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Abstract: Although autonomic dysfunction (AD) after the recovery from Coronavirus disease 2019
(COVID-19) has been thoroughly described, few data are available regarding the involvement of the
autonomic nervous system (ANS) during the acute phase of SARS-CoV-2 infection. The primary
aim of this review was to summarize current knowledge regarding the AD occurring during acute
COVID-19. Secondarily, we aimed to clarify the prognostic value of ANS involvement and the role of
autonomic parameters in predicting SARS-CoV-2 infection. According to the PRISMA guidelines, we
performed a systematic review across Scopus and PubMed databases, resulting in 1585 records. The
records check and the analysis of included reports’ references allowed us to include 22 articles. The
studies were widely heterogeneous for study population, dysautonomia assessment, and COVID-19
severity. Heart rate variability was the tool most frequently chosen to analyze autonomic parameters,
followed by automated pupillometry. Most studies found ANS involvement during acute COVID-19,
and AD was often related to a worse outcome. Further studies are needed to clarify the role of
autonomic parameters in predicting SARS-CoV-2 infection. The evidence emerging from this review
suggests that a complex autonomic nervous system imbalance is a prominent feature of acute COVID-
19, often leading to a poor prognosis.

Keywords: COVID-19; SARS-CoV-2; dysautonomia; autonomic nervous system; autonomic dysfunction;
heart rate variability; outcome; prognosis

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coron-
avirus, is the etiological agent of Coronavirus disease 2019 (COVID-19), a predominantly
respiratory disease, which spread worldwide over a few months [1]. The spectrum of
COVID-19 severity is highly variable, ranging from asymptomatic carriers to severe acute
respiratory distress syndrome (ARDS) leading to death [2,3].

Despite the SARS-CoV-2 tropism for the respiratory system, strong evidence pointed
to the ability of the virus to induce multiorgan damage [4]. In this context, a neurological
involvement was reported in more than one-third of acute COVID-19 patients [5], charac-
terized by a wide range of symptoms, such as smell and taste loss, stroke, encephalopathies,
peripheral nervous system disturbances, and, especially after the recovery from the acute
SARS-CoV-2 infection, symptoms suggestive of an autonomic dysfunction (AD) [6–9].

It is not the first time that autonomic nervous system (ANS) disturbances have been
associated with an acute viral disease. Evidence of autonomic involvement has already
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been reported during systemic infections caused by viruses belonging to different fam-
ilies, such as Retroviridae, Herpesviridae, Picornaviridae, Rhabdoviridae, Flaviviridae,
Orthomixoviridae, and Pneumoviridae [10–13]. Focusing on the Coronaviridae family
and, in particular, the Coronaviruses species, which share great genetic similarities with
SARS-CoV-2 [14], the occurrence of autonomic symptoms has been described in SARS-CoV
and MERS-CoV infections, mostly presenting as chronic fatigue following the acute phase
of the disease [15–17].

Orthostatic cerebral hypoperfusion syndrome [18], small fiber neuropathy [18–20],
orthostatic hypotension and intolerance [21,22], postural orthostatic tachycardia syndrome
(POTS) [19,23], altered pupillary reactivity [24], and heart rate variability (HRV) [25] are
the most common symptoms that may last for several weeks or months after the infection
recovery in approximately 33–87% of patients [26]. This condition is known as post-
COVID-19 syndrome or “long COVID”.

Based on individual studies, it is difficult to determine whether the ANS involvement
is an exclusive and specific feature of the long-COVID period or whether dysautonomic
symptoms during the acute phase of the disease are overtaken by respiratory or other
prevailing symptoms. Indeed, few data are currently available regarding the occurrence of
autonomic disturbances during the acute SARS-CoV-2 infection and their possible role in
prognosis and early diagnosis of the disease.

The primary aim of this review is to clarify the features of the ANS involvement during
the acute SARS-CoV-2 infection. Secondarily, this review aims to evaluate the prognostic
role of autonomic involvement occurring during the acute phase of the disease and to
summarize the available evidence regarding the role of autonomic parameters in predicting
the SARS-CoV-2 infection.

2. Materials and Methods
2.1. Eligibility Criteria

This systematic review was conducted according to the latest Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA) recommendations [27]. The
eligibility of the reports was defined based on the PICOS criteria, as shown in Table 1.

Table 1. Inclusion and exclusion criteria of the systematic review according to PICOS.

Inclusion Criteria Exclusion Criteria

Population

Adult (≥18 years) patients with ongoing SARS-CoV-2
infection as diagnosed by a laboratory test, a thorax CT
scan, self-reported by study participants, or reported by

the authors of the study

Patients recovered from COVID-19, patients
without history of SARS-CoV-2 infection, and

patients with a dubious diagnosis of COVID-19

Non-human sample

Intervention NA NA

Comparison NA NA

Outcomes

Characterization of autonomic involvement during acute
SARS-CoV-2 infection

Absence of a formal evaluation of
autonomic parameters

Effects of autonomic alterations on the SARS-CoV-2
infection outcome

Lack of sufficient data regarding the
autonomic assessment

Role of autonomic parameters in predicting
SARS-CoV-2 infection

Study design
Case–control, cohort, cross-sectional, pre–post studies

Literature reviews, case reports or case series,
conference papers, comments, editorials, erratum,

study protocols, perspectives

Published from 1 December 2020 to 23 April 2022 Not English or Italian Language
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2.2. Search Strategy

The latest research was carried out by three authors (I.S., S.B., and G.F.) on 23 April
2022 using Scopus and PubMed databases. The following string of words was employed to
search the pertinent reports: (((COVID-19) OR (COVID 19) OR (COVID) OR (SARS CoV 2)
OR (SARS-CoV-2) OR (coronavirus) OR (2019 novel coronavirus)) AND ((dysautonomia)
OR (autonomic dysfunction) OR (autonomic) OR (autonomic nervous system) OR (ortho-
static hypotension) OR (orthostatic intolerance) OR (exercise intolerance) OR (postural
orthostatic tachycardia syndrome) OR (tilt test) OR (sinus tachycardia) OR (pupillometry)
OR (Sudoscan) OR (sudomotor dysfunction) OR (heart rate variability) OR (HRV) OR
(Valsalva maneuver))).

Additionally, the reference lists of the selected articles and of pertinent published
reviews investigating the occurrence of neurological or dysautonomic symptoms in the
context of acute SARS-CoV-2 infection were screened in order to find other eligible records.

2.3. Selection Process

After deleting duplicates, three authors (I.S., V.B., and G.F.) independently screened
the records by title and abstract. Subsequently, the full text of all the retrieved reports was
read and evaluated independently by three authors (I.S., G.F., S.B.) in order to assess the
eligibility of the manuscripts. A report was considered eligible for this systematic review
when at least two out of three authors agreed on its eligibility.

2.4. Data Extraction

Three authors (I.S., S.B., and P.A.R.) retrieved the data from the eligible reports and
reported the variables of interest in an Excel file. The following data were extracted: first
author and year of publication, design of the study, sample size of the study population
(i.e., total number of COVID-19 population, controls, and population subgroups where
applicable), demographic features of study subjects (i.e., age and sex), severity of COVID-
19 infection, tests employed for COVID-19 diagnoses, tools employed for autonomic
dysfunction analysis, study endpoints, and main findings of the study. Any doubtful
situation was solved by referring to the other two authors (G.F. and V.B.). The severity
of COVID-19 was defined based on the setting in which infected patients were enrolled
and the need for mechanical ventilation. In particular, the disease was considered mild
when the enrolled subjects were in home quarantine, moderate when the disease required
hospitalization in a regular ward or in a sub-intensive care unit, and severe in case of
admission to an intensive care unit (ICU) and/or need for mechanical ventilation.

I.S. contacted the corresponding authors of the pertinent studies for which extensive
data regarding the autonomic assessment and the prevalence of COVID-19 were missing.
Additionally, when not available in the full text, the corresponding authors were asked to
provide demographic features of the study sample and any other useful information.

2.5. Quality Assessment

Quality assessment of the included studies was performed by means of the “Study
Quality Assessment Tool” issued by the National Heart, Lung, and Blood Institute within
the National Institute of Health for cohort and cross-sectional studies, case–control stud-
ies, and pre–post studies [28]. Two authors (S.B. and P.A.R.) evaluated all the reports
independently, and any doubtful situation was solved by referring to the third author (I.S.).

3. Results
3.1. Study Selection

The online search returned 843 records from PubMed and 1277 from Scopus databases.
After removing duplicates, 1585 results remained and were evaluated for title and abstract
check. Therefore, 65 reports were considered in the full-text review stage, and 20 of those
were included in the systematic review [29–48], while 45 reports were excluded: 2 papers
written in Russian [49,50], 5 conference papers [51–55], 3 comments [56–58], 4 case reports
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or case series [59–62], 2 literature reviews [63,64], 1 study protocol [65], 12 studies that did
not perform a formal evaluation of autonomic functions [66–77], 13 reports that did not
include acute COVID-19 patients [78–90], and 3 studies in which extensive data regarding
the autonomic assessment of the population of interest were lacking [91–93].

Additional two studies were found by hand-searches and a cross-search of the refer-
ences [94,95].

Finally, 22 studies were included in this systematic review [29–48,94,95].
Details regarding the selection process are available in the PRISMA diagram (Figure 1).

Figure 1. The PRISMA diagram of the systematic review. Reports excluded: Not formal assessment
of dysautonomia—Refs. [66–77]; not acute COVID-19 population—Refs. [78–90]; not in English
or Italian—Refs. [49,50]; study design—Refs. [51–65]; insufficient data regarding the autonomic
involvement—Refs. [91–93]. Reports assessed as eligible—Refs. [29–48]. Reports added from other
sources—Refs. [94,95]. Studies included in the systematic review—Refs. [29–48,94,95]. Abbreviations:
COVID-19, Coronavirus disease 2019.

3.2. Study Characteristics

All the studies included in this review were observational: five with a cross-sectional de-
sign [31,36,40,46,47]; nine retrospective studies, including four case–control studies [37,41,44,94],
two cohort studies [30,43], and three pre–post studies [33,35,95]; eight prospective studies
that included seven cohort studies [29,32,34,38,39,42,45] and one pre–post study [48].

The number of COVID-19 patients ranged from 14 [29,95] to 42,752 [39], and in
most cases, the diagnosis of SARS-CoV-2 infection was performed through a real-time
polymerase chain reaction (RT-PCR) test [29–32,36–39,41–45,47,48,94]. In a minority of
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reports, COVID-19 diagnosis was self-reported by study participants [33,34,95], and in one
study, both the RT-PCR test and/or a rise in anti-SARS-CoV-2 IgG levels were considered
as diagnostic for COVID-19 [39]. Finally, three studies did not specify the type of test
employed for the diagnoses of SARS-CoV-2 infection [35,40,46].

The age of COVID-19 patients was very heterogenous, ranging from a median age
of 34 (age range 1–102) years [39] to a mean age of 78.6 ± 11.4 years [35]. However, age
range and gender prevalence were hardly definable because of the great variability in data
reporting among the included reports and the lack of demographics in two studies [38,94].

Concerning the severity of the acute SARS-CoV-2 infection, 16 studies included hos-
pitalized patients [29–32,35–38,41–45,47,48,94]. According to the criteria listed above, in
five reports, COVID-19 could be defined as severe [29,30,32,37,47], in four articles as mod-
erate [31,36,41,48], while in six studies, patients affected by both severe and moderate
forms of the disease were included [35,38,42–45], and in one study, the severity of the
disease was not specified [94]. In two articles, both hospitalized patients and subjects in
home quarantine were enrolled [39,40]. In one study, the setting of the enrollment was
not specified, but the authors stated that all the SARS-CoV-2-infected patients did not
need oxygen support [46]. Finally, two studies analyzed the data reported by all [33] or
some [95] of the participants of the Weltory study [96], a worldwide database in which
patients consented to share data obtained by their own wearable devices in order to fight
against the SARS-CoV-2 pandemic. Although COVID-19 severity, as self-reported by study
participants, ranged from asymptomatic to extremely severe forms, specific data regarding
the setting and the effective treatments needed are not available. Similarly, Hirten et al. [34]
included healthcare workers of the Mount Sinai Health System, reporting data obtained
from their wearable devices, but clear information regarding the severity of COVID-19
were missing.

HRV was the most used tool to evaluate the ANS functions [29,32–38,40,42,43,45,46,94,95],
although its recording method varied widely among the studies, ranging from the use
of wearable devices, short-duration electrocardiograms (EKGs), and 24 h Holter EKGs
or continuous bedside monitoring. Automated pupillometry was chosen by three au-
thors [30,47,48], two studies carried out a composite evaluation of ANS [31,41], and in
another two, AD was defined based on the retrospective analysis of patients’ medical
records [39,44].

All data extracted from the included reports are summarized in Tables 2–4.
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Table 2. A summary of the data extracted from the 13 studies, which characterized acute COVID-19-related autonomic dysfunction.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Bellavia et al., 2021
[31]

Observational,
cross-sectional

20 acute COVID-19
patients vs. 20

healthy controls

COVID+ group:
Mean age

56.1 ± 19.2 y;
70% men

COVID- group:
Mean age

52.6 ± 13.7 y;
65% men

Moderate RT-PCR

Sudoscan, automated
pupillometry (Npi-200),
HRV measured from a
10 min long EKG in the

lying position and a 3 min
long EKG in the standing
position, PTT measured
with a pulse oximeter

Characterization of the
autonomic nervous
system involvement

in acute
COVID-19 patients

Pupillometry: COVID+ group
presented higher CV, ACA, BPD, and
CH than controls. Sudoscan: COVID+

patients presented feet sudomotor
more frequently than controls. No

differences between groups in terms
of HRV parameters and PTT

Hirten et al., 2021
[34]

Prospective,
observational,

cohort

297 healthcare
workers reporting

data from
wearable devices.
13/297 patients

(COVID+)

Overall population:
Mean age

36.3 ± 9.8 y;
31.6% men

NR

Self-
reported
RT-PCR

test

PRV and HR measured by
the PPG signal of
wearable devices

Primary endpoint:
Differentiation of acute

COVID-19 patients
from healthy controls

through HRV.
Secondary endpoints:

Evaluation of HRV
ability in predicting

SARS-CoV-2 infection
and in discriminating

symptomatic and
asymptomatic forms of

COVID-19

Amplitude of SDNN lower in
COVID+ than in COVID- groups and
higher in uninfected participants than
in COVID+ subjects during the 7 days
prior and after a COVID-19 diagnosis.

No HRV differences between
symptomatic and asymptomatic

COVID+ subjects

Junarta et al., 2021
[35]

Retrospective,
observational,

pre–post

38 hospitalized
acute COVID-19

patients with
chronic atrial

fibrillation

Mean age
78.6 ± 11.4 y;
44.7% men

Moderate
and severe NR

HRV measured by EKGs
obtained during

hospitalization in the
pre-COVID period and

during admission for acute
SARS-CoV-2 infection

Primary endpoint:
Presence of HRV

changes between the
pre-COVID and the

COVID period

HRV (SDSD, RMSSD, pNN50)
significantly reduced during acute

COVID-19

Kaliyaperumal et al.,
2021 [36]

Observational,
cross-sectional

63 acute COVID-19
patients vs. 43 age-
and sex-matched
healthy controls

COVID+: Mean age
48.4 ± 16.3 y;
69.8% men vs.

COVID-: Mean age
50.1 ± 10.5 y;
62.8% men

Moderate RT-PCR HRV measured by a 5 min
long EKG

Comparison of HRV
parameters between

acute COVID-19
patients and

healthy controls

Lower values of HF, LF, and higher
values of RMSSD in COVID-19

patients than in controls. Higher
parasympathetic overtone

(SDNN > 60 and/or RMSSD > 40) in
COVID-19 patients than in healthy

subjects. No HRV differences
between symptomatic and

asymptomatic COVID-19 patients
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Table 2. Cont.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Kamaleswaran et al.,
2021 [37]

Retrospective,
observational,
case–control

141 acute,
ICU-admitted

COVID-19 patients
vs. 208

ICU-admitted
patients with
sepsis from
other causes

COVID+: Mean age
63 ± 16 y; 52% men

Septic patients:
Mean age 63 ± 16 y;

55% men

Severe RT-PCR

Average of HRV
parameters measured by

several 300 s sliding
windows obtained from

continuous bedside
monitoring within 5 days

of ICU admission

Secondary endpoint:
Comparisons of HRV
parameters between
COVID-19 patients
and patients with

sepsis from
other causes

COVID-19 patients presented lower
median DC, ApEn, SampEn, pNN50,
and higher median AC, SD1:SD2, and

NN mode than sepsis patients

Khalpey et al., 2021
[94]

Retrospective,
observational,
case–control

200 patients
divided into
four groups:
symptomatic

COVID+, COVID+
with silent

hypoxia,
symptomatic

COVID-, COVID-
with silent hypoxia

NR

Not
specified

(moderate
and/or
severe)

RT-PCR HRV measured by an
EKG

Determination of HRV
changes in patients

with COVID-19
pneumonia

RMSSD, SDNN, and HRV triangular
index differed between COVID+ and

COVID- patients. The same
parameters did not differ between

symptomatic COVID+ patients and
COVID+ subjects with silent hypoxia

Koh et al., 2021 [39]
Prospective,

observational,
cohort

47,572 acute
COVID-19 patients

Overall population:
Median age 34 y; age

range 1−102 y;
98% men

5/47,572 patients
with autonomic

symptoms: Mean
age 37.8 ± 6.6 y;

100% men

Mild,
moderate,
and severe

RT-PCR
and/or
raised

IgG-anti
SARS-CoV-2

Tilt table test,
sympathetic skin

response, and
ophthalmological

evaluation

Primary endpoint:
Definition of
neurological

symptoms incidence
and characterization

in acute
COVID-19 patients

Dysautonomic symptoms’ incidence
in acute COVID-19 patients is 0.01%.

Three patients presented pupil
abnormalities (one—Adie’s pupil;

one—Argyll Robertson; one—inverse
Argyll Robertson), two patients

presented POTS (one of them also
presented Adie’s pupil and the other

hyperhidrosis), and one patient
presented small fiber neuropathy

Lonini et al., 2020
[40]

Observational,
cross-sectional

15 acute COVID-19
patients vs.

14 healthy controls

Demographics are
available for 14/15
COVID+ patients

and 12/14 controls
Overall COVID-19
population: Mean
age 52.0 ± 15.2 y;

50% men
Healthy controls:

Mean age
32.4 ± 6.8 y;

67% men

Mild and
moderate

The
diagnostic

test
employed

not specified

PRV measured by
wearable devices and a
sensing platform during
periods of rest, walking,

and forced coughs

Ability of
physiological

parameters measured
by wearable sensors

and sensing platforms
in the discrimination
between COVID-19

patients and
healthy controls

SDNN at rest significantly lower in
COVID-19 patients than in controls at

baseline (pre-walk). No change in
SDNN of COVID-19 patients during

and after exercise. Higher
post-exercise heart rate in COVID-19

patients than in healthy controls,
despite the lower walking cadence
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Table 2. Cont.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Milovanovic et al.,
2021 [41]

Retrospective,
observational,
case–control

75 acute
COVID-19 patients
Mild group 30/75
(no pneumonia)

Severe group
45/75 (with
interstitial

pneumonia) vs.
77 age-matched
healthy controls

Mild COVID-19
patients: Mean age

41.6 ± 16.7 y;
53% men

Severe COVID-19
patients: Mean age

51.3 ± 19.1 y;
53% men
Sex- and

age-matched
controls

Moderate RT-PCR

CART (Valsalva ratio, deep
breathing test, blood
pressure response to

standing, handgrip test),
HRV measured by

continuous bedside
monitoring, BPV and BRS
measured by continuous

bedside monitoring

Evaluation of
autonomic dysfunction

in acute COVID-19
patients and its impact

on the
cardiovascular system

CART: COVID-19 population
presented higher prevalence of

combined autonomic dysfunction
and sympathetic dysfunction than

controls. Parasympathetic
dysfunction more frequent in mild
cases and lower in severe cases of

COVID-19 than in the control group.
HRV: LF significantly lower in

COVID-19 patients than in the control
group. HF significantly lower in mild

and LF/HF in severe COVID-19
patients than in controls. SD1 and
SD1:SD2 lower in mild COVID-19

patients than in controls. BPV: higher
systolic and diastolic HF and diastolic

VLF and lower diastolic LF and
LF/HF in COVID-19 patients than in

controls. BRS: lower BRS in
COVID-19 patients than in controls

Oates et al., 2020 [44]
Retrospective,
observational,
case–control

37 acute COVID-19
patients with syn-
cope/presyncope

vs. 40 acute
COVID-19 patients

without syn-
cope/presyncope

Overall population:
Median age 69

(56–73) y; 55% men
Syncope group:
Median age 69

(56.5–73) y; 51% men
No syncope group:

Median age 68
(56–73) y; 57% men

Moderate
and severe RT-PCR

Evaluation of patients’
medical records, including

heart rate and blood
pressure measurements

Definition of
syncope/presyncope

incidence,
characteristics, and
outcomes in acute
COVID-19 patients

Syncope/presyncope incidence was
3.7% (37/1000). Syncope/presyncope
patients hospitalized less frequently

in ICU settings. Within syncope
subtypes, 12.5% (4/32) were

hypotensive, and 15.6% (5/32) were
neurocardiogenic. Two out of four
patients with hypotensive syncope
presented orthostatic hypotension,
while the other two were not tested

Skazkina et al., 2021
[46]

Observational,
cross-sectional

32 acute COVID-19
patients vs. 32

healthy controls

COVID+ group: Age
range 25–68 y;

56.3% men
COVID- group: Age

range 17–23 y;
31.3% men

NR NR HRV measured by 20 min
long EKG and PPG

Comparison of the
degree of

synchronization of the
autonomic control
loops of circulation
between COVID-19

patients and controls

Mean phase synchronization index
was lower in acute COVID-19

patients than in healthy controls
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Table 2. Cont.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Vrettou et al., 2020
[47]

Observational,
cross-sectional

41 patients
requiring

mechanical
ventilation for at

least 48 h
COVID+ group:

18/41
Respiratory failure

from other
etiologies: 23/41

COVID+ group:
sedated patients

(6/18) median age 68
(55–76) y; 83% men

vs. not-sedated
patients (12/18)
median age 68

(60–78) y; 75% men
COVID- group:
sedated patients

(14/23) median age
65 (51–76) y;
71% men vs.

not-sedated patients
(9/23) median age 65
(56–80) y; 67% men

Severe RT-PCR Automated pupillometry
(Npi-200)

Differences in
pupillary reactivity

between mechanically
ventilated ICU patients

with COVID-19 and
patients with

respiratory failure
from other etiologies

No significant differences in pupillary
reactivity between COVID+ and

COVID- groups. BPD, CH, CV, MCV,
and DV were higher in awake

COVID-19 patients than in sedated
COVID-19 group

Yurttaser Ocak et al.,
2022 [48]

Prospective,
observational,

pre–post

58 acute
COVID-19 patients

Mean age 47.23 ± 1.1
years; 56.9% men Moderate RT-PCR

Automated pupillometry
(Sirius Topographer,

Phoenix v2.1 software)

Comparison of
pupillary reactivity

during and three
months after

COVID-19 infection

Mean mesopic and scotopic diameter
significantly lower during the acute

phase of the infection than three
months later. Mean pupil diameter

and average DV significantly lower at
different timepoints after the

luminous stimulus during the acute
phase of infection than after

three months

Abbreviations: COVID-19, Coronavirus Disease 2019; y, years; RT-PCR, Real-Time Polymerase Chain Reaction; HRV, Heart Rate Variability; EKG, Electrocardiogram; PTT, Pulse Transit
Time; CV, Constriction Velocity; ACA, Absolute Constriction Amplitude; BPD, Baseline Pupil Diameter; CH, Constriction Index; NR, Not Reported; PRV, Pulse Rate Variability; HR, Heart
Rate; PPG, Photoplethysmography; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; SDNN, Standard Deviation of the RR intervals; SDSD, Standard Deviation of
Successive Differences in RR intervals; RMSSD, Root Mean Square of Successive Differences between normal heartbeats; pNN50, proportion of consecutive RR intervals that differs more
than 50 ms; HF, High Frequency; LF, Low Frequency; ICU, intensive Care Unit; DC, Deceleration Capacity; ApEN, Approximate Entropy; SampEn, Sample Entropy; AC, Acceleration
Capacity; SD1:SD2, ratio of standard deviation derived from the Poincaré plot; NN, RR interval; POTS, Postural Orthostatic Tachycardia Syndrome; CART, Cardiovascular reflex tests;
BPV, Blood Pressure Variability; BRS, Baroreceptor Reflex Sensitivity; SD1, Standard Deviation of the RR interval; VLF, Very Low Frequency; MCV, maximum constriction velocity;
DV, Dilation Velocity.
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Table 3. A table summarizing the data extracted from the nine studies investigating the prognostic role of autonomic dysfunction in acute COVID-19.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Aragon-Benedì et al.,
2021 [29]

Prospective,
observational,

cohort

14 acute
ICU-admitted

COVID-19 patients
Survivors group: 7

Non-survivors
group: 7

Survivors group:
median age 64

(60–73) y; 57% men
Non-survivors

group: median age
71 (57–72) y;
100% men

Severe RT-PCR

HRV measured by means
of analgesia nociception
index monitor from 240 s

long EKG

Demonstration of an
autonomic

involvement with a
sympathetic

predominance and a
parasympathetic

withdrawal in the most
severely ill

COVID-19 patients

ANIm and ANIi (indices of the HF
component) significantly higher in

non-survivors than in survivors.
Lower energy (SDNN) correlated
with higher SOFA score and, in

non-survivors, with fewer survival
days. A limit value of 80 for ANIm
predicted mortality (sensitivity of
100%; specificity of 85.7%). A limit

value of 0.41 ms for energy predicted
mortality (sensitivity of 71.4%;

specificity of 71.4%)

Battaglini et al., 2020
[30]

Retrospective,
observational,

cohort

94 acute
COVID-19 patients

undergoing
invasive

mechanical
ventilation
53/94 (56%)
underwent
continuous

neuromonitoring
In 29/94 (31%),

pupillary reactivity
was tested

Overall population:
Mean age

61.6 ± 11.1 y;
78.7% men

Patients with
neurological

complications: Mean
age 62.4 ± 8.3 y;

87.2% men
Patients without

neurological
complications: Mean

age 60.8 ± 13.3 y;
70.2% men

Severe RT-PCR Automated pupillometry
(Neurolight Algiscan)

Primary endpoint:
Prevalence of
neurological

complications and
their effects on

outcome. Secondary
endpoint: Role of

cerebral
hemodynamics

changes in predicting
outcome and
occurrence of
neurological

complications

Neurological complications incidence
was 50%, and they were associated
with longer overall and ICU stay.

Automated pupillometry evaluation
did not discriminate outcome in
terms of mortality. Patients with

neurological complications presented
lower mean CV than patients without

neurological symptoms

Hasty et al., 2021 [32]
Prospective,

observational,
cohort study

16 acute
COVID-19 patients
requiring HFNO

or mechanical
ventilation

Mean age
60.5 ± 13.4 y;

71% men
Severe RT-PCR

HRV measured by 7 min
long single-limb

EKG traces

Evaluation of a
correlation between
HRV reduction and

CRP increment

A >40% decrease in SDNN predicted
a subsequent 50% rise in CRP, with

83.3% sensitivity and 75% specificity

Junarta et al., 2021
[35]

Retrospective,
observational,

pre–post

38 hospitalized
acute COVID-19

patients with
chronic atrial

fibrillation

Mean age
78.6 ± 11.4 y;
44.7% men

Moderate
and severe NR

HRV measured by EKGs
obtained during

hospitalization in the
pre-COVID period and

during admission for acute
SARS-CoV-2 infection

Secondary endpoint:
Prognostic role of HRV

in acute COVID-19
patients, comparing

patients with reduced
HRV to ones with
preserved HRV

Patients with reduced HRV presented
higher mortality when stratified

for pNN50
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Table 3. Cont.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Kamaleswaran et al.,
2021 [37]

Retrospective,
observational,
case–control

141 acute,
ICU-admitted

COVID-19 patients
vs. 208

ICU-admitted
patients with
sepsis from
other causes

COVID+: Mean age
63 ± 16 y; 52% men

(survivors: Mean age
59 ± 15 y; 53% men.

Non-survivors:
Mean age 71 ± 14 y;

52% men)

Severe RT-PCR

Average of HRV
parameters measured by

several 300 s sliding
windows obtained from

continuous bedside
monitoring within 5 days

of ICU admission

Primary endpoint:
Analysis of HRV

differences between
survivors and

non-survivors with
acute COVID-19

SD1:SD2, AC, and pNN50 were
higher, and NN, ApEn, SampEN, and

DC were lower in COVID-19
non-survivors than in
COVID-19 survivors

Khodadadi et al.,
2021 [38]

Prospective,
observational,

cohort

36 acute
COVID-19 patients NR Moderate

and severe RT-PCR

LF–HRV, RSA amplitude,
heart period, and vagal

efficiency measured by a
7–10 min long EKG

obtained by means of a
Polar H10 heart rate sensor

on the first day of
admission

Primary endpoint:
Definition of the role of
demographic, clinical,
and HRV parameters
in forecasting LOS of
COVID-19 patients

A higher vagal efficiency correlated
with shorter LOS only in younger

patients (<40 y)

Mizera et al., 2021
[42]

Prospective,
observational,

cohort

60 acute COVID-19
patients with sinus

rhythm ARDS
group (37/60) vs.
non-ARDS group

(23/60)

Overall population:
Mean age

66.9 ± 13.4 y; 60%
men

ARDS group: Mean
age 69.1 ± 12.8 y;

56.8% men
Non-ARDS group:

Mean age
63.3 ± 13.9 y;
65.2% men

Moderate
and/or
severe

RT-PCR
DC measured by 10–30 min
long EKG obtained from a
24 h EKG Holter recording

Evaluation of DC’s role
in the prediction of

ARDS development in
acute COVID-19

patients

DC significantly lower in the ARDS
group when compared to the

non-ARDS group. Patients with
ARDS were more likely to show

DC < 4.5 ms. Decreased DC was also
associated with increased risk of

ARDS in the adjusted analysis and
presented a good discriminatory

capacity for predicting COVID-19
patients at risk of developing ARDS

Mol et al., 2021 [43]
Retrospective,
observational,

cohort

271 hospitalized,
acute COVID-19

patients

Overall population:
Mean age 68 y (age

range 25 to 95 y);
59% men

Moderate
and severe RT-PCR

HRV measured by a 10 s
long EKG performed

within 3 days of admission

Primary endpoint:
HRV ability to predict

overall survival at
three weeks from

admission.
Secondary endpoints:
HRV ability to predict

ICU referral and
impact of HRV on
other prognostic

factors, such as age

Patients with SDNN > 8 had a lower
risk of death than those with SDNN
≤ 8 at three weeks from admission.

SDNN ≤ 8 predicted a higher
mortality only in older patients

(≥70 y). Only patients aged ≥70 y
with low HRV were at higher risk of
death than younger patients. Lower
risk of needing ICU care in patients

with SDNN > 8 and RMSSD > 8
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Table 3. Cont.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Pan et al., 2021 [45]
Prospective,

observational,
cohort

34 acute
COVID-19 patients
Mild group: 13/34

Severe group:
21/34

Overall population:
Mean age

56.2 ± 16.0 y;
32% men

Mild group: Mean
age 47.5 ± 14.2 y;

23% men
Severe group:
61.5 ± 15.0 y;

38% men

Moderate
and severe RT-PCR HRV measured by a 24 h

long Holter EKG

Primary endpoint:
Evaluation of HRV

ability in prediction of
severity and prognosis

of acute
COVID-19 patients

Lower SDNN, SDANN, and higher
LF/HF in severe than in mild
patients, and these parameters

discriminated the two conditions
with a good sensitivity and specificity.

Shorter time to viral RNA negative
conversion and disease recovery in

severe patients with decreased
LF/HF than those with increased

LF/HF

Abbreviations: ICU, Intensive Care Unit; COVID-19, Coronavirus Disease 2019; y, years; RT-PCR, Real-Time Polymerase Chain Reaction; HRV, Heart Rate Variability;
EKG, Electrocardiogram; ANIm, mean Analgesia Nociception Index; ANIi, instantaneous Analgesia Nociception index; HF, High Frequency; SDNN, Standard Deviation of the
RR intervals; SOFA, Sequential Organ Failure Assessment; CV, Constriction Velocity; HFNO, High-Flow nasal Oxygen; CRP, C-reactive protein; NR, Not reported; SARS-CoV-2, Severe
Acute Respiratory Syndrome Coronavirus 2; pNN50, proportion of consecutive RR intervals that differs more than 50 ms; SD1:SD2, ratio of standard deviation derived from the Poincaré
plot; AC, Acceleration Capacity; NN, RR interval; ApEN, Approximate Entropy; SampEn, Sample Entropy; DC, Deceleration Capacity; LF, Low Frequency; RSA, Respiratory Sinus
Arrythmia; LOS, Length Of Stay; ARDS, Acute Respiratory Distress Syndrome; RMSSD, Root Mean Square of Successive Differences between normal heartbeats; SDANN, Standard
Deviation of the Averages of RR intervals.
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Table 4. A graphic representation of the data extracted from the three studies analyzing the autonomic parameters’ role in predicting the SARS-CoV-2 infection.

Authors, Year Study Design Study Population Demographic
Characteristics

COVID-19
Severity

COVID-19
Diagnosis

Dysautonomia
Assessment Study Endpoints Main Findings

Hijazi et al., 2021 [33]
Retrospective,
observational,

pre–post

186 acute
COVID-19 patients

(Weltory study)

Mean age
44 ± 14.1 y; 36%

men
NR

Self-
reported by

study
participants

PRV and HR measured
by the PPG signal of

wearable devices

Evaluation of wearable
devices’ role in

predicting SARS-CoV-2
infection

SDNN, RMSSD, pNN50 significantly
lower, and HR and LF/HF

significantly higher during the
infection than during the healthy
time. The model with five HRV

variables (pNN50, RMSSD, LF/HF,
SDNN, and HR) and the answer to

the question “How do you feel?”
ranked the best in the discrimination
between infection and healthy time,

with an AUC value of 0.938

Lonini et al., 2020
[40]

Observational,
cross-sectional

15 acute COVID-19
patients vs.

14 healthy controls

Demographics are
available for

14/15 COVID+ patients
and 12/14 controls
Overall COVID-19
population: Mean
age 52.0 ± 15.2 y;
50% men Healthy

controls: Mean age
32.4 ± 6.8 y;

67% men

Mild and
moderate

The
diagnostic

test
employed

not specified

PRV measured by
wearable devices and a
sensing platform during
periods of rest, walking,

and forced coughs

Evaluation of the
ability of physiological
parameters measured
by wearable sensors

and sensing platforms
in the discrimination
between COVID-19

patients and
healthy controls

SDNN at rest significantly lower in
COVID-19 patients than in controls at

baseline (pre-walk). No change in
SDNN of COVID-19 patients during

and after exercise

Ponomarev et al.,
2021 [95]

Retrospective,
observational,

pre–post

14 acute
COVID-19 patients

(Weltory study)

Mean age: 44 ± 8.7 y;
64% men NR

Self-
reported by

study
participants

PRV measured by the
PPG signal of wearable

devices at the time of day
each user took
measurements

most often

Evaluation of HRV
ability in the prediction
of COVID-19 infection

No significant differences in HRV
parameters before, during, and after

acute COVID-19 in the overall
population. Analyzing individual
users independently, three users
presented lower SDNN, one user
higher SDNN, and one user lower

RMSSD during COVID-19 compared
to the period before the infection

Abbreviations: COVID-19, Coronavirus Disease 2019; y, years; NR, Not Reported; PRV, Pulse Rate Variability; HR Heart Rate; PPG, Photoplethysmography; SARS-CoV-2, Severe
Acute Respiratory Syndrome Coronavirus 2; SDNN, Standard Deviation of the RR intervals; RMSSD, Root Mean Square of Successive Differences between normal heartbeats; pNN50,
proportion of consecutive RR intervals that differs more than 50 ms; LF, Low Frequency; HF, High Frequency; HRV, Heart Rate Variability; AUC, Area Under the Curve.
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3.3. Quality Assessment

According to the “Study Quality Assessment Tool” issued by the National Heart, Lung,
and Blood Institute [28], three studies were classified as having a “good quality” [30,38,42],
eight studies were considered to be of “fair quality” [29,33,36,37,41,43,45,48], and the other
eleven were classified as “poor quality” studies [31,32,34,35,39,40,44,46,47,94,95].

Blinding was the most frequent risk of bias encountered. Only one study (4.5%)
reported in an explicit way that the outcome assessors were blinded to the exposure status
of participants [38]. Secondarily, sample size justification was reported in only two studies
(9.1%) [29,38]. Statistical adjustment of possible confounding variables was performed in
only 5 out of 17 cohort and case–control studies (29.4%) [30,36,38,40,42]. On the other hand,
only in three studies (13.6%) was the research question not clearly defined [35,39,40].

A graphic summary of the quality assessment is reported in Figure 2. The ex-
tended results of the quality assessment are represented in the Supplementary Materials
(Figures S1–S3).

Figure 2. A summary of the quality assessment of the included studies according to the “Study
Quality Assessment Tool” issued by the National Heart, Lung, and Blood Institute [29–48,94,95].
Color legend: Green, yes; Yellow, not applicable, not reported, or cannot be determined; Red, no.
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3.4. Outcomes

Ten studies focused on the characterization of autonomic involvement during acute
SARS-CoV-2 infection as a primary endpoint [31,34–36,40,41,46–48,94]. In seven articles, the
primary aim was to evaluate the impact of AD on COVID-19 prognosis [29,32,37,38,42,43,45],
while the analysis of the role of autonomic parameters in predicting SARS-CoV-2 infection
was the main objective of two studies [33,95]. Finally, three articles did not focus on au-
tonomic alterations, but the data of interest for this systematic review were extrapolated
from the text [39,44] or were provided by the corresponding authors of the manuscript [30].
Battaglini et al. [30] analyzed, as a secondary endpoint, the role of neuromonitoring, includ-
ing automated pupillometry, in predicting the occurrence of neurological complications
and the outcome of critically ill COVID-19 patients. In one study, the primary objective
was to define the syncope and presyncope incidence and clinical features in hospitalized
subjects during the acute SARS-CoV-2 infection [44]. Finally, Koh et al. [39] evaluated the
occurrence of neurological manifestations and, within them, autonomic symptoms in acute
COVID-19 patients.

3.4.1. Characterization of Autonomic Involvement Associated with SARS-CoV-2

Among the studies that focused on the characterization of SARS-CoV-2-related AD, a
great heterogeneity was found in the selection of the control group. Six studies compared
COVID-19 patients to healthy volunteers [31,34,36,40,41,46], while three other studies con-
sidered as control group subjects affected by other infectious diseases [37], pneumonia [94],
and/or respiratory failure from different etiology [47]. Oates et al. [44] compared COVID-19
patients with syncope and/or presyncope to those not presenting those symptoms. Two
studies compared the autonomic parameters of the acute COVID-19 patients with those
recorded three months after the disease [48] or during prior hospitalization for other causes
in the same population [35]. Finally, the study conducted by Koh et al. [39] had no control
group. For details, refer to Table 2.

Heart Rate Variability (HRV)

Concerning the HRV evaluation, contrasting results were found among studies. The
standard deviation of the RR intervals (SDNN) was the HRV measure most frequently
analyzed, being considered in six studies [31,34,36,37,40,94]. This parameter was similar
between moderate COVID-19 patients and healthy volunteers in two studies [31,36] and
between critically ill COVID-19 subjects and septic patients [37]. Kaliyaperumal et al. [36]
found that the SARS-CoV-2-infected population presented a significantly higher parasym-
pathetic overtone, defined as a SDNN > 60 and a root mean square of successive differences
between normal heartbeats (RMSSD) > 40, than controls. Lonini et al. [40] measured HRV
(summarized as SDNN), mean heart rate (HR), and mean respiratory rate (RR) in COVID-19
subjects before and after walking, finding a lower SDNN, a higher mean RR and HR at base-
line, and a lower tolerance for physical exertion, demonstrated by a higher post-walking
HR despite lower walking cadence in infected subjects than in healthy volunteers [40].
Moreover, SDNN differed between COVID-19 patients and people with pneumonia from
different etiologies in an unspecified direction [94]. Analyzing the SDNN circadian pattern,
Hirten et al. [34] found that the mean amplitude of SDNN circadian pattern was higher in
COVID patients than in healthy volunteers.

RMSSD was considered in five reports. This HRV measure was found to be higher in
moderate COVID-19 patients than in healthy volunteers in one study [36], but the same
parameter did not differ between similar populations in another report [31] and between
ICU-admitted SARS-CoV-2-infected patients and subjects with sepsis from other causes [37].
Khalpey et al. [94] found undefined differences in RMSSD between COVID-19 patients and
people with pneumonia from other causes.

The number of consecutive RR intervals that differed more than 50 ms (NN50) [31] and
the proportion of NN50 (pNN50) [36] were similar in hospitalized patients with COVID-
19 and healthy controls, but the second parameter differed between critically ill subjects
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infected with SARS-CoV-2 and those presenting sepsis from other causes, being higher in
the septic group [37].

Finally, Junarta et al. [35] found an overall reduced HRV, including RMSSD, pNN50,
and the standard deviation of successive differences in RR intervals (SDSD), during the
acute phase of the infection compared to the same patients during previous hospitalization
for other reasons.

No difference in the standard deviation of the averages of RR intervals (SDANN) was
observed by Bellavia et al. [31] between moderate COVID-19 patients and healthy controls.

A geometric measure, the HRV triangular index, was analyzed in one study, and this
parameter was found to be different between COVID-19 hospitalized patients and patients
with pneumonia from different etiologies.

The frequency parameters of HRV were analyzed by four studies. Milovanovic et al. [41]
found that the overall acute COVID-19 population presented a lower low frequency (LF)
component than healthy volunteers, while the high frequency (HF) component was lower
only in milder hospitalized patients, and the LF/HF was higher in those presenting a severe
infection than in controls. The very low frequency (VLF) component did not differ among
all the study groups. Considering two studies that compared moderate COVID-19 patients
to healthy volunteers, the infected population presented lower HF and LF components than
the controls in one study [36], while in the other report, frequency parameters did not differ
between groups [31]. In the comparison between critically ill patients, people infected with
SARS-CoV-2 had significantly lower HF, LF, and VLF components than patients with sepsis
from other causes [37].

Concerning the non-linear measurements of HRV, two studies found that the two standard
deviations of the mean RR interval (SD1, SD2) were similar between COVID-19 patients
and the control group, composed of healthy volunteers [41] in one study and of septic
patients in another [37]. The ratio of standard deviation derived from the Poincaré plot
(SD1:SD2) did not differ between the overall SARS-CoV-2-infected population and healthy
volunteers, but this ratio was significantly higher in critically ill patients with COVID-19
than in the septic group [37].

Finally, Kamaleswaran et al. [37] reported that acceleration capacity (AC) and the
mode of the NN interval were significantly higher, while approximate entropy (ApEn),
sample entropy (SamEn), and deceleration capacity (DC) were lower in COVID-19 subjects
than in septic patients.

Skazkina et al. [46] compared the total percent of phase synchronization (S index) of
the physiological oscillations of cardiovascular parameters, as measured by the HRV and
the photoplethysmographic signals, between patients with acute SARS-CoV-2 infection
and healthy volunteers. These authors found that the S index and, consequently, the degree
of synchronization of the cardiovascular autonomic network, was significantly lower in the
COVID-19 group than in controls.

Dynamic and Static Pupillometric Parameters

Concerning the automated pupillometry, two studies analyzed dynamic pupillom-
etry [31,47], and one study investigated both dynamic and static pupillometric parame-
ters [48]. In the static assessment, Yurttaser Ocak et al. [48] found that the enrolled subjects
presented significantly lower scotopic and mesopic pupil diameters during the infection
than 3 months later. The same authors described that, in the dynamic evaluation, the same
population presented lower pupillary dilation velocities (DV) and mean pupil diameters at
several timepoints after the light stimulus during hospitalization than at the subsequent
evaluation [48]. On the other hand, moderate COVID-19 patients presented higher sympa-
thetic (i.e., DV), parasympathetic (i.e., pupil constriction index (CH), absolute constriction
amplitude (ACA)), and mixed (i.e., BPD) pupillary parameters than healthy subjects [31].
However, Vrettou et al. [47] did not find any difference in the dynamic automated pupil-
lometry evaluation between critically ill COVID-19 patients and subjects with respiratory
failure from other causes.
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Other Autonomic Parameters

Higher rate of feet sudomotor dysfunction, defined as a mean electrochemical skin
conductance (ESC) < 70 µS, was found in moderate COVID-19 patients than in healthy
controls through Sudoscan® (Impeto Medical, Paris, France) [31]. The same authors did
not find any differences in the pulse transit time (PTT) between the two groups [31].

The study of Milovanovic et al. [41] was the only one that analyzed the cardiovascular
reflex tests (CART), the blood pressure variability (BPV), and the baroflex sensitivity (BS)
in a group of moderate COVID-19 patients and in healthy volunteers. To summarize, in
the CART examination, COVID-19 patients presented more frequently a combined AD
and a sympathetic dysfunction than the controls, while the parasympathetic impairment
was higher in mild and lower in severe patients than in healthy volunteers. Moreover,
the SARS-CoV-2-infected group had higher systolic and diastolic HF and diastolic VLF
components and lower diastolic LF and LF/HF components of BPV than the controls, as
well as lower BRS.

Two studies reported symptoms compatible with an autonomic involvement in acute
COVID-19 subjects through the retrospective evaluation of patients’ medical reports [39,44].
Oates et al. [44] found a prevalence of syncope/presyncope of 3.7% in hospitalized COVID-
19 patients. Among these patients, an autonomic pathogenesis could be suspected in 9 out
of 32 (28%) syncopal events based on the evidence of a neurocardiogenic involvement or a
hypotensive mechanism. In particular, orthostatic hypotension was found in 50% of the
hypotensive group. Koh et al. [39] found a prevalence of 0.01% of dysautonomic symptoms
in the overall acute COVID-19 population of Singapore. Among these patients, three
presented pupil abnormalities, two presented postural orthostatic tachycardia syndrome
(POTS), and one patient presented small fiber neuropathy diagnosed by a sympathetic skin
response test.

All three studies that compared symptomatic to asymptomatic COVID-19 patients
found no differences in HRV parameters between the two groups [34,36,94].

3.4.2. Effects of Autonomic Alterations on SARS-CoV-2 Infection Outcome

The selection of the primary outcome measures varied widely among reports, and
death was the most frequent measure, since it was considered in four studies [29,35,37,43].
Other outcome measures were the increase in C-reactive protein (CRP) levels [32], ARDS
development [42], COVID-19 severity [45], length of stay (LOS) of SARS-CoV-2-infected
patients [38] and a composite outcome including ICU referral and ICU LOS, need for
endotracheal intubation, and mortality [35].

Among time-domain HRV parameters, SDNN proved to be the strongest prognostic
factor, confirming this role in four out of five studies (80%) [29,32,37,43,45]. To summarize,
low SDNN appeared to be predictive of poor COVID-19 prognosis, being related to severe
forms of the disease [45], ICU referral during hospitalization [43], and higher risk of short-
term mortality, especially in older patients [43]. Moreover, a drop of ≥40% in SDNN value
significantly predicted a ≥50% increase in CRP during the following 72 h [32]. Although
in two reports [29,37] SDNN was not found to be a predictor of mortality in critically ill
COVID-19 patients, Aragón-Benedí [29] found that low SDNN was associated with higher
sequential organ failure assessment (SOFA) scores and lower time of survival in critically
ill patients.

RMSSD, measured in four studies [35,37,43,45], did not predict prognosis in terms of
mortality [37,43], COVID-19 severity [45], hospital LOS, and need for mechanical venti-
lation [35]. Contrasting results were found concerning the need for ICU referral, since in
the study conducted by Mol et al. [43], low RMSSD significantly predicted ICU admission
during hospitalization, while in another report, this correlation was not found [35].

pNN50 was analyzed in two studies [35,37], confirming its prognostic role in predict-
ing mortality but with opposite results; while Kamaleswaran et al. [37] reported higher
pNN50 in non-survivors than in critically ill survivor patients, Junarta et al. [35] found
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that a reduced pNN50 value was related to an increased mortality and a lower rate of
60-day survival.

SDANN predicted COVID-19 severity in the only study that analyzed this parame-
ter [45]. Finally, SDSD, considered in one study [35], did not predict prognosis in terms of
mortality, hospital LOS, ICU referral, ICU LOS, and need for mechanical ventilation.

Two reports, analyzing the cardiac DC role as a prognostic factor of COVID-19 [37,42],
found that a reduced DC was predictive of poor prognosis, both in terms of ARDS develop-
ment [42] and death [37].

Concerning the frequency parameters of HRV, both HF and LF were not signifi-
cantly different between critically ill COVID-19 survivors and non-survivors [37], and
LF was not able to forecast the hospital LOS in another report [38]. On the other hand,
Aragón-Benedí et al. [29] found that a HF higher than 80 n.u. predicted mortality with a
sensitivity of 100% and a specificity of 80%. Finally, a reduction of LF/HF ratio during the
SARS-CoV-2 infection was correlated with a shorter time to viral RNA negative conversion
and recovery from disease in one study [45].

Kohdadadi et al. [38] considered, in addition to the aforementioned LF component
of HRV, the respiratory sinus arrythmia amplitude (RSA), heart period (HP), and vagal
efficiency (VE). A higher VE predicted a shorter LOS only in patients aged <40 years, while
other parameters had no prognostic value.

Finally, Kamaleswaran et al. [37] reported that ApEn and SampEn were lower, while
SD1:SD2, AC, and the mode of the NN interval were higher in COVID-19 non-survivors
than in survivors.

Concerning the only study that analyzed the automated pupillometry role in pre-
dicting COVID-19 prognosis, analyzing the raw data of Battaglini et al. [30], although
no difference was found in the dynamic pupillometric parameters between critically ill
COVID-19 survivors and non-survivors, the pupillary constriction velocity (CV) was signif-
icantly lower in the COVID-19 patients who presented neurological complications. All the
data of interest regarding this topic are summarized in Table 3.

3.4.3. Role of Autonomic Parameters in Predicting SARS-CoV-2 Infection

Three studies analyzed the role of autonomic parameters as early markers of the
infection, and all these reports employed HRV measured by wearable devices as the
measure of choice [33,40,95].

The two reports including the participants of the Weltory study [96] found contrasting
results; Ponomarev et al. [95] did not find differences in SDNN and RMSSD values before,
during, and after SARS-CoV-2 infection, while Hijazi et al. [33] reported lower mean SDNN,
RMSSD, pNN50 and higher LF/HF and HR during the infection than in the “healthy time”.
Moreover, a model composed of five HRV variables (pNN50, RMSSD, LF/HF, SDNN,
and HR) and the answer to the question “How do you feel?” was found to be able to
discriminate the infection period from the healthy time [33]. It must be taken into account
that while the second work considered all the 186 Weltory participants with available data
on HRV parameters [33], the first one considered only 14 individuals who provided more
than five high-quality measurements in the period before and during COVID-19 [95].

Lonini et al. [40] found that a model composed of mean HR and walking cadence
only had a slightly lower predictive capacity (area under the curve—AUC = 0.908) in
discriminating between SARS-CoV-2-infected patients and healthy volunteers compared to
a model that analyzed several other variables, including the SDNN (AUC = 0.921).

A detailed representation of these data is available in Table 4.

4. Discussion

Despite limitations related to the inhomogeneous selection of the study population
and the methodology for detecting the involvement of the ANS, this systematic review can
conclude that acute SARS-CoV-2 infection leads to AD already during the acute stages of
the disease in terms of cardiovascular, sudomotor, and pupillometric functions. Moreover,
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autonomic alterations occurring during the acute stage of COVID-19 are often associated
with a worse outcome. Finally, the monitoring of autonomic parameters could lead to an
early suspicion of the infection, even before the symptoms’ occurrence, but this hypothesis
needs further validation.

Concerning the included studies, they were widely heterogeneous in terms of sample
size, method of infection diagnosis or SARS-CoV-2 detection, COVID-19 severity, mean age
of enrolled participants, tools employed to assess the autonomic functioning, and selection
of a control group, making the summarization process extremely difficult. Moreover, only
three studies were considered as “good” in the quality assessment [30,38,42].

Evaluating the characterization of autonomic involvement during the acute SARS-CoV-2
infection, most of the studies analyzed HRV to evaluate the ANS functioning [31,34–37,40,41,46,94].
Almost all studies certified an alteration of the HRV during the acute phase of SARS-CoV-2
infection [34–37,41,46,94], although the sympathetic or parasympathetic involvement was
not univocal. In fact, probably due to a wide variety of recording tools (from wearable
devices to continuous EKG monitoring), of the analyzed HRV parameters (i.e., time-domain,
frequency-domain, and non-linear measures), of the recordings’ length (from a few seconds
to over 24 h), it is difficult to interpret which tone between parasympathetic or sympathetic
is prevalent. However, attempting to summarize, one study reported the occurrence of
a parasympathetic predominance [36], another one a parasympathetic withdrawal [35],
another study did not find differences in HRV parameters between non-critically ill COVID-
19 patients and healthy controls [31], while two studies found a complex misalignment
of ANS [37,41], involving both parasympathetic and sympathetic branches. Therefore,
HRV parameters are strongly influenced by demographic factors, such gender and age [97],
which varied widely among the included studies, and they could be altered by several
clinical conditions [97–99], such as infectious diseases themselves [12,100–102].

The challenging question is whether HRV alterations are closely related to COVID-
19-related dysautonomia or whether this involvement is a consequence of a generalized
hyperinflammatory state, which could be associated with several other diseases. It is
noteworthy that, although HRV differed between COVID patients and healthy controls
in most of the included reports [34,36,40,41], a similar ASN involvement was found in
symptomatic and asymptomatic COVID-19 patients [34,36,94], and significant differences
in HRV were reported between patients affected by COVID-19 and pneumonia [94] or
sepsis from other etiologies [37]. A further confirmation of the unique relationship between
acute-phase COVID-19 and dysautonomia is provided by one study that analyzed the same
subjects before and during the SARS-CoV-2 infection, confirming the alteration of HRV in
the course of acute infection [35].

The other tools assessing autonomic parameters confirmed the involvement of ANS
in the acute phase of COVID-19 [31,41,47,48]. Bellavia et al. [31], in the sudomotor and
pupillometric analysis, found that non-critically ill hospitalized patients with acute COVID-
19 presented both sympathetic and parasympathetic impairment. Similarly, Yurttaser
Ocak et al. [48], in both static and dynamic pupillary evaluation, found a complex misalign-
ment of ANS during the infection. Only one study found no differences in the automated
pupillometry evaluation [47], probably due to the comparison between critically ill COVID-
19 patients and ICU-admitted patients with respiratory failure from other causes, since
pupillometric parameters are widely influenced by anesthetics, analgesics, and ionotropic
medications usually employed in ICU [103]. Milovanovic et al. [41] found a complex
misalignment of ANS, mostly characterized by a sympathetic withdrawal followed by a
parasympathetic hyperactivity, in almost all the diagnostic tests employed, such as CART,
BPV, HRV, and BRS. Moreover, the occurrence of verified “autonomic syndromes” in pa-
tients with acute COVID-19, such as orthostatic hypotension [44], POTS, hyperhidrosis,
pupil abnormalities, and small fiber neuropathy [39], further supports the hypothesis of an
autonomic involvement during the acute phase of the disease. In a recent published study,
we confirmed a higher prevalence of orthostatic hypotension in acute COVID-19 patients
than in healthy controls [104].
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Based on the above findings, we can assume that acute SARS-CoV-2 infection leads
to autonomic impairment, although which branch is predominantly involved between
sympathetic and parasympathetic does not seem easily understandable, probably due to
the complex imbalance between these systems.

Concerning the prognostic value of ANS involvement in determining the COVID-19
prognosis [29,30,32,35,37,38,42,43,45], obviously, the same observations as those mentioned
above can be made regarding the lack of homogeneity of the records employed to analyze
the HRV, both in terms of traces length and instruments used for measurements, and of the
HRV parameters considered. However, all the studies that considered HRV as a prognostic
factor found that at least one HRV parameter was able to predict COVID-19 prognosis,
regardless of the HRV measure considered. SDNN was a stronger predictor of prognosis,
since its reduction predicted an unfavorable prognosis of COVID patients in four out of
five studies [29,32,37,43,45]. Concerning other HRV parameters, contrasting results were
found regarding their prognostic role in acute COVID-19 patients, except for the DC, whose
reduction was associated with a poor prognosis [37,42]. These results confirm the evidence
of previous studies, which report that a reduction in SDNN and DC is associated with a
poor prognosis in several medical conditions [105–109], including pneumonia from other
causes [110] or sepsis [111].

On the other hand, in the only study in which another tool to detect dysautonomia
was employed, no differences in automated pupillometry evaluation were found between
ICU-admitted COVID-19 survivors and non-survivors [30]. However, the data regarding
the prognostic role of pupillometric assessment were derived by the author of this review
from the raw data, and this analysis was not the original aim of the study itself.

With these assumptions, we can state that the prognostic role of AD during the acute
SARS-CoV-2 infection is the strongest evidence emerging from this review, considering the
large number of concordant studies.

However, it is not clear whether ANS involvement worsens the prognosis of COVID-
19 patients or whether the autonomic misalignment is just a marker of a severe disease
leading to an intense proinflammatory state, a condition able to modify the autonomic
balance [112–114]. Indeed, all the populations recruited in the studies analyzing this topic
included hospitalized patients in regular or sub-intensive wards [35,38,42,43,45] or in
ICU [29,30,32,37], suggesting a selection bias of patients with a more severe SARS-CoV-2
infection than the general COVID-19 population. Moreover, in several studies, the levels
of proinflammatory markers correlated with HRV parameters [78,94] or clinical scores of
disease severity [78], supporting the hypothesis that severe forms of the disease could
lead to a dysregulation of the immune system and a consequent ANS imbalance. On the
other hand, the ability of HRV parameters to predict not only the short-term but also the
medium-term COVID-19 outcome [29,35,43,45] or intensive care unit admission [43], and
the SDNN ability to foresee the rise in CRP over the next 72 h, [32] seem to support the
hypothesis that AD precedes the clinical and laboratory worsening of the disease and
COVID-19-related inflammation. Further controlled studies, including mild COVID-19
patients and using various tools to analyze the ANS functioning, should be performed in
order to clarify this point.

Finally, in two out of three studies analyzing the role of autonomic parameters in
predicting SARS-CoV-2 infection, HRV was found to have a good predicting capacity [33,40].
These findings could suggest that an autonomic imbalance could be an early feature of
the disease, presenting even before the respiratory involvement. However, in one of these
studies, the SARS-CoV-2 infection was self-reported by the study participants [33], and
in the other, the test used to perform the COVID-19 diagnosis was not specified [40].
Moreover, both studies considered the PRV obtained from wearable devices as a surrogate
of HRV [33,40]. Although the ability of HRV measured by wearable sensors to predict
infection has already been verified for other viral diseases [115], no clear evidence on the role
of AD in predicting COVID-19 could be affirmed from this review. Further studies, using
various autonomic parameters and comparing the AD predictive capacity in identifying
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the SARS-CoV-2 infection compared to other infectious diseases, are needed in order to
clarify this point.

The main limitation of this review is the low amount of good-quality studies included.
As mentioned before, the included reports were greatly heterogeneous on several critical
points. Moreover, the tool employed to evaluate the AD was HRV in most studies, and this
parameter alone is not enough to define the presence of an autonomic imbalance and its di-
rection. Finally, the protocol of this review was not registered in an online systematic review
database (i.e., the international prospective register of systematic reviews - PROSPERO),
so the extracted data could be altered by selection biases. Further studies, conducted on
larger samples and analyzing the autonomic functioning from several points of view, are
needed to reinforce the evidence emerging from this review, especially concerning the role
of autonomic parameters in predicting the SARS-CoV-2 infection.

5. Conclusions

SARS-CoV-2 is associated with ANS involvement already during the early stage of the
disease, which is associated with a poor prognosis. Further evidence is needed in order
to clarify the role of ANS alterations in predicting the SARS-CoV-2 infection. The results
emerging from this review should encourage future research to investigate the pathogenic
mechanism of SARS-CoV-2-related ANS involvement and to identify patients with a high
risk of developing AD and severe infection diseases. We can therefore hypothesize that a
routinary examination of AD in COVID-19 patients could lead to a prognostic stratification
of acute SARS-CoV-2 infection.
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