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Abstract: The standard genetic code (SGC) is central to molecular biology and its origin 

and evolution is a fundamental problem in evolutionary biology, the elucidation of which 

promises to reveal much about the origins of life. In addition, we propose that study of its 

origin can also reveal some fundamental and generalizable insights into mechanisms of 

molecular evolution, utilizing concepts from complexity theory. The first is that beneficial 

traits may arise by non-adaptive processes, via a process of “neutral emergence”. The 

structure of the SGC is optimized for the property of error minimization, which reduces the 

deleterious impact of point mutations. Via simulation, it can be shown that genetic codes 

with error minimization superior to the SGC can emerge in a neutral fashion simply by a 

process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, 

whereby similar amino acids are added to codons related to that of the parent amino acid. 

This process of neutral emergence has implications beyond that of the genetic code, as it 

suggests that not all beneficial traits have arisen by the direct action of natural selection; we 

term these “pseudaptations”, and discuss a range of potential examples. Secondly, 

consideration of genetic code deviations (codon reassignments) reveals that these are mostly 

associated with a reduction in proteome size. This code malleability implies the existence of 

a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and 

that its reduction in size leads to an “unfreezing” of the codon – amino acid mapping that 

defines the genetic code, consistent with Crick’s Frozen Accident theory. The concept of a 

proteomic constraint may be extended to propose a general informational constraint on 

genetic fidelity, which may be used to explain variously, differences in mutation rates in 

genomes with differing proteome sizes, differences in DNA repair capacity and genome GC 
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content between organisms, a selective pressure in the evolution of sexual reproduction, and 

differences in translational fidelity. Lastly, the utility of the concept of an informational 

constraint to other diverse fields of research is explored. 

Keywords: genetic code; codon reassignment; proteome size; proteomic constraint; 

genomic information content; neutral emergence; pseudaptation; Frozen Accident; DNA 

repair; mutation rate 

 

1. The Genetic Code: Near Optimal and Near Universal 

“Theory space” has been well covered when it comes to the potential pathways that may have led to 

the present day standard genetic code (SGC) [1]. However, while it is largely accepted that the genetic 

code underwent expansion during its evolution, there is no consensus regarding the specific route that 

led its development, which may indeed be unknowable [2]. The reason why these considerations are 

important relates to a central concern in biology, that of “genotype—phenotype mapping”. This refers 

to the inference of phenotype from genotype, which can ultimately be reduced to the mapping of codons 

to amino acids, defined by the SGC. This means that the “onset of coding”, the transition to the protein 

world and the establishment of codon—amino acid mapping, is of key importance in evolutionary 

biology. While the exact details may never be known, we contend that universal and generalizable 

features and principles may still be elucidated. This type of “code breaking” may require a combination 

of evolutionary theory, simulation and experimental considerations, combined with a perspective that 

integrates more wide ranging fields of study. There are two key observations regarding the SGC that 

will be utilized in this work. Firstly, the genetic code is at least near optimal for the purpose of error 

minimization (the minimization of the deleterious impact of random point mutations), and secondly it is 

near universal. We propose that study of these two key observations can potentially reveal fundamental 

aspects of molecular and organismal evolution. In particular, we propose that ideas from complexity 

theory can explain these two features of the SGC. For this, the idea of the neutral emergence of mutational 

robustness will be used, emergence being a characteristic feature of complex systems, and the concept of 

genomic information content, which is a measure of organismal complexity.  

The arrangement of codons to amino acids (i.e., codon—amino acid mapping) in the SGC is such that 

the deleterious effects of point mutations are minimized, compared to randomly generated codes; this 

error minimization is a form of mutational robustness. Error minimization has been assumed to be the 

result of direct selection (known as the “physicochemical theory” [3–6]), however we will show that this 

is not necessarily the case. A debate has centered on the extent of the error minimization in the SGC, 

with some workers claiming that the code is “one in a million” [7] and optimal [8–12], with other studies 

showing that the code is “near optimal” [13] (though see [14]), [15–21]. An important caveat is that 

some analyses of code optimality depend on amino acid similarity matrices to measure error 

minimization that are inherently biased in that they rely on empirically observed amino acid 

substitutions. The relative frequency of these are affected by the structure of the genetic code itself, 

because amino acids encoded by codons that differ by one nucleotide will be substituted more frequently 

than those that differ by two nucleotides. This potentially produces inflated measures of genetic code 
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optimality for the property of error minimization [22,23]. Therefore, in order to calculate error 

minimization, substitution derived amino acid similarity matrices should be avoided, and matrices based 

on physicochemical amino acid similarity are more appropriate, the first of which was derived 

specifically in order to examine genetic code evolution [24]. The exact degree of optimality of the SGC 

remains to be established, and varies depending on assumptions made, however the SGC is at least near 

optimal for error minimization. A more important question then becomes, “How did the error 

minimization property arise?”, which is the first of the two topics addressed in this paper. 

The second key feature of the genetic code that will be explored here is that it is not universal, having 

undergone alterations in some genomes. When the genetic code was first elucidated in the 1960s, it was 

found to be identical in phylogenetically diverse lineages such as metazoa, fungi and bacteria, hence it 

was supposed to be universal, and a striking confirmation of Darwin’s radical idea of common descent. 

However, beginning with the sequencing of the human mitochondrial genome in the early 1980s [25], it 

was shown that there were some deviations from the genetic code, termed “codon reassignments” or 

“alternative” genetic codes. Now, a range of codon reassignments are known from a range of different 

genomes, however, there is no consensus as to the mechanism that has produced them, or their driving 

force. A central problem is that of Crick’s Frozen Accident [26], which asserts that the reason for the 

widespread distribution of the SGC (only a minority of genomes use deviant genetic codes), is that any 

changes to the genetic code would be catastrophic to the organism. This is because reassigning a codon 

to a new amino acid effectively involves mutating every single occurrence of that codon in the genome, 

which is expected to lead to a massive deleterious mutational load. Consistent with this, it is routinely 

observed in a range of organisms that mutation of a tRNA anticodon to recognize a non-cognate codon(s) 

is lethal, as is altering tRNA identity elements so that a tRNA is misrecognized by a non-cognate 

aminoacyl-tRNA synthetase and so charged by a non-cognate amino acid. However, a key observation is 

that codon reassignments are particularly common in certain genomes such as non-plant mitochondria 

and intracellular bacteria, suggesting the existence of predisposing factors. We propose that one key 

factor is reduced proteome size (P, the total number of codons/amino acids encoded by the genome) and 

explore how this may act as an evolutionary constraint on the genetic code. We then examine how 

genomic information content may act as an evolutionary constraint on other elements of the genetic 

information system responsible for fidelity, providing indirect evidence for its role in influencing genetic 

code malleability.  

2. Neutral Emergence of Error Minimization in the Genetic Code 

2.1. The Non-Adaptive Code Hypothesis 

When biological systems show a high level of optimality, the default assumption is that these traits 

are the direct product of natural selection, which is an optimizing process. However, while the majority 

of phenotypic traits are undoubtedly directly selected for, it is not necessarily correct to assume that all 

phenotypic traits have been produced by the direct action of selection and have adaptive value, as pointed 

out by Gould and Lewontin [27]. These authors envisaged that there may exist some phenotypic traits 

that have not been produced by the direct action of selection and that lack adaptive value, i.e., do not 

contribute to the fitness of the organism; these were termed “spandrels”. We go a step further and 
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propose that there are some traits that have adaptive value (i.e., increase fitness) that have not arisen by 

the direct action of natural selection, and that the genetic code may provide a prime example. We have 

termed such beneficial traits “pseudaptations” [21,28,29], given that there may be a tendency to 

erroneously describe them as true adaptations, which are fitness increasing traits that are directly selected 

for. The case of error minimization in the genetic code will be discussed first, as this may present the 

paradigm of a pseudaptation. Then, other potential pseudaptations will be identified in a range of 

systems, in order to identify commonalities with the error minimization of the SGC. 

In order for an error minimized genetic code be directly selected for there needs to be a searching of 

code space, the space of alternative genetic codes, for an optimal, or near optimal, code [30]. Two widely 

discussed potential mechanisms for how codon reassignments occur are the codon capture  

mechanism [31,32] and the ambiguous intermediate mechanism [33,34]. The codon capture mechanism 

proposes a complete loss from the genome of the codon undergoing reassignment. This is proposed to 

occur via strong GC or AT mutation bias, which is expected to lead to extremes of genome GC or AT 

content, whereby AT rich or GC rich codons respectively are expected to disappear from the genome 

entirely. The disappearance of the codon avoids lethal disruption to the proteome, caused by altering the 

codon—amino acid mapping of the SGC. However, there are only a few examples of complete codon 

loss in present day organisms (Mycoplasma capricolum has lost the CGG codon from its genome [35], 

and Micrococcus luteus has lost AGA/AUA from its genome [36]), and variations in genome GC/AT 

content along the chromosome also means that complete codon loss is difficult [34]. This mechanism 

would have been more likely to occur in organisms with smaller values of P, where total codon loss from 

the genome is more likely [31]. Thus, for this mechanism, P is expected to exert a constraint on the 

efficacy of a reassignment. However, a strong argument against the occurrence of this mechanism of 

codon reassignment via GC/AT mutational pressure is that codon reassignments of AT rich codons are 

often observed in AT biased genomes [37], for example the UGA stop codon reassignment discussed 

below. AT rich codons are highly unlikely to have disappeared in AT rich genomes and so these 

observations are inconsistent with the codon capture mechanism. 

The alternative ambiguous intermediate mechanism proposes that the reassigned codon did not 

disappear from the genome, but underwent a dual ambiguous stage where the codon had the original 

amino acid identity, and that of its new amino acid assignment. This process may either have been 

adaptive, which would imply that reassigning all codons simultaneously conferred a fitness benefit,  

or it was disruptive to the proteome, in which case the level of disruption would be less in  

smaller proteomes [37]. In the second scenario in particular, a smaller value of P is likely to facilitate 

the reassignment. 

The “adaptive code hypothesis” (analogous to the physicochemical theory) proposes that error 

minimization has been directly selected for [8]; and initially this might appear a reasonable assumption. 

However, when one starts to probe potential mechanisms by which error minimization might be directly 

selected for, problems arise. Firstly, there has been a long standing discussion as to whether mutational 

robustness can be directly selected for [38]. Here, it is important to distinguish between intrinsic and 

extrinsic robustness [39]. Extrinsic robustness is externally imposed on a system and includes 

homeostatic mechanisms. This type of robustness can be directly selected for, such as the heat shock 

response, for example. Intrinsic robustness is an innate property of networks (deriving mostly from their 

topology) or sequences. Here, it is ambiguous if and when intrinsic robustness can be directly selected 
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for, or whether it is a property that emerges as a side-product of selection for some other function (which 

would make it a pseudaptation; discussed in more detail below). The difficulty of selecting for an 

intrinsically robust sequence or network topology hinges on the argument that natural selection does  

not have foresight, and so it is difficult to select a robust sequence on the remote chance that  

it may experience a deleterious mutation several generations in the future. This implies that selection  

for robustness is difficult in low mutation rate regimes, and so it has more often been associated with 

high mutation rates [38]. Even here, direct selection is difficult, and when robustness in these  

regimes is produced it seems to be a second order effect [40]. While selecting for mutationally robust 

sequences may be difficult to envision mechanistically, a possible solution is to select at the 

transcriptional/translational level; this is more attractive given the high level of 

transcriptional/translational errors compared with the underlying genotypic mutation rate [41], and the 

occurrence of multiple transcripts, which means that within the lifetime of a cell, a particular site in a 

sequence is considerably more likely to undergo an error. With this in mind, there is evidence that 

transcriptional/translational selection alters synonymous codon usage in order to reduce the deleterious 

effects of transcriptional/translational errors [42–46], although one study finds no evidence of his type 

of error minimization [47]. Overall, it seems that transcriptional/translational error minimization is a 

weak selective force given that it is particularly associated with high expression level [43,44], location 

within the gene [40,41], and may be reduced by prevailing codon usage [48,49]. So, whether there was 

enough selective pressure to lead to error minimizing codon - amino acid mappings during the evolution 

of the SGC is debatable. 

Secondly and more crucially, codon reassignments are necessary in order to search code space for an 

error minimized code. This is mechanistically difficult because the numbers of alternative codes is high, 

and because codon reassignments are disruptive (according to the ambiguous intermediate mechanism) 

or require extreme GC/AT bias (as in the codon capture mechanism). For a codon reassignment to be 

selected because of a resulting improvement to the overall error minimization of the code, the 

improvement would have to be large enough to outweigh overall proteome disruption, which seems 

unlikely [26,50]; this may be summarized as the question “Is the benefit from improved error 

minimization resulting from a codon reassignment greater than the cost of the proteome disruption?”. In 

addition, there is a scarcity of evidence that present day codon reassignments have led to an improvement 

in error minimization [8,51,52], or that they have any other adaptive value. Problematically, simulations 

show that codes get trapped in sub-optimal local minima when the codon capture mechanism is utilized 

to search code space for error minimizing genetic codes, given the intrinsic constraints of the  

mechanism [30]. This indicates that code optimization was unlikely to occur via this mechanism. 

Utilizing the ambiguous intermediate mechanism, numerous codon reassignments are required to 

produce a code with error minimization properties similar to the SGC (>20 under the specific model 

constraints [30]), and this does not incorporate unknown constraints imposed by the properties of 

ancestral aaRSs and tRNAs. Utilization of the ambiguous intermediate mechanism for code optimization 

would require therefore multiple ambiguous decoding phases. 

So, if error minimization is difficult to accomplish via direct selection, how did it arise? A potential 

answer lies in Crick’s observation that genetic code expansion was likely facilitated by the duplication 

of adaptor molecules and charging enzymes, with the result that “similar amino acids would tend to have 

similar codons” [26,53]. Taken further, it can be shown that no matter which path genetic code expansion 
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takes, if new amino acids are added to related codons of related amino acids (mimicking the process of 

adaptor and charging enzyme gene duplication, necessary for genetic code expansion), then a degree of 

error minimization arises, often equivalent or superior to that of the SGC [21]. Remarkably, under certain 

similarity criteria used to select which amino acids are added to the expanding code, 22% of alternative 

codes produced have error minimization superior to the SGC [21]. This process may have occurred via 

the gene duplication of tRNAs and proteinaceous aaRSs driven by the selective benefit of adding new 

amino acids to the genetic code, or of primordial adaptor molecules and charging enzymes, irrespective 

of their exact biochemical nature. Pertinently, it has been shown that RNAs can have aminoacylation 

properties [54,55], and other organic heteropolymers could also possess similar activities. A key problem 

in trying to infer genetic code expansion from the present day proteinaceous aaRSs is the classic chicken 

in the egg question. i.e., if the genetic code was incomplete, how could proteinaceous aaRS be encoded 

in order to incorporate new amino acids into the expanding code [50]? It seems some allowance needs 

to be made for the incomplete amino acid complement encoded by an incomplete genetic code in studies 

that try to link the phylogenetic relationships of the present day aaRSs with their amino acid/tRNA 

specificities in order to make inferences about genetic code evolution, and so their conclusions should 

be treated with caution. 

When the Grantham physicochemical amino acid similarity matrix [56] is used to study the error 

minimizing efficiency of the SGC, a marked degree of optimality is observed, with the SGC better than 

99.7% of randomly generated alternative genetic codes for the property [21] (and shown in  

Figure 1(iii)a). However, it has been pointed out that the Grantham matrix itself is biased by modification 

to fit the observed frequencies of amino acid substitutions [53]. A solution is to use matrices designed 

to avoid this type of bias, such as the Exchangeability (EX) matrix, which is derived from the 

experimentally determined effects of amino acid substitutions on protein activity [57]. When this matrix 

is utilized it can be shown that the SGC is better than 98.6% of randomly generated genetic codes (shown 

in Figure 1(iii)b), which is consistent with its near optimality. The two different matrices were used to 

explore how error minimization can arise without direct selection, utilizing a scheme consistent with a 

“213” mechanism of genetic code expansion, where the 2nd codon position acquires meaning first, 

followed by the 1st position, and lastly the 3rd position [58] (scheme illustrated in Figure 1(i)). A range 

of similarity thresholds was used, in order to choose which amino acid to add to the expanding code, 

based on similarity to the “parent” amino acid already present in the evolving code, illustrated in  

Figure 1(i). If no amino acid was available according to the similarity criteria, then a random amino acid 

was added. 10,000 codes were generated for each similarity threshold, and the proportion of codes with 

better error minimization than the SGC is shown in Figure 1(ii)a (Grantham matrix), and in Figure 1(ii)b 

(EX matrix). In the case of the Grantham matrix, for some similarity thresholds over 25% of codes were 

better than the SGC for error minimization. For the EX matrix, for some similarity thresholds over 18% 

of codes were better than the SGC. These results confirm that a stepwise process of genetic code 

expansion via gene duplication of adaptor molecules and charging enzymes is a viable explanation for 

the presence and degree of error minimization in the SGC. 

A simple change to the rules for adding new amino acids to the expanding code produces striking 

results. When the unassigned amino acid that is most similar to the “parent” amino acid is added to the 

expanding code, according to the scheme in Figure 1(i), a superior genetic code to the SGC is produced 

when using both the Grantham matrix (Figure 1(iii)a), and the EX matrix (Figure 1(iii)b). These results 
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confirm that direct selection is not necessary to produce an error minimized genetic code, but that it may 

“emerge” due to simple rules imposed during code expansion, i.e., that similar amino acids are added to 

related codons of a related amino acid already present in the growing code. This rule of addition adheres 

to standard biochemical and molecular evolutionary principles; enzyme duplicates typically show 

substrate specificity related to the parent enzyme, and tRNA duplicates are likely to have related 

anticodons, given that homologous sequences are characterized by sequence similarity. This finding 

allows us to distinguish between different theories of genetic code evolution. For example, the data are 

inconsistent with the stereochemical theory [59–61] that proposes a direct interaction between 

codon/anticodon and amino acid is responsible for the structure of the genetic code. While this might 

still lead to similar amino acids being recognized by similar anticodons, it does not involve a process of 

code expansion via gene duplication. The data are also incompatible with the physicochemical theory, 

which proposes that direct selection is responsible for error minimization. Lastly, the coevolution theory 

proposes that the genetic code expanded via the addition of biosynthetically related amino acids [62,63]. 

If this expansion were to occur via gene duplication [64,65] then our results show how error minimization 

could have arisen concomitantly. 

 

 

Figure 1. Cont. 



Life 2015, 5 1308 

 

 

Figure 1. How error minimization may neutrally emerge in genetic codes. 

Two simulations were conducted in order to demonstrate how error minimization may neutrally 

emerge during genetic code expansion. The Grantham matrix (a) and the Exchangeability matrix (b) 

were utilized to measure amino acid similarity. The Grantham matrix is derived from physicochemical 

considerations, while the EX matrix is derived from fitness effects on proteins resulting from amino acid 

substitutions. In order to measure error minimization, the Error Minimization (EM) value was calculated 

as described previously [21]; this is the average amino acid similarity resulting from a single point 

mutation for a given genetic code. The EM value is matrix dependent; in the case of the Grantham matrix 

the smaller the EM value, the greater the level of error minimization, and in the case of the EX matrix, 

the larger the EM value, the greater the level of error minimization. The simulation was conducted as 

follows. A scheme consistent with the “213” mechanism of genetic code expansion [58] was utilized: 

(i) (reproduced from [21]). This involves the initial assignment of V, A, D and G to the 2nd codon 

position nucleotide T, C, A and G, respectively, which reflects the SGC. Then the 1st codon position 

nucleotide acquires meaning, followed by the 3rd codon position nucleotide. Amino acids were added 

to the expanding genetic code, following the illustrated scheme, according to two different criteria:  

(ii) amino acids were added to the expanding code if they were below a similarity threshold relative to 

the amino acid of the “parent” codon. 10,000 iterations were conducted for each threshold, and the 

percentage of genetic codes with EM values superior to the SGC are displayed. For the Grantham matrix, 

smaller values indicate greater amino acid similarity, while for the EX matrix larger values indicate 

greater similarity. 

(iii) the most similar amino acid to the amino acid of the “parent” codon out of all unassigned amino 

acids was added to the expanding code. Only one iteration was conducted as there is only one pathway 

of code expansion that can be followed, for each matrix. The EM value of the “neutrally emergent code” 

thus produced was compared to that of the SGC, and to 10,000 randomly generated codes. 

“Emergence” refers to novel patterns and properties in a complex system arising from the interaction 

of substituent subcomponents, or “the whole is greater than the sum of the parts”. Simple rules of 

interaction are able to produce emergent properties, reflected in the code simulations described. 

Emergence is observed in a wide range of disciplines and fields of study, and life itself can be viewed 

as an emergent property [66]. Crucially, the emergence of error minimization in genetic code evolution 

occurs no matter what pathway of genetic code expansion is followed [21], and so the historical route to 
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the SGC does not influence our main conclusion that at least a portion of the error minimization has 

arisen without the direct action of natural selection. In addition, we present conditions under which codes 

with superior EM properties to the SGC can easily arise. Because we show that error minimization is an 

emergent property that is not directly selected for, we term this process neutral emergence, in contrast 

to better known biological examples of selected emergence. These two forms of biological emergence 

will be discussed in more detail next. 

2.2. Emergence in Biological Systems 

The genetic code evolution simulations described demonstrate that the error minimization of the SGC 

may be an emergent property not directly selected for, and so this prompts a search for analogous 

properties in biological systems. The question we ask is whether the case of the SGC is a unique scenario 

or whether this process of neutral emergence is found elsewhere. There is a long list of examples of 

selected emergence in biological systems, at many different levels of organization. These include swarm 

intelligence (e.g., bees foraging), metabolic flux, fractal geometry in circulatory structures (a way to 

improve efficiency, [67]), the action potential of neurons, self assembling crystal-like structures (e.g., in 

virus capsids), and potentially consciousness [68]. Emergent properties are features of complex systems, 

and in non-biological systems these are typically not directly selected for, but are passively emergent. 

This is analogous to the process of neutral emergence that we have identified as potentially operating 

during the evolution of the SGC. This implies that we may expect similarities between emergent 

properties in non-biological systems and neutrally emergent properties in biological systems. 

Neutrally emergent properties in biological systems may potentially be beneficial, or of no fitness 

benefit. A major category of beneficial traits that may be neutrally emergent are associated with 

robustness; this includes the error minimization of the SGC, which is a form of mutational robustness. 

These are listed in Table 1a. In an interesting parallel, many non biological complex systems also show 

the property of robustness, often associated with network topology [69], an emergent property [70].  

In Figure 2, we show another example of how mutational robustness may neutrally emerge, this time 

within protein structures. In this example, a population of protein structures is subject to negative 

selection for structural stability. Over time, on average the structure becomes more mutationally robust, 

even though this property is not being directly selected for. This observation may be explained in the 

framework of neutral network theory [71,72]. This proposes that a protein or RNA sequence drifts 

through a sequence space of neutrally connected sequences, which avoids disruption to the structure; 

this is termed a “neutral network”. This movement happens stochastically until the sequences reaches a 

more highly neutrally connected region of the network; the sequences are likely to be move to these 

regions simply by chance. Here, the sequence is more robust as a greater proportion of potential 

mutations it may undergo are neutral, given that the region of the network has a higher proportion of 

neutral connections [73–75]. In the simulation, mutations that do not affect stability are classified as 

effectively neutral and may stochastically spread through the population, and so the protein sequences 

will change neutrally until they enter a more highly connected area of sequence space, which confers 

higher mutational robustness. This is an example of how intrinsic sequence robustness may evolve via 

non-adaptive processes, and provides an additional example of neutral emergence of mutational 

robustness to that of error minimization in the SGC. 
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Figure 2. Neutral emergence of mutational robustness in a population of proteins. 

A population of single domain proteins of identical structure, utilizing the 3D structure of leech eglin 

C (1EGL.pdb), was subject to negative selection for stability in a Wright-Fisher evolutionary simulation. 

A population size of 1000, mutation rate of 0.005 per nucleotide per generation, and a 

transition/transversion ratio of 2 were utilized. The fitness function was the effective free energy of 

folding (ΔGf), calculated from the amino acid sequence of each protein in the population threaded onto 

the starting 3D structure, using a coarse grained contact model whereby each amino acid was represented 

by a coarse grained site centered on the 1st carbon atom of the amino acid functional  

group [76]. ΔGf was −21.05 for the starting sequence VSLNVITPLCTRVEKCIQIPTVVAVLRAAA 

VIVWIGILQSPVYGLVLRLALYDYALGRLGSLNQAVYVPL, which was a randomly generated 

sequence chosen for its low mutational robustness, defined as the average ΔΔG resulting from a point 

mutation of the gene sequence encoding the protein (ΔΔGaverage). A selection threshold of 0.29 above 

and below the starting value of ΔGf was utilized; for each generation, sequences that had ΔGf values 

outside these thresholds as the result of mutations were removed from the population. ΔΔGaverage of the 

most common member of each generation was calculated and plotted. The methodology is described in 

more detail in [29]. 

A second category of traits that may be neutrally emergent are associated with evolvability (Table 1b). 

There is an ongoing debate regarding the factors that promote evolvability. Foresight is required to 

directly select evolvability, given that improved evolvability implies future rather than immediate 

benefits to the organism, and this is problematic from a theoretical point of view [77]. Table 1b lists the 

potential driving forces behind a series of biological processes, that may indirectly result in increased 

evolvability, in many, but not all, cases a process of neutral emergence may be responsible (indicated 

on Table 1a,b). Error minimization of the SGC has been proposed to increase adaptability [78,79], and 

this illustrates the close connection between robustness and evolvability [80,81]. Increased mutational 

robustness may allow a more efficient exploration of sequence space and novel evolutionary solutions, 

however at the cost of decreased phenotypic variation which is expected to reduce the strength of selection. 

Thus, error minimization in the SGC may be beneficial in two regards; it reduces the deleterious impact 

of mutations and may increase evolvability. A third category of emergent property that is not listed in 

Table 1a,b is that of intrinsic noise. Intrinsic noise refers to noise that is inherent within a system. The 

occurrence and role of intrinsic noise is an exciting topic in biology, and its evolutionary implications 
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are just beginning to be explored [82]. The extent to which this type of emergent property is beneficial, 

how often it is directly selected for, or if it is neutrally emergent, remains to be determined. 

Table 1. Potential pseudaptations in biological systems. Beneficial traits that may have 

arisen as a side effect of selection for a different trait (“pseudaptations”) are listed and 

comprise two main categories: (a) robustness related; (b) evolvability related. These traits 

are often proposed to have arisen by the direct action of natural selection, but evidence is 

listed here that they have arisen as fortuitious “side-products” of selection for a different 

trait. Those traits proposed to have arisen by a process of neutral emergence are indicated by *.  

(a). Robustness related potential pseudaptations. 

Trait Potential driving force 
Indirect benefit  
(neutrally emergent*) 

Increased proteome 

hydrophobicity in AT rich 

genomes 

Hypothesized that AT bias may arise neutrally via changes in 

mutation bias [83], one cause of which may be loss of DNA repair 

genes [84], which may indirectly be a result of a reduction in P  

[85–87], and this work. AT rich codons encode more hydrophobic 

amino acids, so AT bias results in more hydrophobic proteins 

Increased hydrophobicity of 

proteome results in increased 

protein folding stability [88] * 

Scale free structure of 

metabolic networks 

There is evidence preferential attachment has given rise to the scale 

free property [89] 

Robustness to gene deletion  

[90,91] * 

Scale free structure of 

protein interaction 

networks 

There is evidence that preferential attachment has given rise to the 

scale free property [92,93] 
Robustness to gene deletion [94,95] * 

Scale free structure of 

gene regulatory networks 

There is evidence a combination of gene duplication and preferential 

attachment are responsible for the scale free property [96] 
Robustness to mutation [97] * 

Survival of the flattest 

Survival of the flattest refers to the increase in number of robust 

organisms in a population when mutation rates are high. This 

neutrally emerges in digital organisms [98] and RNA viruses [40] in 

the absence of direct selection for the property 

Increased robustness of the 

population to mutation * 

Mutational robustness of 

protein and RNA 

structures 

Mutational robustness in RNA secondary structures [74,99], protein 

2D lattices [73,100] and 3D coarse grained protein models [29] 

neutrally emerges via random movement on a neutral network as a 

result of genetic drift 

Increased structural robustness to 

mutation * 

Error minimization of the 

genetic code 

There is evidence that error minimization neutrally emerged during 

genetic code expansion via gene duplication of adaptor molecules 

and charging enzymes [21] and this work. 

Error minimization reduces the 

deleterious impact of point 

mutations, transcriptional and 

translational errors * 

Genetic dominance 

It has been proposed that genetic dominance is selected for to 

increase metabolic flux [101], or that it is a side product of enzyme 

kinetics [102] 

Increased mutational robustness [38] 

Enhanced DNA repair in 

Deinococcus radiodurans 

The ability to withstand dessication may have led to the enhanced 

repair of double stranded breaks [103] 

Enhanced repair of double stranded 

breaks also leads to radiation 

resistance in this species. Radiation 

is rarely encountered in nature, so it 

is unlikely radiation resistance was 

directly selected for [103] 
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(b). Evolvability related potential pseudaptations. 

Trait  Potential driving force Indirect benefit (neutrally emergent *) 

Sexual reproduction 
The purpose of sexual reproduction has been 

proposed to be DNA repair via recombination [104]  

Recombination leads to a reduction in the  

Hill-Robertson effect, enhancing the strength of 

selection * 

Segmentation of virus 

genomes 

The role of virus genome segmentation has been 

linked to differential gene expression [105] 

In cystoviruses, segmentation leads to random 

assortment, and subsequent amelioration of linkage 

disequilibrium [106], increasing the power of selection. 

Likewise, in the influenza virus segmentation may 

increase the strength of selection [107] * 

Protein domain shuffling  

Domain shuffling is facilitated by the occurrence of 

introns [108], which have a variety of functions, 

however the role of most of them remains to be 

established [109] 

Domain shuffling has been linked to evolutionary 

innovation [110] * 

Reduced population size 
Many factors may act to reduce population size and 

it is unlikely to be directly selected for 
Ability to traverse evolutionary barriers [111,112] * 

Nonfunctional DNA in 

higher eukaryotes 

The function of the majority of intron sequences 

and intergenic DNA, if any, has not been 

established. Notably, overall there is a lack of 

sequence conservation, indicating a lack of 

sequence specific selection [113] 

Longer introns and intergenic DNA regions lead to 

an increase in recombination events, reducing the  

Hill-Roberston effect and so increasing the strength 

of selection [114–116] * 

Evolutionary capacitance 

of HSP90  

HSP90 is a normal part of the stress response in the 

eukaryotes 

HSP90 acts to store cryptic genetic variation, this is 

exposed in times of stress due to a reduction in the 

concentration of free HSP90 [117,118] * 

Evolutionary capacitance 

of complex gene 

regulatory networks 

Gene regulatory network structure is driven by the 

addition and removal of nodes, according to the 

immediate selective benefit  

The loss of a gene enhances the phenotypic variation 

of remaining components of the network, and this 

promotes evolvability, this effect is not dependent on 

network topology [119] * 

Error minimization in the 

SGC 

There is evidence that error minimization has 

neutrally emerged as a consequence of genetic 

code expansion over time [21,30], and this work 

Error minimization has been proposed to result in 

the increased evolvability of proteins [78,79] *  

Elevated mutation rates in 

RNA viruses 

The ultimate cause of elevated mutation rates in 

RNA viruses has not established, but reduced P 

may be a factor [85] and this work. The proximate 

cause of the elevated mutation rates is a lack of 

proofreading in the replicative polymerase 

Elevated mutation rates increase the ability to evade 

the host immune system and adapt to drug 

treatments 

Ambiguous decoding of 

the CUG codon as both 

serine and leucine in 

Candida yeasts 

The ambiguous decoding of CUG [120] appears to 

have been a factor in the codon reassignment of 

CUG leu→ser [120] 

Ambiguous CUG decoding produces elevated levels 

of HSPs and this enhances survivability in 

challenging environments [121] 

Polyploidy Polyploidy is caused by abnormal cell division  
Polyploidy is proposed to result in increased 

evolvability in plants [122,123] 

Lateral gene transfer 

(LGT) in prokaryotes 

LGT may have a role in DNA repair of the 

prokaryotic genome [124] or may be a side-product of 

the uptake of DNA as carbon and energy source [125] 

LGT leads to increased evolvability in response to 

environmental challenges  
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2.3. Pseudaptations: Beneficial Traits that Have not Been Directly Selected for 

There is an increasing number of examples of potential pseudaptations, beneficial traits that have not 

been directly selected for, which includes the error minimization property of the SGC. We list these in 

Tables 1 and this allows us to identify two main categories of pseudaptations; robustness related and 

evolvability related. Most of both the robustness and evolvability related traits appear to arise by neutral 

emergence (indicated). Thus, we are able to identify two major exceptions to the tautology that all 

adaptations, i.e., fitness increasing traits are the product of natural selection, and defined as such;  

that of robustness and evolvability. This leads us to propose that adaptations are better defined as 

beneficial traits directly selected for, that increase the fitness of the organism, while pseudaptations are 

beneficial traits that increase the fitness of the organism, which however have not been directly selected 

for that purpose.  

3. Proteome Size as a Constraint on the Genetic Code 

3.1. Unfreezing of the Code 

Crick’s Frozen Accident theory proposes that there was a stage when the genetic code was fluid, and 

that it “froze” when the numbers of proteins (and so its proteome size) in the ancestral lineage increased, 

which resulted in an increased constraint on the code [26]. We have termed this as a “proteomic 

constraint” on the genetic code [37,85], and this concept proposes that genetic code changes result in a 

larger mutational load in larger proteomes. The idea of “freezing” implies that if P reduces in size then 

the code can be “unfrozen” and therefore malleable. This relationship between P and genetic code 

malleability can be shown via simulation, with codon reassignments occurring more frequently when P 

is smaller [126]. Consistent with these considerations, when the relationship between P and numbers of 

codon reassignments in mitochondria was examined [37], it was found that the number of mitochondrial 

codon reassignments is positively correlated with mitochondrial proteome size. More recently, a number 

of additional codon reassignments have been discovered in bacteria, listed in Table 2. Strikingly, all 

bacterial codon reassignments are found in bacteria with small values of P, and remarkably, the identical 

codon reassignment (UGA stop→trp) has evolved several times independently. The frequency of the 

UGA→trp reassignment in multiple systems has been attributed to the widespread naturally occurring 

UGA read through activity of trp-tRNA in a range of translation systems [127,128] (and see [129] for a 

mutant trp-tRNA with readthrough activity with a standard anticodon), and is a potential example of an 

evolutionary predisposition or “preadaptation” [37]. The association of the codon reassignments in Table 

2 with reduced values of P, and the independent occurrence of identical codon reassignments, is strongly 

reminiscent of mitochondrial codon reassignments and implies a common codon reassignment 

mechanism and driving force in these two different types of genomes. In addition, the bacteria in Table 

2 mostly have strong genome AT biases, again in common with mitochondria. This observation may 

indicate a link between loss of DNA repair and reduced P, discussed in the next section. A commonality 

between mitochondria and the bacteria in Table 2 is their intracellular habitat; mitochondria are 

intracellular organelles and the majority of the bacteria listed in Table 2 are intracellular. The 

intracellular lifestyle leads to a marked reduction in P, largely attributable to the loss of genes redundant 

with host functions, and genes no longer needed in an environment that varies little [130]. 
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Table 2. Bacteria that have undergone codon reassignments. 

Lineage and 

phylogenetic 

affiliation 

Genetic code 

change 
Genome size 

Genome GC 

content 

Elevated 

substitution 

rate? 

Loss of DNA 

repair? 
Habitat 

Mycoplasmas 

(Mollicutes) 

UGA 

(stop)→trp 

[131] 

580–1359 kbp 

(Genbank) 

25%–40% 

(Genbank) 
Yes [132] Yes [133] Vertebrate cells 

Spiroplasmas 

(Mollicutes) 

UGA 

(stop)→trp 

[134] 

940–2220 kbp 

[135] 
29% [136] Yes [132] Yes [137] 

Insect and  

plant cells 

Ureaplasmas 

(Mollicutes) 

UGA 

(stop)→trp 

[138] 

750–950 kbp 

[139] 
25% [139] Yes [132] 

Not 

determined 
Vertebrate cells 

SR1 bacteria (related 

to Chloroflexi) 

UGA 

(stop)→gly 

[140] 

1178 kbp 

[141] 
31% [141] Yes [141] 

Not 

determined 

Human body 

(extracellular), 

sediments 

Nasuia 

deltocephalinicol 

(β proteobacteria) 

UGA 

(stop)→trp 

[142] 

112 kbp 

[142] 
17% [142] Yes [142] Yes [142] Circada (insect) cells

Sulcia muelleri 

(Bacteroidetes) 

UGA 

(stop)→trp 

[142] 
190 kbp [142] 24% [142] Yes [143] Yes [143] 

Sharpshooter (insect) 

cells 

Hodgkinia 

cicadicola  

(α proteobacteria) 

UGA→trp 

[144] 
144 kbp 

[144] 
58% [144] Yes [144] Yes [144] Circada (insect) cells

Codon reassignments are also occasionally found in systems other than mitochondria and bacteria. 

An AUA ile→met codon reassignment has occurred in the plastid Lepidodinium chlorophorum [145], 

which as an organelle likely possesses a reduced value of P. The Candida yeasts (CUG leu→ser [146,147], 

genome size ~15 Mbp), the Spironucleus,Trepomonas and Hexamita clade of diplomonads 

(UAA/UAG→gln [148,149] Spironucleus genome size ~12–18 Mbp) have smaller values of P.  

The oxymonads have undergone a UAA/UAG→gln codon reassignment [150], but their genome sizes 

remain to be determined. In contrast, the ciliates (UAA/UAG → gln in Tetrahymena and  

Paramecium [151,152], UGA stop→cys in Euplotes [153] UGA→trp in Blepharisma and Colpoda [154]) 

and Dasycladales/Cladophorales green macroalgae (UAA/UAG→gln [155–158] do not have small 

genome sizes and values of P, so a small value of P does not seem to be a universal facilitating factor 

for codon reassignments. However, reduced P is associated with the majority of codon reassignments in 

a variety of systems. This provides an intuitive explanation for code “unfreezing” resulting from a 

reduced constraint on codon–amino acid mapping, implying that P imposes a constraint on genetic code 

malleability; the so-called “proteomic constraint”. 
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3.2. Genomic Information Content as a Constraint on Genetic Fidelity 

Given that accurate codon–amino acid mapping, resulting from accurate codon-anticodon and  

tRNA-aaRS recognition, is a form of genetic fidelity, then if P exerts a selective pressure on this fidelity, 

then it might be expected to influence other forms of genetic fidelity. In other words, given that  

codon–amino acid mapping is a form of genotype–phenotype mapping, the idea of a proteomic 

constraint should be extensible to other features of the genetic information system responsible for the 

fidelity of genotype–phenotype mapping. A range of examples of how genetic fidelity may be subject to 

the proteomic constraint has been examined [85], but an updated discussion will follow. Firstly, it should 

be noted that P is an approximation to the information content of a genome (I). While P is expected to 

exert a constraint on codon reassignments, other types of genetic information in the genome may have 

an influence on other forms of genetic fidelity and this genetic information may be identified by sequence 

conservation. For example, while the quantity of noncoding RNA may be more accurately calculated in 

the future in a wider range of organisms, due to improvements in prediction methods, it appears to 

constitute a significant proportion of the genome in humans, with 27 Mbp of predicted long noncoding 

RNAs in the human genome (Gencode release 21 [159]), compared with 43 Mbp of coding sequence 

(calculated using Augustus [160]). Promoter regions also contain sequence specific information, but 

unfortunately these are difficult to predict either from first principles, or using sequence conservation. 

Additional measures from the genome sequence might be incorporated for a more complete 

quantification of organismal complexity and genomic information content, I (discussed further below). 

Given the idea that I may exert a selection pressure on genetic fidelity, proportional to its size, then a 

number of predictions may be made and also explanations for long standing evolutionary problems. 

Exploration of these may provide further support for the role of P and I in promoting genetic fidelity, 

and so may provide additional indirect evidence for the role of P in explaining the occurrence of codon 

reassignments, and ultimately help to understand the evolution of the SGC. 

3.2.1. Differences in Underlying Mutation Rates 

A simple and intuitive idea is that the larger the amount of information in the genome, then the larger 

the mutational target. Given that most mutations are deleterious, this means there is a greater fitness cost 

to an organism with more genetic information, resulting from an increased mutational load. There is a 

general selective pressure to minimize the occurrence and effects of mutations, reflected in the diverse 

range of mutation avoidance, DNA repair and proofreading, and buffering mechanisms within the cell. 

So, it follows that genomes with larger amounts of genetic information should have a stronger selective 

pressure to evolve and maintain DNA repair and proofreading mechanisms, as they experience a higher 

mutational load. The mutational load is directly proportional to the length of the proteome in terms of 

amino acids (P); this means that the selective pressure to reduce mutations should also be directly 

proportional to P. This is expected to lead to an inverse relationship between the occurrence of mutations 

(expressed as the mutation rate, μ), and P. Thus, the relationship between μ and P can be related as 

follows: 

 [85,161] (1)



Life 2015, 5 1316 

 

where C is termed the “Constraint factor”. C may vary according to each genome, and incorporates the 

genome wide strength of selection, which may be influenced by the genome’s effective population size 

(2Ne for a diploid population), and the average fitness effect of a mutation (which will be negative 

overall, as most mutations are deleterious). This average fitness effect can be expressed as its average 

selection coefficient, ̅ , and may be influenced by recombination rate, given that increased 

recombination increases the strength of selection [162] In addition, the total number of fitness affecting 

mutations present (mutational load) is a factor, and is proportional to the product of P and heterozygosity 

per base pair (π), πP. The higher the mutational load, the greater the selective pressure to minimize μ, 

and so these are inversely related. Thus, for a diploid population the equation can be expressed as 

follows: 

2 ¯  (2)

where k is a proportionality constant. Importantly, the empirical data is consistent with a reciprocal 

relationship between μ and P in a wide range of eukaryotes, bacteria and DNA viruses (y = 0.018 x−1.15, 

r2 = 0.89, p < 1.7e−12, Figure 3), and indicates that P is the major determinant of mutation rates across 

genomes, explaining 89% of the variation in μ. This analysis is an extension the observed inverse 

relationship between μ and genome size in a range of microbes [163]. While Ne has been proposed to be 

the main determinant of mutation rates [164,165], this perspective does not take into account the 

expectation that Ne and ̅ are inversely related to each other, with more deleterious mutations being 

present in organisms with smaller values of Ne [166]. This means that any effect from a reduced Ne will 

be counteracted by an increase in ̅, neutralizing the influence of Ne on mutation rates. 

The inverse relationship between µ and P implies that there is an increased selection pressure for 

DNA repair in organisms with larger values of P; this is because their lower values of µ implies more 

efficient DNA repair. This is indeed observed with mismatch repair genes and base excision  

repair genes [86], and for recombination repair genes [87], with these DNA repair genes more commonly 

found in bacteria with larger values of P. The relationship between P and DNA repair is discussed further 

below. The idea of a proteomic constraint also predicts that there should be a greater selection pressure 

for proofreading associated with larger values of P, and vice versa a reduced selection pressure 

associated with smaller values of P. While the lack of proofreading in RNA viruses, which have very 

small values of P, is consistent with this reduced selection pressure, in comparison with DNA based 

genomes they show an elevation in mutation rate more than simply their reduced values of P would 

suggest [85].  

Two examples of acquisition and loss of proofreading in viruses, associated with changes in P, are 

consistent with operation of a proteomic constraint on replicational fidelity. Firstly, the nidoviruses are 

the largest RNA viruses; they have undergone a genome expansion (up to 32 kbp in size), with a 

concomitant increase in P. Accompanying this expansion has been the acquisition of RNA polymerase 

proofreading activity [167], consistent with the hypothesis that increased values of P increase the 

selective pressure to evolve proofreading. Secondly, the phaeoviruses are nucleocytoplasmic large DNA 

viruses (NCLDVs) that have undergone a recent reduction in genome size and concomitant reduction in 

P compared to the other NCLDVs, which have enormous genome sizes (phaeovirus genome sizes are 

180–360 kbp [168]). This group of viruses has lost DNA polymerase proofreading activity [168], 

consistent with a reduction in the proteomic constraint on replicative fidelity. Eigen proposed that μ acts 
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to restrict the information content of virus genomes [2,169], implying that these are close to an error 

threshold. This is opposite to the prediction of a proteomic constraint, which proposes that information 

content acts to restrict μ. A central problem with the Eigen hypothesis is that it requires foresight in order 

to evolve improved DNA repair and proofreading mechanisms before virus genomes can expand over 

time, and natural selection does not have foresight. 

Equation (2) may be generalized to account for the total information content in the genome, I,  

as follows: 

2 ¯  (3)

where I is the number of nucleotides under selective constraint in the genome, and kI is the associated 

proportionality constant. Negative selection acting on a nucleotide leads to conservation and indicates 

that it possesses information useful to the organism; the higher the level of conservation, the greater the 

informational value, and so it can be observed that it is the process of selection itself creates genetic 

information, as pointed out by Eigen [170]. 

3.2.2. Loss of DNA Repair Genes and Changes in Genome GC Content 

One of the great puzzles of genome biology is the wide variation in genome GC content in different 

organisms and organelles, first noted by Sueoka in bacteria in the 1960s [83]. He predicted that the 

variation may be due to differences in underlying mutational biases due to differences in DNA repair 

mechanisms, rather than the direct action of selection, an early premonition of the neutral theory of 

molecular evolution. More recently, the elevated AT content of genomes of reduced size such as 

organelles and intracellular bacteria (for example, see Table 2) has been attributed to the loss of DNA 

repair which characterizes these systems [85], however, the reason for this loss has been elusive.  

A reduction in Ne has been proposed as a cause [171], although it seems improbable that population 

effects could have such radical effects on gene complements. This is reflected in the empirical data 

whereby metazoa vary widely in their population densities [172], but vary little in their values of P. 

Examples from free living bacteria with reduced values of P are informative. The ocean bacteria 

Prochlorococcus and Pelagibacter ubique have undergone a reduction in P, and this has been 

accompanied by the loss of DNA repair [173], as have the free living SR1 group of bacteria (see Table 2). 

However, reduced Ne is not a good explanation for loss of DNA repair in these species, given that they 

likely possess substantial population sizes given their free living nature. For example Prochlorococcus 

has a very large value of Ne, possibly the largest of any organism on the planet (~1.5 × 109 [174]).  

An alternative explanation for the loss of DNA repair in these species is provided by the proteomic 

constraint hypothesis, which proposes that given their reduction in size of P there is less selective 

pressure to maintain DNA repair; this relationship is indeed observed in analyses of large numbers of 

free living bacterial genomes, where population effects are likely to be minimal [86,87]. 
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Figure 3. Relationship between proteome size and underlying mutation rates in diverse genomes. 

The underlying mutation rates (μ) of a range of DNA virus, prokaryote and eukaryote genomes, 

obtained directly from the literature, were plotted against the respective proteome sizes (P), calculated 

by summing the numbers of codon present in all annotated ORFs from each genome (Supplementary 

Table S1). A correction was made for the number of germline cell divisions undergone by multicellular 

animals, as described in [85,161]; the resulting value of μ is per genome replication. 

Likewise, the idea of a proteomic constraint can also explain the elevated substitution rates that 

accompany reductions in genome size, as is observed in intracellular bacteria and organelles. These 

elevations in substitution rate likely result from the loss of DNA repair and a subsequent elevation of μ, 

the underlying mutation rate, consistent with the inverse relationship shown in Figure 3 between μ and 

P. Consistent with the proposed influence of P on both the occurrence of codon reassignments and μ, all 

the bacterial lineages in Table 2 that have undergone codon reassignments also show elevated 

substitution rates and crucially, most have experienced a loss of DNA repair genes. Thus, in these 

examples a reduced value of P is associated with both a loss of the codon–amino acid mapping fidelity 

of the SGC, manifested by codon reassignment, and with a loss of replicative fidelity (which also disrupts 

genotype–phenotype mapping), manifested by loss of DNA repair and an elevation in substitution rates. 

3.2.3. The Evolution of Sexual Reproduction 

Understanding the driving force behind the evolution and maintenance of sexual reproduction has 

been difficult. There are two major schools of thought; that it represents a form of DNA repair that 

operates via recombination repair mechanisms [104], or that it represents an adaptation to improve 

evolvability by more effectively combining beneficial mutations [175]. While it is little disputed that an 

effect of recombination is to increase the strength of selection [162], whether this enhanced selection itself 

is directly selected for, or simply a side-product of recombination has been extensively debated. 

In addition, as discussed it is unclear if evolvability itself can ever be directly selected for [77]. In our 

view, the DNA repair hypothesis for the evolution of sexual reproduction is consistent with the 

observation that sexual reproduction evolved in eukaryotes, which typically have values of P larger than 

prokaryotes. Thus, we propose that the increased mutational load associated with an increase in 

mutational target resulting from an increase in information content in eukaryotes may have provided the 

selective pressure to evolve meiosis and concomitant improved DNA repair. Consistent with this, the 
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presence of recombination repair genes is positively correlated with P in bacteria [87], and so a similar 

evolutionary force to evolve recombination repair in eukaryotes with larger values of P is reasonable. 

Given this scenario, improved evolvability resulting from an increase in recombination is a fortuitous 

side product, and so may represent a pseudaptation (Table1b). Importantly, recombination rate is 

negatively correlated with P in eukaryotes [85]. Recombination repairs double stranded breaks, which 

implies that larger proteomes have mechanisms to reduce the frequency of double stranded breaks, 

consistent with the proteomic constraint hypothesis, i.e., there is an increased selective pressure to reduce 

the occurrence of these errors. 

3.2.4. Inefficient Organelle Protein Translation 

Organelle rRNAs and tRNAs are marked by decreased stability, structural degeneration and 

functional inefficiency. Extreme cases are observed in metazoan mitochondria, where rRNA and tRNA 

sizes are extremely reduced and their secondary structures, which are highly conserved in other domains 

of life, are severely disrupted [176–178]. The accumulation of slightly deleterious destabilizing 

substitutions in organelle tRNAs and rRNAs has been viewed as an example of Muller’s ratchet [179–181], 

which proposes that deleterious mutations accumulate when recombination is reduced, resulting from 

the Hill-Robertson effect [182,183], which predicts a decrease in the strength of selection when 

recombination is reduced, as is the case in asexual organelles which do not undergo recombination. 

However, this explanation does not clarify why proteins encoded by the mitochondrion, such as 

cytochrome oxidase I, appear unaffected by deleterious mutations accumulation, and under “normal” 

evolutionary constraint. An explanation can be provided by the reduced value of P of the mitochondrion 

and a subsequent reduction in selection to maintain translational fidelity; this would be expected to affect 

components of the mitochondrial translation system that are involved in maintaining translational 

fidelity, but not the protein coding genes themselves, which are subject to selection at the level of the 

host. This is because translation is a form of genotype–phenotype mapping, and so the fidelity of this 

mapping is expected to be proportional to P; the reduced values of P in organelle genomes have 

potentially resulted in a reduced selection pressure to maintain translational fidelity. 

3.3. Information as a Constraint in Diverse Systems 

We have seen how genomic information content may act as a constraint on a range of error prone 

molecular processes, in that it exerts a cost via increased error load, and so it is interesting to compare it 

to other biological constraints. In a classic example, Haldane recognized that body size was subject to 

both physical constraints and also biological “design” constraints [184]. Insects illustrate this well; their 

body size is restricted due both to the limitations of gaseous diffusion, a physical constraint, and the 

arrangement of their circulation system, a design constraint. Genome information content can uniquely 

perhaps be classified as both a biological constraint, as it is created by natural selection, but also a 

physical constraint, in that it can be mathematically defined [185]. The latter is important because it 

means that information can be abstracted, and so we may expect to see analogies elsewhere in  

non-biological systems. In The Republic, Plato used the analogy of shadows on a cave wall, that were 

imperfect representations of the universal forms that generated the shadows. Platonic forms are thus 

universal concepts and mathematical truths that see an imperfect reflection in nature. As information 
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may be described mathematically, it also constitutes a universal form. We might then expect that if 

information acts as a constraint and cost in biological systems, then parallels might be observed 

elsewhere in other complex systems, providing further indirect support for its role in genetic fidelity. 

Firstly, the information content and complexity of a system are positively related to each other. 

Complexity is difficult to define [186], and while Kolmogorov (algorithmic) complexity (which 

proposes that size of the simplest algorithm that may describe it is a measure of its complexity [187–189]) 

provides a universal definition, this measure is difficult to apply to organisms. However, genomic 

information content appears to be correlated with organismal complexity [190]. Thus, at the genomic 

level one measure of complexity is the amount of sequence specific information, I, which approximates 

to P. That P is an imperfect representation of complexity is clear from a consideration of the metazoa 

where P does not vary much, but complexity clearly does. This may be illustrated by comparing 

invertebrates with vertebrates; while the latter are more complex in terms of behavior, number of cell 

types, physiology, body sizes and brain structure, this is not reflected in a substantial increase in their 

value of P compared to invertebrates. An answer for this may lie in differences in the level and 

sophistication of alternative splicing and gene regulation in vertebrates. This may be partly measured by 

the quantity of noncoding RNAs, numbers of introns, numbers of transcription factors, and size of 

promoter regions, however at present these cannot be quantified with precision in non-model organisms. 

With these considerations in mind, an attempt to measure “effective genome information” has 

incorporated the factor of cell differentiation in multicellular eukaryotes in addition to P [190]. 

While it is not difficult to see that the increased complexity of a system, reflected in increased 

information content, leads to a greater chance of system failure, we know of no study that has compared 

complexity/information content as a constraint in diverse systems. Thus, we wished to examine the 

generalizability of information as a constraint in systems other than the molecular and genome 

evolutionary scenarios discussed above. Table 3 shows a wide range of fields of study that utilize 

information as a parameter, and Table 4 shows some diverse examples where the amount of information 

and the complexity of a system act as a constraint or cost. Thus, while information has widespread value, 

it also brings costs, and it is notable that many of the examples listed in Table 4 are related to the 

increased occurrence of errors and the associated additional resources that are necessary to reduce or 

avoid these errors. We propose that their consideration might constitute the basis for a generalized theory 

of errors and their cost in both biological and non-biological systems. 

Table 3. The importance of information content in diverse systems. The use of information 

as a parameter in differing fields of study. 

Discipline Parameter 

Information theory Shannon entropy/message length 

Signalling games Complete/incomplete/perfect information 

Physics Physical information 

Economics Information goods 

Linguistics Word/sentence length is related to information content 

Ecology Alpha diversity 

Complexity theory Complexity measures are related to information content 

Biology Genomic information content, organismal complexity 
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Table 4. The importance of information content in diverse systems. Increased information 

content/complexity may act as a constraint in a variety of different systems, biological and 

non-biological. 

System 
Nature of 
informational/complexity 
constraint 

Consequence 

Business Complexity of business “Complexity costs“ add financial burden on the business 

Healthcare 
Complexity of medical 

treatments 

Increased probability of error and consequent  

detrimental health outcomes [191] 

Statistical models 
Number of parameters in a 

model 

Greater number of parameters increases the  

variance of outcome [192] 

Messages in 

communication 

systems 

Message length 

Greater message length in communications is costly,  

leading to the noiseless coding theorum which formalizes 

message compression [185] 

Computer 

programming 

Complexity of code, “feature 

creep” 
Increased production costs 

Ecosystem 
Biodiversity/number of 

endemic species 

The more biodiverse an ecosystem, the greater the 

political/economic pressure to preserve it 

Biological research 
Equation density in a research 

paper 
Reduced citation of paper [193] 

Genomics 
Quantity and complexity of 

high throughput data 
Analysis costs, i.e., the “bioinformatics bottleneck” 

Multicellular animals Body size 
More cells (and so genome copies) proposed to  

increase cancer risk [194–196] 

Lateral gene transfer 
Complexity of protein 

complexes 

The complexity hypothesis proposes that participation in 

multi-subunit protein complexes constitutes a barrier to the 

lateral transfer of informational genes [197] 

Organismal evolution Organismal complexity 
Organismal complexity proposed to constrain rate  

of adaptation [175,198] 

Molecular evolution Genomic information content 
Proposed to constrain genetic fidelity [85–87,161,164,165] 

and this work 

4. Conclusions 

This work has examined how the concepts of neutral emergence and information content may explain 

some key aspects of the genetic code; its robustness to mutational errors and its malleability in some 

systems, respectively. Empirical and simulation evidence was presented in order to show how these two 

factors may have influenced genetic code evolution. In addition, the genetic code provides a case study 

for how these two factors affect evolutionary processes in general. Subsequently, the influence of these 

factors on other biological traits was explored; many of these are in the process of being explored and 

elucidated, and it is the purpose of this work to gather together the available evidence from a wide range 

of biological traits, in order to observe commonalities, using their influence on the genetic code as a 

starting point and paradigm. Lastly, the role of information content in a variety of non-biological systems 
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was explored, with the finding that information content commonly brings a cost as well as benefit, 

analogous to its effect in the genome. 

Acknowledgements 

I would like to thank Bud Mishra (Courant Institute, New York University) and Heeralal Janwa 

(Department of Mathematics, University of Puerto Rico—Rio Piedras) for discussion regarding the role 

of information in biological systems, Arlin Stoltzfus (Institute for Bioscience and Biotechnology 

Research, University of Maryland) for discussion regarding the use of amino acid exchange matrices, 

and Kathy and Richard Young for support during the writing of this paper. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2075-1729/5/2/1301/s1. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Koonin, E.V.; Novozhilov, A.S. Origin and evolution of the genetic code: The universal enigma. 

IUBMB Life 2009, 61, 99–111. 

2. Eigen, M. Selforganization of matter and the evolution of biological macromolecules. 

Naturwissenschaften 1971, 58, 465–523. 

3. Sonneborn, T.M. Degeneracy of the genetic code: Extent, nature, and genetic implications.  

In Evolving Genes and Proteins; Bryson, V., Vogel, H.J., Eds.; Academic Press: New York, NY, 

USA, 1965. 

4. Woese, C.R. On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 1965, 54, 1546–1552. 

5. Epstein, C.J. Role of the amino-acid “code” and of selection for conformation in the evolution of 

proteins. Nature 1966, 210, 25–28. 

6. Goldberg, A.L.; Wittes, R.E. Genetic Code: Aspects of Organization. Science 1966, 153, 420–424. 

7. Freeland, S.J.; Hurst, L.D. The Genetic Code Is One in a Million. J. Mol. Evol. 1998, 47, 238–248. 

8. Freeland, S.J.; Knight, R.D.; Landweber, L.F.; Hurst, L.D. Early Fixation of an Optimal Genetic 

Code. Mol. Biol. Evol. 2000, 17, 511–518. 

9. Gilis, D.; Massar, S.; Cerf, N.J.; Rooman, M. Optimality of the genetic code with respect to protein 

stability and amino-acid frequencies. Genome Biol. 2001, 2, doi:10.1186/gb-2001-2-11-research0049. 

10. Goodarzi, H.; Nejad, H.A.; Torabi, N. On the optimality of the genetic code, with the consideration 

of termination codons. Biosystems 2004, 77, 163–173. 

11. Butler, T.; Goldenfeld, N.; Mathew, D.; Luthey-Schulten, Z. Extreme genetic code optimality from 

a molecular dynamics calculation of amino acid polar requirement. Phys. Rev. E 2009, 79, 060901. 

12. Buhrman, H.; van der Gulik, P.T.; Klau, G.W.; Schaffner, C.; Speijer, D.; Stougie, L. A realistic 

model under which the genetic code is optimal. J. Mol. Evol. 2013, 77, 170–184. 



Life 2015, 5 1323 

 

13. Alff-Steinberger, C. The Genetic Code and Error Transmission. Proc. Natl. Acad. Sci. USA 1969, 

64, 584–591. 

14. Freeland, S.; Wu, T.; Keulmann, N. The Case for an Error Minimizing Standard Genetic Code. 

Orig. Life Evol. Biosph. 2003, 33, 457–477. 

15. Wong, J.T. Role of minimization of chemical distances between amino acids in the evolution of 

the genetic code. Proc. Natl. Acad. Sci. USA 1980, 77, 1083–1086. 

16. Di Giulio, M. The extension reached by the minimization of the polarity distances during the 

evolution of the genetic code. J. Mol. Evol. 1989, 29, 288–293. 

17. Goldman, N. Further results on error minimization in the genetic code. J. Mol. Evol. 1993, 37, 

662–664. 

18. Judson, O.P.; Haydon, D. The Genetic Code: What Is It Good For? An Analysis of the Effects of 

Selection Pressures on Genetic Codes. J. Mol. Evol. 1999, 49, 539–550. 

19. Di Giulio, M.; Medugno, M. The Level and Landscape of Optimization in the Origin of the Genetic 

Code. J. Mol. Evol. 2001, 52, 372–382. 

20. Novozhilov, A.; Wolf, Y.; Koonin, E. Evolution of the genetic code: partial optimization of a 

random code for robustness to translation error in a rugged fitness landscape. Biol. Direct 2007, 2, 

doi:10.1186/1745-6150-2-24. 

21. Massey, S.E. A Neutral Origin for Error Minimization in the Genetic Code. J. Mol. Evol. 2008, 

67, 510–516. 

22. Di Giulio, M. The Origin of the Genetic Code cannot be Studied using Measurements based on the 

PAM Matrix because this Matrix Reflects the Code Itself, Making any such Analyses Tautologous. 

J. Theor. Biol. 2001, 208, 141–144. 

23. Goodarzi, H.; Najafabadi, H.S.; Hassani, K.; Nejad, H.A.; Torabi, N. On the optimality of the 

genetic code, with the consideration of coevolution theory by comparison of prominent cost 

measure matrices. J. Theor. Biol. 2005, 235, 318–325. 

24. Woese, C.R.; Dugre, D.H.; Saxinger, W.C.; Dugre, S.A. The molecular basis for the genetic code. 

Proc. Natl. Acad. Sci. USA 1966, 55, 966–974. 

25. Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; 

Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial 

genome. Nature 1981, 290, 457–465. 

26. Crick, F.H. The origin of the genetic code. J Mol. Biol. 1968, 38, 367–379.  

27. Gould, S.J.; Lewontin, R.C. The spandrels of San Marco and the Panglossian paradigm: A critique 

of the adaptionist programme. Proc. R. Soc. Lond. B 1979, 205, 581–598. 

28. Massey, S.E. Pseudaptations and the Emergence of Beneficial Traits. In Evolutionary Biology—

Concepts, Molecular and Morphological Evolution; Pontarotti, P., Ed. Springer: 

Berlin/Heidelberg, Germany, 2010; pp. 81–98. 

29. Pagan, R.; Massey, S.E. A Nonadaptive Origin of a Beneficial Trait: In Silico Selection for Free 

Energy of Folding Leads to the Neutral Emergence of Mutational Robustness in Single Domain 

Proteins. J. Mol. Evol. 2014, 78, 130–139. 

30. Massey, S.E. Searching of Code Space for an Error-Minimized Genetic Code Via Codon Capture 

Leads to Failure, or Requires At Least 20 Improving Codon Reassignments via the Ambiguous 

Intermediate Mechanism. J. Mol. Evol. 2010, 70, 106–115. 



Life 2015, 5 1324 

 

31. Osawa, S.; Jukes, T.H. Evolution of the genetic code as affected by anticodon content.  

Trends Genet. 1988, 4, 191–198. 

32. Osawa, S.; Jukes, T. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 1989, 28, 

271–278. 

33. Schultz, D.W.; Yarus, M. Transfer RNA Mutation and the Malleability of the Genetic Code.  

J. Mol. Biol. 1994, 235, 1377–1380. 

34. Schultz, D.; Yarus, M. On malleability in the genetic code. J. Mol. Evol. 1996, 42, 597–601. 

35. Oba, T.; Andachi, Y.; Muto, A.; Osawa, S. CGG: An unassigned or nonsense codon in 

Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 1991, 88, 921–925. 

36. Kano, A.; Andachi, Y.; Ohama, T.; Osawa, S. Novel anticodon composition of transfer RNAs in 

Micrococcus luteus, a bacterium with a high genomic G+C content: Correlation with codon usage. 

J. Mol. Biol. 1991, 221, 387–401. 

37. Massey, S.E.; Garey, J. A Comparative Genomics Analysis of Codon Reassignments Reveals a 

Link with Mitochondrial Proteome Size and a Mechanism of Genetic Code Change via Suppressor 

tRNAs. J. Mol. Evol. 2007, 64, 399–410. 

38. De Visser, J.A.G.M.; Hermisson, J.; Wagner, G.P.; Meyers, L.A.; Bagheri-Chaichian, H.; 

Blanchard, J.L.; Chao, L.; Cheverud, J.M.; Elena, S.F.; Fontana, W.; et al. Perspective: Evolution 

and Detection of Genetic Robustness. Evolution 2003, 57, 1959–1972. 

39. Elena, S.F.; Carrasco, P.; Daròs, J.-A.; Sanjuán, R. Mechanisms of genetic robustness in RNA 

viruses. EMBO Rep. 2006, 7, 168–173. 

40. Sanjuán, R.; Cuevas, J.M.; Furió, V.; Holmes, E.C.; Moya, A. Selection for Robustness in 

Mutagenized RNA Viruses. PLoS Genet. 2007, 3, e93. 

41. Burger, R.; Willendorfer, M.; Nowak, M.A. Why are phenotypic mutation rates much higher than 

genotypic mutation rates? Genetics 2006, 172, 197–206. 

42. Archetti, M. Selection on codon usage for error minimization at the protein level. J. Mol. Evol. 

2004, 59, 400–415. 

43. Najafabadi, H.S.; Lehmann, J.; Omidi, M. Error minimization explains the codon usage of highly 

expressed genes in Escherichia coli. Gene 2007, 387, 150–155. 

44. Stoletzki, N.; Eyre-Walker, A. Synonymous codon usage in Escherichia coli: Selection for 

translational accuracy. J. Mol. Evol. 2007, 24, 374–381. 

45. Cusack, B.P.; Arndt, P.F.; Duret, L.; Crollius, H.R. Preventing dangerous nonsense: Selection for 

robustness to transcriptional error in human genes. PLoS Genet. 2011, 7, e1002276. 

46. Bilgin, T.; Kurnaz, I.A.; Wagner, A. Selection shapes the robustness of ligand-binding amino acids. 

J. Mol. Evol. 2013, 76, 343–349. 

47. Marquez, R.; Smit, S.; Knight, R. Do universal codon-usage patterns minimize the effects of 

mutation and translation error? Genome Biol. 2005, 6, doi:10.1186/gb-2005-6-11-r91. 

48. Zhu, C.-T.; Zeng, X.-B.; Huang, W.-D. Codon usage decreases the error minimization within the 

genetic code. J. Mol. Evol. 2003, 57, 533–537. 

49. Archetti, M. Codon usage bias and mutation constraints reduce the level of error minimization of 

the genetic code. J. Mol. Evol. 2004, 59, 258–266. 

50. Woese, C. The Genetic Code: The Molecular Basis for Genetic Expression; Harper and Row:  

New York, NY, USA, 1967. 



Life 2015, 5 1325 

 

51. Morgens, D.; Cavalcanti, A.O. An Alternative Look at Code Evolution: Using Non-canonical 

Codes to Evaluate Adaptive and Historic Models for the Origin of the Genetic Code. J. Mol. Evol. 

2013, 76, 71–80. 

52. Kurnaz, M.; Bilgin, T.; Kurnaz, I. Certain Non-Standard Coding Tables Appear to be More Robust 

to Error than the Standard Genetic Code. J. Mol. Evol. 2010, 70, 13–28. 

53. Stoltzfus, A.; Yampolsky, L.Y. Amino acid exchangeability and the adaptive code hypothesis.  

J. Mol. Evol. 2007, 65, 456–462. 

54. Illangasekare, M.; Sanchez, G.; Nickles, T.; Yarus, M. Aminoacyl-RNA synthesis catalyzed by an 

RNA. Science 1995, 267, 643–647. 

55. Lee, N.; Bessho, Y.; Wei, K.; Szostak, J.W.; Suga, H. Ribozyme-catalyzed tRNA aminoacylation. 

Nat. Struct. Biol. 2000, 7, 28–33. 

56. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 1974, 185, 

862–864. 

57. Yampolsky, L.Y.; Stoltzfus, A. The exchangeability of amino acids in proteins. Genetics 2005, 

170, 1459–1472. 

58. Massey, S.E. A Sequential “2–1–3” Model of Genetic Code Evolution That Explains Codon 

Constraints. J. Mol. Evol. 2006, 62, 809–810. 

59. Gamow, G. Possible relation between deoxyribonucleic acid and protein structures. Nature 1954, 

173, doi:10.1038/173318a0. 

60. Dunnill, P. Triplet nucleotide-amino-acid pairing; a stereochemical basis for the division between 

protein and non-protein aminoacids. Nature 1966, 210, 1267–1268. 

61. Pelc, S.R.; Welton, M.G.E. Stereochemical relationship between coding triplets and amino-acids. 

Nature 1966, 209, 868–870. 

62. Wong, J.T. A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 1975, 72,  

1909–1912. 

63. Wong, J.T. The evolution of a universal genetic code. Proc. Natl. Acad. Sci. USA 1976, 73,  

2336–2340. 

64. Wong, J.T. Coevolution theory of the genetic code at age thirty. BioEssays 2005, 27, 416–425. 

65. Xue, H.; Tong, K.; Marck, C.; Grosjean, H.; Wong, J.T. Transfer RNA paralogs: Evidence for 

genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 2003, 310, 

59–66. 

66. Mill, J.S. A System of Logic, Ratiocinative and Inductive: Being a Connected View of the Principles 

of Evidence and the Methods of Scientific Investigation; John W. Parker: London, UK, 1843. 

67. Weibel, E.R. Fractal geometry: A design principle for living organisms. Am. J. Physiol. 1991, 261, 

361–369. 

68. Leisman, G.; Koch, P. Networks of conscious experience: computational neuroscience in 

understanding life, death and consciousness. Rev. Neurosci. 2009, 20, 151–176. 

69. Albert, R.; Jeong, H.; Barabasi, A. Error and attack tolerance of complex networks. Science 2000, 

406, 378–382. 

70. Barabasi, A.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. 

71. Maynard Smith, J. Natural selection and the concept of protein space. Nature 1970, 225, 563–564. 



Life 2015, 5 1326 

 

72. Schuster, P.; Fontana, W.; Stadler, P.; Hofacker, I. From sequences to shapes and back:  

A case-study in RNA secondary structures. Proc. R. Soc. Lond. B 1994, 255, 279–284. 

73. Bornberg-Bauer, E.; Chan, H.S. Modeling evolutionary landscapes: Mutational stability, topology 

and superfunnels in sequence space. Proc. Natl. Acad. Sci. USA 1999, 96, 10689–10694. 

74. Van Nimwegen, E.; Crutchfield, J.P.; Huynen, M. Neutral evolution of mutational robustness. 

Proc. Natl. Acad. Sci. USA 1999, 96, 9716–9720. 

75. Wilke, C.O. Adaptive evolution on neutral networks. Bull. Math. Biol. 2001, 63, 715–730. 

76. Bastolla, U.; Farwer, J.; Knapp, E.W.; Vendruscolo, M. How to guarantee optimal stability for 

most representative structures in the protein data bank. Proteins 2001, 44, 79–96. 

77. Kirschner, M.; Gerhart, J. Evolvability. Proc. Natl. Acad. Sci. USA 1998, 95, 8420–8427. 

78. Freeland, S.J. The Darwinian genetic code: an adaptation for adapting? Genet. Program. Evol. 

Mach. 2002, 3, 113–127. 

79. Zhu, W.; Freeland, S. The standard genetic code enhances adaptive evolution of proteins. J. Theor. 

Biol. 2006, 239, 63–70. 

80. Wagner, A. Robustness and Evolvability in Living Systems; Princeton University Press: Princeton, 

NJ, USA, 2007. 

81. Masel, J.; Trotter, M.V. Robustness and evolvability. Trends Genet. 2010, 9, 406–414. 

82. Viney, M.; Reece, S.E. Adaptive noise. Proc. R. Soc. Lond. B 2013, 280, doi:10.1098/rspb.2013.1104. 

83. Sueoka, N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. 

Natl. Acad. Sci. USA 1962, 48, 582–592. 

84. Burger, G.; Lang, B.F. Parallels in genome evolution in mitochondria and bacterial symbionts. 

IUBMB Life 2003, 55, 205–212. 

85. Massey, S.E. The Proteomic Constraint and its role in molecular evolution. Mol. Biol. Evol. 2008, 

25, 2557–2565. 

86. Garcia-Gonzalez, A.; Rivera-Rivera, R.; Massey, S.E. The presence of the DNA repair genes 

mutM, mutY, mutL and mutS is related to proteome size in bacterial genomes. Front. Evol. Genomic 

Microbiol. 2012, 3, doi:10.3389/fgene.2012.00003. 

87. Garcia-Gonzalez, A.; Alicea, M.; Vicens, L.; Massey, S.E. The distribution of recombination repair 

genes is linked to information content in bacteria. Gene 2013, 528, 295–303. 

88. Mendez, R.; Fritsche, M.; Porto, M.; Bastolla, U. Mutation bias favors protein folding stability in 

the evolution of small populations. PLoS Comput. Biol. 2010, 6, e1000767. 

89. Light, S.; Kraulis, P.; Elofsson, A. Preferential attachment in the evolution of metabolic networks. 

BMC Genomics 2005, 6, doi:10.1186/1471-2164-6-159. 

90. Edwards, J.S.; Palsson, B.O. Systems properties of the Haemophilus influenzae Rd metabolic 

genotype. J. Biol. Chem. 1999, 274, 17410–17416. 

91. Edwards, J.S.; Palsson, B.O. Robustness analysis of the Escherichia coli metabolic network. 

Biotech. Prog. 2000, 16, 927–939. 

92. Wagner, A. How the global structure of protein interaction networks evolves. Proc. R. Soc. Lond. 

B 2003, 270, 457–466. 

93. Berg, J.; Lassig, M.; Wagner, A. Structure and evolution of protein interaction networks: A 

statistical model for link dynamics and gene duplications. BMC Evol. Biol. 2004, 4, 

doi:10.1186/1471-2148-4-51. 



Life 2015, 5 1327 

 

94. Li, D.; Li, J.; Ouyang, S.; Wang, J.; Wu, S.; Wan, P.; Zhu, Y.; Xu, X.; He, F. Protein interaction 

networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: 

Large-scale organization and robustness. Proteomics 2006, 6, 456–461. 

95. Hahn, M.W.; Conant, G.C.; Wagner, A. Molecular evolution in large genetic networks: Does 

connectivity equal constraint. J. Mol. Evol. 2004, 58, 203–211. 

96. Teichmann, S.A.; Badu, M.M. Gene network regulatory growth by duplication. Nat. Genet. 2004, 

36, 492–496. 

97. Van Dijk, A.D.J.; van Mourik, S.; van Ham, R.C.H.J. Mutational robustness of gene regulatory 

networks. PLoS One 2012, 7, e30591. 

98. Wilke, C.O.; Wang, J.L.; Ofria, C.; Lenski, R.E.; Adami, C. Evolution of digital organisms at high 

mutation rates leads to survival of the flattest. Nature 2001, 412, 331–333. 

99. Szollosi, G.J.; Derenyi, I. The effect of recombination on the neutral evolution of genetic 

robustness. Math. Biosci. 2008, 214, 58–62. 

100. Taverna, D.M.; Goldstein, R.A. Why are proteins so robust to site mutations? J. Mol. Biol. 2002, 

315, 479–484. 

101. Wright, S. Physiological and evolutionary theories of dominance. Am. Nat. 1934, 68, 25–53. 

102. Kacser, H.; Burns, J.A. The molecular basis of dominance. Genetics 1981, 97, 639–666. 

103. Mattimore, V.; Battista, J.R. Radioresistance of Deinococcus radiodurans: Functions necessary to 

survive ionizing radiation are also necessary to survive prolonged dessication. J. Bacteriol. 1996, 

178, 633–637. 

104. Bernstein, H.; Byers, G.S.; Michod, R.E. Evolution of sexual reproduction: Importance of DNA 

repair, complementation, and variation. Am. Nat. 1981, 117, 537–549. 

105. Belshaw, R.; Gardner, A.; Rambaut, A.; Pybus, O.G. Pacing a small cage: Mutation and RNA 

viruses. Trends Ecol. Evol. 2008, 23, 188–193. 

106. Silander, O.K.; Weinreich, D.M.; Wright, K.M.; O’Keefe, K.J.; Rang, C.U.; Turner, P.E.; Chao, 

L. Widespread genetic exchange among terrestrial bacteriophages. Proc. Natl. Acad. Sci. USA 

2005, 102, 19009–19014. 

107. Hutchinson, E.C.; Kirchbach, J.C.; Gog, J.R.; Digard, P. Genome packaging in influenza A virus.  

J. Gen. Virol. 2010, 91, 313–328. 

108. Long, M.; Deutsch, M.; Wang, W.; Betran, E.; Brunet, F.G.; Zhang, J. Origin of new genes: 

Evidence from experimental and computational analysis. Genetica 2003, 118, 171–182. 

109. Chorev, M.; Carmel, L. Computational identification of functional introns: High positional 

conservation of introns that harbor RNA genes. Nucleic Acids Res. 2013, 41, 5604–5613. 

110. Vogel, C.; Bashton, M.; Kerrison, N.D.; Chothia, C.; Teichmann, S.A. Structure, function and 

evolution of multidomain proteins. Curr. Opin. Struct. Biol. 2004, 14, 208–216.  

111. Rozen, D.E.; Habets, M.G.J.L.; Handel, A.; de Visser, J.A.G.M. Heterogenous adaptive 

trajectories of small populations on complex fitness landscapes. PLoS One 2007, 3, e1715. 

112. Jain, K.; Krug, J.; Park, S-C. Evolutionary advantage of small populations on complex fitness 

landscapes. Evolution 2011, 65, 1945–1955. 

113. Graur, D.; Zhang, Y.; Price, N.; Azevedo, R.B.R.; Zufall, R.A.; Elhaik, E. On the immortality of 

television sets: “function” in the human genome according to the evolution-free gospel of 

ENCODE. Genome Biol. Evol. 2013, 5, 578–590. 



Life 2015, 5 1328 

 

114. Comeron, J.M.; Kreitman, M. The correlation between intron length and recombination in 

Drosophila: Dynamic equilibrium between mutational and selective forces. Genetics 2000, 156, 

1175–1190. 

115. Roze, D.; Barton, N. The Hill-Robertson effect and the evolution of recombination. Genetics 2006, 

173, 1793–1811. 

116. Comeron, J.M.; Williford, A.; Kliman, R.M. The Hill–Robertson effect: Evolutionary 

consequences of weak selection and linkage in finite populations. Heredity 2008, 100, 19–31. 

117. Rutherford, S.L.; Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 1998, 

396, 336–342. 

118. Quietsch, C.; Sangster, T.A.; Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 

2002, 417, 618–624. 

119. Bergman, A.; Siegal, M.L. Evolutionary capacitance as a general feature of complex gene 

networks. Nature 2003, 424, 549–552. 

120. Suzuki, T.; Ueda, T.; Watanabe, K. The “polysemous” codon—A codon with multiple amino acid 

assignment caused by dual specificity of tRNA identity. EMBO J. 1997, 16, 899–1134. 

121. Silva, R.M.; Paredes, J.A.; Moura, G.R.; Manadas, B.; Lima-Costa, T.; Rocha, R.; Miranda, I.; 

Gomes, A.C.; Koerkamp, M.J.G.; Perrot, M.; et al. Critical roles for a genetic code alteration in 

the evolution of the genus Candida. EMBO J. 2007, 26, 4555–4565. 

122. Otto, S.P.; Whitton, J. Polyploid incidence and evolution. Ann. Rev. Genet. 2000, 34, 401–437. 

123. Fawcett, J.A.; van de Peer, Y. Angiosperm polyploids and their road to evolutionary success. 

Trends Evol. Biol. 2010, 2, doi:10.4081/eb.2010.e3. 

124. Michod, R.E.; Wojciechowski, M.F.; Hoelzer, M.A. DNA repair and the evolution of 

transformation in the bacterium Bacillus subtilis. Genetics 1988, 118, 31–39. 

125. Finkel, S.E.; Kolter, R. DNA as a nutrient: Novel role for bacterial competence gene homologs.  

J. Bacteriol. 2001, 183, 6288–6293. 

126. Jee, J.; Sundstrom, A.; Massey, S.E.; Mishra, B. What can information-asymmetric games tell us 

about the context of Crick’s “frozen accident”? J. R. Soc. Interface 2013, 10, 20130614. 

127. Hatfield, D.; Diamond, A. UGA: A split personality in the universal genetic code. Trends Genet. 

1993, 9, 69–70. 

128. O’Donoghue, P.O.; Prat, L.; Heinemann, I.U.; Ling, J.; Odoi, K.; Liu, W.R.; Soll, D. Near-cognate 

suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic 

code expansion. FEBS Lett. 2012, 586, 3931–3937. 

129. Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. Trends Genet. 1970, 58, 439–444. 

130. Moran, N. Microbial minimalism: genome reduction in bacterial pathogens. Cell 2002, 108,  

583–586. 

131. Andachi, Y.; Yamao, F.; Muto, A.; Osawa, S. Codon recognition patterns as deduced from 

sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance 

to mitochondria. J. Mol. Biol. 1989, 209, 37–54. 

132. Weisburg, W.G.; Tully, J.G.; Rose, D.L.; Petzel, J.P.; Oyaizu, H.; Yang, D.; Mandelco, L.; 

Sechrest, J.; Lawrence, T.G.; Van Etten, J. A phylogenetic analysis of the mycoplasmas: Basis for 

their classification. J. Bacteriol. 1989, 171, 6455–6467. 



Life 2015, 5 1329 

 

133. Carvalho, F.M.; Fonseca, M.M.; de Medeiros, S.B.; Scortecci, K.C.; Blaha, C.A.; Agnez-Lima, L.F. 

DNA repair in reduced genome: The Mycoplasma model. Gene 2005, 360, 111–119. 

134. Citti, C.; Marechal-Drouard, L.; Saillard, C.; Weil, J.H.; Bove, J.M. Spiroplasma citri UGG and 

UGA tryptophan codons: Sequence of the two tryptophanyl-tRNAs and organization of the 

corresponding genes. J. Bacteriol. 1992, 174, 6471–6478. 

135. Carle, P.; Laigret, F.; Tully, J.G.; Bove, J.M. Heterogeneity of genome sizes within the genus 

Spiroplasma. Int. J. Syst. Bacteriol. 1995, 45, 178–181. 

136. Ku, C.; Lo, W.-S.; Chen, L.-L.; Kuo, C.-H. Complete genomes of two dipteran-associated 

Spiroplasmas provided insights into the origin, dynamics and impacts of viral invasion in 

Spiroplasma. Genome Biol. Evol. 2013, 5, 1151–1164. 

137. Lo, W.-S.; Chen, L.-L.; Chung, W.-C.; Gasparich, G.E.; Kuo, C.-H. Comparative genome analysis 

of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genomics 2013, 14, 

doi:10.1186/1471-2164-14-22. 

138. Blanchard, A. Ureaplasma urealyticum urease genes; use of a UGA tryptophan codon.  

Mol. Microbiol. 1990, 4, 669–676. 

139. Paralanov, V.; Lu, J.; Duffy, L.; Crabb, D.; Shrivastava, S.; Methe, B.; Inman, J.; Yooseph, S.; 

Xiao, L.; Cassell, G.; et al. Comparative genome analysis of 19 Ureaplasma urealyticum and 

Ureaplasma parvum strains. BMC Microbiol. 2012, 12, doi:10.1186/1471-2180-12-88. 

140. Campbell, J.H.; O’Donoghue, P.; Campbell, A.G.; Schwientek, P.; Sczyrba, A.; Woyke, T.;  

Soll, D.; Podar, M. UGA is an additional glycine codon in uncultured SR1 bacteria from the human 

microbiota. Proc. Natl. Acad. Sci. USA 2013, 110, 5540–5545. 

141. Kantor, R.S.; Wrighton, K.C.; Handley, K.M.; Sharon, I.; Hug, L.A.; Castelle, C.J.; Thomas, B.C.; 

Banfield, J.F. Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four 

Candidate Phyla. mBio 2013, 4, doi:10.1128/mBio.00708-13. 

142. Bennett, G.M.; Moran, N.A. Small, smaller, smallest: The origins and evolution of ancient dual 

symbioses in a phloem-feeding insect. Genome Biol. Evol. 2013, 5, 1675–1688. 

143. McCutcheon, J.P.; Moran, N.A. Parallel genomic evolution and metabolic interdependence in an 

ancient symbiosis. Proc. Natl. Acad. Sci. USA 2007, 104, 19392–19397. 

144. McCutcheon, J.P.; McDonald, B.R.; Moran, N.A. Origin of an alternative genetic code in the 

extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 2009, 5, e1000565. 

145. Matsumoto, T.; Ishikawa, S.A.; Hashimoto, T.; Inagaki, Y. A deviant genetic code in the green 

alga-derived plastid in the dinoflagellate Lepidodinium chlorophorum. Mol. Phylogent. Evol. 2011, 

60, 68–72. 

146. Ohama, T.; Suzuki, T.; Mori, M.; Osawa, S.; Ueda, T.; Watanabe, K.; Nakase, T. Non-universal 

decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 1993, 21,  

4039–4045.  

147. Santos, M.A.S.; Tuite, M.F. The CUG codon is decoded in vivo as serine and not leucine in 

Candida albicans. Nucleic Acids Res. 1995, 23, 1481–1486. 

148. Keeling, P.J.; Doolittle, W.F. A non-canonical genetic code in an early diverging eukaryotic 

lineage. EMBO J. 1996, 15, 2285–2290. 

149. Keeling, P.J.; Doolittle, W.F. Widespread and ancient distribution of a noncanonical genetic code 

in diplomonads. Mol. Biol. Evol. 1997, 14, 895–901. 



Life 2015, 5 1330 

 

150. Keeling, P.J.; Leander, B.S. Characterization of a non-canonical genetic code in the oxymonad 

Streblomastix strix. J. Mol. Biol. 2006, 326, 1337–1349. 

151. Kuchino, Y.; Hanyu, N.; Tashiro, F.; Nishimura, S. Tetrahymena thermophila glutamine tRNA 

and its gene that corresponds to UAA termination codon. Proc. Natl. Acad. Sci. USA 1985, 82, 

4758–4762. 

152. Preer, J.R., Jr.; Preer, L.B.; Rudman, B.M.; Barnett, A.J. Deviations from the universal code shown 

by the gene for surface protein 51A in Paramecium. Nature 1985, 314, 188–190. 

153. Meyer, F.; Schmidt, H.J.; Plumper, E.; Hasilik, A.; Mersmann, G.; Meyer, H.E.; Engstrom, A.; 

Heckmann, K. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus.  

Proc. Natl. Acad. Sci. USA 1991, 88, 3758–3761. 

154. Lozupone, C.A.; Knight, R.D.; Landweber, L.F. The molecular basis of nuclear genetic code 

change in ciliates. Curr. Biol. 2001, 11, 65–74. 

155. Schneider, S.U.; Leible, M.B.; Yang, X.P. Strong homology between the small subunit of  

ribulose-1,5-bisphosphate carboxylase/oxygenase of two species of Acetabularia and the 

occurrence of unusual codon usage. Mol. Gen. Genet. 1989, 218, 445–452. 

156. Schneider, S.U.; de Groot, E.J. Sequences of two rbcS cDNA clones of Batophora oerstedii: 

Structural and evolutionary considerations. Curr. Genet. 1991, 20, 173–175. 

157. Gile, G.H.; Novis, P.; Cragg, D.; Zuccarello, G.C.; Keeling, P.J. The distribution of elongation 

factor-1alpha (EF-1α), elongation factor-like (EFL), and a noncanonical genetic code in the 

Ulvophyceae: Discrete genetic characters support a consistent phylogenetic framework.  

J. Eukaryot. Microbiol. 2009, 56, 367–372. 

158. Cocquyt, E.; Gile, G.H.; Leilaert, F.; Verbruggen, H.; Keeling, P.J.; de Clerck, O. Complex 

phylogenetic distribution of a non-canonical genetic code in green algae. BMC Evol. Biol. 2010, 

10, doi:10.1186/1471-2148-10-327. 

159. Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; 

Barrell, D.; Zadissa, A.; Searle, S.; et al. GENCODE: The reference human genome annotation for 

The ENCODE Project. Genome Res. 2012, 22, 1760–1774. 

160. Stanke, M.; Steinkamp, R.; Waack, S.; Morgenstern, B. Augustus: A web server for gene finding 

in eukaryotes. Nucleic Acids Res. 2004, 32, 309–312. 

161. Massey, S.E. Proteome size as the major factor determining mutation rates. Proc. Natl. Acad. Sci. 

USA 2013, 110, 858–859. 

162. Hill, W.G.; Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 1966, 

8, 269–294. 

163. Drake, J.W. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. 

Sci. USA 1991, 88, 7160–7164. 

164. Sung, W.; Ackerman, M.S.; Miller, S.F.; Doak, T.G.; Lynch, M. Drift-barrier hypothesis and 

mutation-rate evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 18488–18492. 

165. Sung, W.; Ackerman, M.S.; Miller, S.F.; Doak, T.G.; Lynch, M. Reply to Massey: Drift does 

influence mutation rate evolution. Proc. Natl. Acad. Sci. USA 2013, 110, doi:10.1073/ 

pnas.1220650110. 

166. Lynch, M.; Gabriel, W. Mutation load and survival of small populations. Evolution 1990, 44, 

1725–1737. 



Life 2015, 5 1331 

 

167. Nga, P.T.; Parquet, M.d.C.; Lauber, C.; Parida, M.; Nabeshima, T.; Yu, F.; Thuy, N.T.; Inoue, S.; 

Ito, T.; Okamoto, K.; Ichinose, A.; Snijder, E.J.; et al. Discovery of the First Insect Nidovirus, a 

Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes. PLoS Pathog. 

2011, 7, e1002215. 

168. Stevens, K.; Weynberg, K.; Beltas, C.; Brown, S.; Brownlee, C.; Brown, C.; Brown, M.T.; 

Schroeder, D.C. A novel evolutionary strategy revealed in the phaeoviruses. PLoS One 2014, 9, 

e86040. 

169. Eigen, M.; Schuster, P. The Hypercycle: A Principle of Self-Organization; Springer: 

Berlin/Heidelberg, Germany, 1979. 

170. Eigen, M. Natural selection: a phase transition? Biophys. Chem. 2000, 85, 101–123. 

171. Mira, A.; Ochman, H.; Moran, N.A. Deletional bias and the evolution of bacterial genomes. Trends 

Genet. 2001, 17, 589–596. 

172. White, E.P.; Ernest, S.K.M.; Kerkhoff, A.J.; Enquist, B.J. Relationships between body size and 

abundance in ecology. Trends Ecol. Evol. 2007, 22, 323–330. 

173. Batut, B.; Knibbe, C.; Marais, G.; Daubin, V. Reductive genome evolution at both ends of the 

bacterial population size spectrum. Nat. Rev. Microbiol. 2014, 12, 841–850. 

174. Kashtan, N.; Roggensack, S.E.; Rodrigue, S.; Thompson, J.W.; Biller, S.J.; Coe, A.; Ding, H.; 

Marttinen, P.; Malmstrom, R.R.; Stocker, R.; et al. Single-Cell Genomics Reveals Hundreds of 

Coexisting Subpopulations in Wild Prochlorococcus. Science 2014, 344, 416–420. 

175. Fisher, R.A. The Genetical Theory of Natural Selection; Oxford University Press: Oxford, UK, 

1930. 

176. Springer, M.S.; Douzery, E. Secondary structure and patterns of evolution among mammalian 

mitochondrial 12S rRNA molecules. J. Mol. Evol. 1996, 43, 357–373. 

177. Page, R.D.M. Comparative analysis of secondary structure of insect mitochondrial small subunit 

ribosomal RNA using maximum weighted matching. Nucleic Acids Res. 2000, 28, 3839–3845. 

178. Watanabe, Y.; Suematsu, T.; Ohtsuki, T. Losing the stem-loop structure from metazoan 

mitochondrial tRNAs and co-evolution of interacting factors. Front. Genet. 2014, 5, 

doi:10.3389/fgene.2014.00109. 

179. Lynch, M. Mutation accumulation in transfer RNAs: Molecular evidence for Muller’s ratchet in 

mitochondrial genomes. Mol. Biol. Evol. 1996, 13, 209–220. 

180. Lynch, M. Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes.  

Mol. Biol. Evol. 1997, 14, 914–925. 

181. Lynch, M.; Blanchard, J.L. Deleterious mutation accumulation in organelle genomes. Genetica 

1998, 102–103, 29–39. 

182. Muller, H.J. The relation of recombination to mutational advance. Mutat. Res. 1964, 1, 2–9. 

183. Felsenstein, J. The Evolutionary Advantage of Recombination. Genetics 1974, 78, 737–756. 

184. Haldane, J.B.S. On being the right size. In Possible Worlds and other Essays; Harper and Brothers: 

London, UK, 1928. 

185. Shannon, C.E. A mathematical theory of communication. Bell. System Tech. J. 1948, 27, 623–656. 

186. Ladyman, J.A.C.; Lambert, J.; Wiesner, K. What is a complex system? Eur. J. Phil. Sci. 2013, 3, 

33–67. 

187. Solomonoff, R. A formal theory of inductive inference Part I. Inf. Control 1964, 7, 1–22. 



Life 2015, 5 1332 

 

188. Solomonoff, R. A formal theory of inductive inference Part II. Inf. Control 1964, 7, 224–254. 

189. Kolmogorov, A.N. Three approaches to quantitative definition of information. Probl. Inf. Transm. 

1965, 1, 1–7. 

190. Jiang, Y.; Xu, C. The calculation of information and organismal complexity. Biol. Direct. 2010, 5, 

doi:10.1186/1745-615-59. 

191. D’Souza, N.; Holden, L.; Robson, S.; Mah, K.; Di Prospero, L.; Wong, C.S.; Chow, E.; Spayne, J. 

Modern palliative radiation treatment: Do complexity and workload contribute to medical errors? 

Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 43–48. 

192. Taylor, J.M.G.; Siqueira, A.L.; Weiss, R.E. The cost of adding parameters to a model. J. R. Statist. 

Soc. B 1996, 58, 693–607. 

193. Fawcett, T.W.; Higgenson, A.D. Heavy use of equations impedes communication among 

biologists. Proc. Natl. Acad. Sci. USA 2012, 109, 11735–11739. 

194. Promislow, D.E. DNA repair and the evolution of longevity: A critical analysis. J. Theor. Biol. 

1994, 170, 291–300. 

195. Leroi, A.M.; Koufopanou, V.; Burt, A. Cancer selection. Nat. Rev. Cancer 2003, 3, 226–231. 

196. Caulin, A.F.; Maley, C.C. Peto’s paradox: Evolution’s prescription for cancer prevention. Trends 

Ecol. Evol. 2011, 26, 175–182. 

197. Jain, R.; Rivera, M.C.; Lake, J.A. Horizontal gene transfer among genomes: The complexity 

hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 3801–3806. 

198. Orr, H.A. Adaptation and the cost of complexity. Evolution 2000, 54, 13–20. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


