that PCLAF can promote
the proliferation of neuroblastoma cells. Therefore, to further
study the role of PCLAF in vivo, we established a subcutaneous
xenograft nude mouse model. After 8 weeks, tumors derived from
shNC cells at the subcutaneous implantation site were heavier and
grew faster than tumors derived from shPCLAF cells (Fig. 6A-C). In
xenograft mice, inhibition of PCLAF expression could also reduce
PTTG1 and cyclin D1 (Fig. 6D). H&E staining showed that the
tumors of shNC mice had more active mitosis than those of
shPCLAF mice (Fig. 6E). Moreover, western blotting and IHC also
revealed the effect of PCLAF knockdown on PTTG1 and cyclin D1
(Fig. 6 F, G). Taking these results together, our study demonstrated
that PCLAF could promote the proliferation and growth of
neuroblastoma in vivo.

DISCUSSION

PCLAF has been identified as a PCNA binding partner and is
involved in many human malignancies [12, 22]. In vitro studies
have shown that PCLAF participates in DNA repair through
interactions with PCNA. In vivo studies have also confirmed the
role of PCLAF in cancer and stem cells independent of PCNA
function [23, 24]. This study confirmed the expression, clinical
significance, and functional role of PCLAF in neuroblastoma for
the first time.

Our study found that the expression of PCLAF in different
pathological types of neuroblastoma has apparent differences,
and the presentation of PCLAF in neuroblastoma is higher than
that in GNB and GN. At the same time, PCLAF expression was
correlated with age at diagnosis, histological type, Shimada
pathological type, risk grade, and clinical stage, and OS and EFS
with high PCLAF expression were worse in neuroblastoma
databases. These data demonstrate that PCLAF may be a factor
leading to differences in the prognosis of patients with
neuroblastoma.
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PCLAF has a considerable role in cell cycle regulation and DNA
replication. Studies revealed an increase in the number of cells in
G1 phase and a decrease in the number of cells in S phase
following depletion of PCLAF. PCLAF promotes the proliferation of
cancer cells in a variety of human malignancies [16, 25-27]. A
recent paper has highlighted the key role of PAF (PCLAF) in
modulating gene expression patterns and G1/S progression
controlled by the DREAM complex in lung cancer [27]. We
analyzed the results of RNA-seq and found that knocking down
PCLAF in neuroblastoma can reduce the mRNA expression levels
of some genes in the DREAM complex, such as FOXM1, CCNA2,
BUB1, CCNB2, PLK1, CCNB1 and B-MYB, indicating the DREAM
complex also played a part in the PCLAF regulation of
neuroblastoma G1/S process. Since the DREAM complex (B-MYB,
FOXM1) have previously been shown to be essential for
neuroblastoma cell proliferation and survival [28, 29], this further
suggests that PCLAF plays an important role in neuroblastoma cell
proliferation and survival. Herein, we found that reducing the
expression of PCLAF could restrict the proliferation of neuroblas-
toma cells, leading to cell arrest in G1 phase and promoting
neuroblastoma apoptosis.

Although previous studies have reported that PCLAF has an
important role in the cell cycle, the mechanism by which PCALF
regulates cell cycle progression remains unclear. Most importantly,
the mechanism by which PCLAF promotes neuroblastoma
proliferation is also unclear. To identify the downstream targets
of PCLAF, we performed RNA-seq analysis on neuroblastoma cells
stably transfected with PCLAF shRNA. Through the results of RNA-
seq data, we found that the mRNA level of PTTG1 in the cell cycle
pathway was decreased most significantly. Hence, we suspect that
PCLAF may affect the cell cycle process by regulating PTTG1. To
our knowledge, this is the first report demonstrating PCLAF can
regulate the expression of PTTG1 in neuroblastoma cells.

PTTG1 is overexpressed in most human tumors and plays a
role in cell replication, DNA damage/repair, organ development,
and metabolism, and can accelerate tumor cell proliferation,
migration, invasion, and angiogenesis [30-33]. Our research
found that PTTG1 is expressed at higher levels in neuroblastoma.
After analyzing clinical tissue samples and public databases, we
found that PCLAF and PTTG1 have a strikingly positive
correlation, and patients with high PCLAF mRNA levels have
worse OS and EFS. Subsequent experiments confirmed our
hypothesis that reducing the expression of PTTG1 can also lead
to an increase in the number of cells in G1/GO0. In our study, we
demonstrated that PCLAF can regulate PTTGT to promote G1/S
cell cycle transition.

Transcription factors have a vital role in the regulation of gene
expression. For example, we found that the E2F family of
transcription factors is one of the most enriched pathways in
RNA sequencing data. At the same time, there are reports that
E2F1 can enhance the expression of PTTG1 in pituitary tumors,
glioma, and adrenocortical carcinoma [21, 34, 35]. In neuroblas-
toma databases, we also found that E2F1 is positively correlated
with PCLAF and PTTGI1. We confirmed that PCLAF could regulate
the expression of PTTG1 in neuroblastoma by affecting the E2F1
transcription factor. However, the detailed molecular mechanism
of PCLAF-induced E2F1 expression remains unclear, and further
mechanistic studies are required.

In summary, our research shows that PCLAF is strongly
associated with various adverse clinicopathological parameters
and is a potential prognostic indicator in neuroblastoma. In
addition, PCLAF can regulate the expression levels of PTTG1
through E2F1 and promote the proliferation of neuroblastoma
cells. Our results provide a new perspective for the study of
neuroblastoma and demonstrate a theoretical basis for the
development of new anti-tumor therapeutic drugs targeting
PCLAF. However, additional mechanisms need to be explored,
such as the specific mechanism by which PCLAF affects E2F1
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expression and how PTTG1 affects neuroblastoma cell cycle
progression.
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