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Abstract

The variability of clinical course and prognosis of COVID-19 highlights the necessity of

patient sub-group risk stratification based on clinical data. In this study, clinical data from a

cohort of Indian COVID-19 hospitalized patients is used to develop risk stratification and

mortality prediction models. We analyzed a set of 70 clinical parameters including physio-

logical and hematological for developing machine learning models to identify biomarkers.

We also compared the Indian and Wuhan cohort, and analyzed the role of steroids. A boot-

strap averaged ensemble of Bayesian networks was also learned to construct an explain-

able model for discovering actionable influences on mortality and days to outcome. We

discovered blood parameters, diabetes, co-morbidity and SpO2 levels as important risk

stratification features, whereas mortality prediction is dependent only on blood parameters.

XGboost and logistic regression model yielded the best performance on risk stratification

and mortality prediction, respectively (AUC score 0.83, AUC score 0.92). Blood coagulation

parameters (ferritin, D-Dimer and INR), immune and inflammation parameters IL6, LDH and

Neutrophil (%) are common features for both risk and mortality prediction. Compared with

Wuhan patients, Indian patients with extreme blood parameters indicated higher survival

rate. Analyses of medications suggest that a higher proportion of survivors and mild patients

who were administered steroids had extreme neutrophil and lymphocyte percentages. The

ensemble averaged Bayesian network structure revealed serum ferritin to be the most
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important predictor for mortality and Vitamin D to influence severity independent of days to

outcome. The findings are important for effective triage during strains on healthcare

infrastructure.

Introduction

The World Health Organization (WHO) declared the outbreak of coronavirus disease 2019

(COVID-19) as a global health emergency of international concern. Originating in Wuhan,

China, the disease has spread to the rest of the world. As of 24thJuly, 2021, over 31 million con-

firmed cases of COVID-19 have been detected in India alone. Due to the sudden spike in the

number of cases, healthcare systems across the world including India’s are under tremendous

pressure for making tough decisions in resource allocation among affected patients. Early risk

stratification through identification of key biomarkers is important as it holds potential for

understanding the relative severity among infected patients sub-group and hence possible help

in the decisions for better use of the healthcare infrastructure.

COVID-19 is a highly contagious respiratory infection with varying symptoms that include

fever, dry cough, nasal congestion and breathing difficulties [1,2]. In more severe cases, it can

cause pneumonia, severe acute respiratory syndrome, cardiac arrest, sepsis, kidney failure and

death [3,4]. WHO classifies the risk into the following categories: critical, severe, and moder-

ate/mild. By definition, critical patients require ventilation, severe patients require supplemen-

tal oxygen, moderate patients have pneumonia but do not require oxygen, and mild patients

only have upper respiratory tract infection. The cause of death is generally respiratory failure,

but few deaths have been caused by multiple organ failure (MOF) or chronic co-morbidities

[2,5]. Those at a higher risk are the elderly and people with co-morbidities, such as cardiovas-

cular diseases and diabetes [6,7]. However, symptoms at onset are relatively mild and a signifi-

cant proportion of patients do not show apparent symptoms prior to the development of

respiratory failure [2,5]. Clinically, this makes it difficult to predict the progression of severity

in patients until respiratory failure develops. Early risk prediction and effective treatment can

reduce mortality as well as help prioritize healthcare [8]. Artificial intelligence (AI) based solu-

tions may help in clinical decision-making by providing predictions that are accurate, fast, and

interpretable. Recent studies have used various machine learning algorithms for analyzing

COVID-19 patients’ clinical data and providing disease prognosis [9–11]. Studies have also

been conducted to compare the performance of different machine learning algorithms for

multivariable mortality risk prediction [12–14]. Kuno et al. built a model based on Light Gra-

dient Boosted Machine (LGBM) for predicting in-hospital mortality of COVID-19 patients

administered with steroids and remdesivir. Hao et al. [15] examined COVID-19 patients

admitted in Massachusetts to predict level-of-care requirements based on clinical and labora-

tory data. They compared machine learning algorithms (such as XGBoost, Random Forests,

SVM, and Logistic Regression) and predicted the need for hospitalization, ICU care, and

mechanical ventilation. The most effective features for hospitalization were vital signs, age,

BMI, dyspnea, and comorbidities. Opacities on chest imaging, age, admission vital signs and

symptoms, male gender, admission laboratory results, and diabetes were the most effective

risk factors for ICU admission and mechanical ventilation. Xie et al. [16] used multivariable

logistic regression for the classification task through identifying SpO2, lymphocyte count, age

and lactate dehydrogenase (LDH) as the set of important features. A nomogram was created

based on these features to deliver the probability of mortality. Ji et al. [17] built a scoring

model, named as CALL, for prediction of progression risk in COVID-19 patients from
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Chinese hospitals. They used Multivariate Cox regression to identify risk factors associated

with progression, which were then incorporated into a nomogram for establishing a prediction

scoring model. Co-morbidity, older age, lower lymphocyte count, and higher lactate dehydro-

genase were found to be independent high-risk factors for COVID-19 progression. Yan et al.

proposed an interpretable mortality prediction model for COVID-19 patients [18]. They ana-

lyzed blood samples of 485 patients from Wuhan, China, and created a clinically operable sin-

gle tree through XGBoost. The model used three crucial features lactate dehydrogenase

(LDH), lymphocyte (%) and C-reactive protein (CRP). The decision rules with the three fea-

tures and their thresholds were devised recursively. This provided an interpretable machine

learning solution with at least 90% accuracy. Karthikeyan et al. [19] analyzed the same dataset

through comparing various machine learning algorithms. XGBoost feature selection and neu-

ral network classification yielded the best performance with the important biomarkers selected

as neutrophil (%), lymphocyte (%), LDH, CRP and age. However, detailed studies on risk strat-

ification and mortality prediction using hospital admitted COVID-19 Indian patients’ clinical

data needs a closer look. This becomes especially relevant as India was recently swamped with

the second COVID-19 surge. At the same time, risk stratification based identification of bio-

marker/s can be prepared for preparedness for possible future waves.

Most machine learning based risk stratification and mortality prediction algorithms ana-

lysed patients from China or the USA. Studies have suggested that the virus has different vari-

ants of concern (VOC) around the globe due to mutations [20–23]. Moreover, the physiologic

response to the virus and the eventual course of disease also depends on regional factors such

as population characteristics and hospital treatment regimen. Hence, the studies are not uni-

versally applicable and it is critical to examine cohorts from India to aid the Indian healthcare

systems. In this study, patients with confirmed COVID-19 infection from a hospital cohort in

New Delhi, India were examined to identify the key features affecting severity and mortality.

The machine learning models built using these key features can aid in risk stratification and

mortality prediction. A comprehensive comparison between the cohorts from New Delhi and

Wuhan [18] has also been done to understand the cohort-specific differences. Finally, models

that can help discover actionable influences and potential causal mechanisms are important to

discover actionable influences in complex decision making scenarios [24–26]. To this end, a

directed acyclic graphical model (Bayesian network) approach was taken to infer and visualize

the effect of the potential influencers for decision making in the New Delhi cohort.

Methods

Data acquisition and participants

The data in this study was collected from hospital admitted patients with confirmed diagnosis

of COVID-19 at Max group of Hospitals in New Delhi, India between June 3rd and October

23rd, 2020. The patient records were collected and anonymized at the data warehouse of

CSIR-IGIB. The use of collected data in this study has been approved by ethics committees of

both Max Hospital and CSIR-IGIB. An informed and written consent was obtained from the

participants themselves or from a legal guardian for participants under the age of 18. A total of

544 patients with a clear final outcome were considered in our study. Among these, diagnostic

lab reports were available as a time series of test results. The data collected contains 357 distinct

parameters (or biomarkers) that include vitals, symptoms, co-morbid conditions and lab

reports from 161 different tests along with the medicines administered for treatment. Multiple

tests were recorded for each patient during their stay at the hospital, varying from 1 to 134 rec-

ords per patient. All methods and experiments were carried out in accordance with relevant

guidelines and regulations.
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Risk stratification and statistical analysis

Patients were categorized into risk levels-based on the severity of their condition during their

stay at the hospital. For patients with no clinical record referring to their severity level, their

severity was inferred from the corresponding level of respiratory support required by the

patient, as correlation between COVID-19 severity and hypoxemia being a well-documented

phenomenon in multiple studies [27–29]. Considering the size of the dataset and the levels of

respiratory support provided, all the patient were categorized into two levels, mild and severe,

where all patients who died or who were under some form of respiratory support or whose

condition was specifically mentioned to be severe were categorized into severe/high risk group

and all the remaining patients were put under mild/low risk group. The resulting dataset fol-

lows the data distribution as shown in Table 1.

The 15 most frequent tests corresponding to 38 biomarkers were selected for analysis based

on the availability of clinical data. Five biomarkers—WBC count, neutrophil lymphocyte ratio

(NLR), lymphocyte monocyte ration (LMR), neutrophil monocyte ratio (NMR), and platelet

to lymphocyte ratio (PLR) were manually calculated from various blood cell counts available

owing their reported importance in predicting mortality due to COVID-19 [30,31]. In our

study, 209 unique co-morbid conditions were observed in patients. To aggregate the co-mor-

bid conditions as per known effects of COVID-19on organ systems vis-à-vis respiratory [32],

cardiac [33], nervous [34], renal [35], and hepatic [36], we grouped all the co-morbid condi-

tions into 11 groups based on systemic and multi-systemic diseases [7]. This also prevents

increasing the chances of over fitting due to increase in dimensionality. The groups being

respiratory, nervous, circulatory, renal, thyroid, liver related and cancer, hypertension, diabe-

tes, hyperlipidemia and others as shown in S1 Table. This information was encoded into 11

binary features, each representing one group where a sample assumes a value one if the patient

has one or more co-morbid conditions that fall into that group. To incorporate and analyze

the effects of medical prescriptions, the information regarding prescription of steroids and

antiviral drugs was encoded into two binary features.

This leads to 70 unique parameters measured which include 11 grouped co-morbid condi-

tions, 14 clinical parameters, 2 RT-PCR parameters and 43 lab test results. An exhaustive list of

categorical parameters can be found in S1 Table and continuous parameters can be found in

S2 Table. To evaluate the significance of each parameter considered for risk stratification and

mortality prediction, we calculated the p-value using the Chi-Squared test [37] for the categori-

cal features and using the ANOVA f-value test for the continuous features.

Comparison with Wuhan cohort based ML model

To understand the accuracy difference in mortality prediction of machine learning models

across different populations, we evaluated how machine learning models trained on non-

Indian cohorts perform in predicting mortality on the Indian cohort. We used the best per-

forming model reported by Karthikeyan et.al [19] for predicting mortality using data from

Table 1. Distribution of the number of patients across various classes.

Data Distribution

Risk Category Quaternary Stratification Mortality Binary Stratification

Home Quarantined 8 (1.47%) 483 (88.79%) 244 (44.85%)

Hospitalized 236 (43.38%)

On Respiratory Support 239 (43.93%) 300 (55.15%)

Died 61 (11.21%) 61 (11.21%)

https://doi.org/10.1371/journal.pone.0264785.t001
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Wuhan, China [18] to examine its applicability on the Indian cohort. The Wuhan cohort com-

prises of data collected from 375 patients who were admitted to Tongji Hospital, Wuhan. The

model evaluated is a neural network trained to predict mortality from CRP, LDH, neutrophil

(%) lymphocyte (%) and age. For predicting mortality in Indian Cohort using the same model,

we selected 3092 data points where at least 3 of the required 5 features were present. KNN

imputation was done to take care of the missing features.

To understand the plausible cause of difference in prediction accuracy of machine learning

models across populations, we explored the differences between Wuhan and New Delhi

cohorts in key biomarkers across survivors and the dead [18,19,38]. We choose mortality as

the indicator for comparison as it does not depend on subjective labeling. The feature density

histograms were analyzed to examine the variations in biological parameters across survivors

and the dead between cohorts of Wuhan and New Delhi. The Kolmogorov-Smirnov test (K-S

test) [39] was used to analyze variations in the density distributions of the important biomark-

ers between both classes across cohorts. The K-S test is a non-parametric test that quantifies

the distance between the empirical distributions of samples sampled from two distributions.

Machine learning pipeline

Overall pipeline used in this study for risk stratification and mortality prediction is depicted in

Fig 1. We compared several machine learning algorithms namely XGBoost, random forests,

Support Vector Machine (SVM) and logistic regression for evaluating their predictive perfor-

mance. A detailed account of the step-by-step procedure is presented in the following sections.

Data pre-processing

For each patient in the dataset, there were multiple lab test results recorded on different days

before the final disease outcome. We have considered each individual recorded test result as a

Fig 1. Machine learning pipeline for the development of the risk stratification and mortality prediction.

https://doi.org/10.1371/journal.pone.0264785.g001

PLOS ONE COVID-19 Risk stratification for public health

PLOS ONE | https://doi.org/10.1371/journal.pone.0264785 March 17, 2022 5 / 20

https://doi.org/10.1371/journal.pone.0264785.g001
https://doi.org/10.1371/journal.pone.0264785


unique data point for training and testing as has been done before [18,19]. Each sample has a

dimensionality equal to the number of unique parameters measured across all lab tests consid-

ered for the analysis. The values in a sample are filled in with the test results that a particular

sample represents and the rest of the values are left empty. These parameter values that are left

empty are imputed with the nearest value of the parameter from the patient’s past test results.

Some samples may still have missing parameters if a patient does not undergo a particular test.

Such missing values are imputed with the median of the respective parameter across the train

set. Patient demographics and vitals data were recorded once per patient and were added to

each sample where they are kept the same for all the samples of a particular patient. This leads

to 15648 samples from 544 patients where each sample contains 70 unique parameters.

To build and validate machine learning models we split patient sub-groups with respect to

the day of outcome. 429 patients with clear outcome by 11 September 2020 were considered

for model development, and the remaining 115 patients were considered as a part of a holdout

test set. This method of splitting is adopted as models developed will be used to aid future

patients where it is known that the COVID-19 and responses of its infected patients may

change with time [20–23]. The day wise distribution of samples in both the train and test sets

for risk stratification and mortality prediction is shown in S1 and S2 Figs, respectively.

Feature selection

Among the 70 features chosen for analysis, selecting the most influential biomarkers for risk

stratification and mortality prediction by eliminating redundant or unimportant parameters is

crucial to avoid over-fitting when the size of the dataset is small. Moreover, a lower number of

features would mean economical and faster tests for efficient risk profiling given the high

influx of patients on a daily basis and subsequently increased efficiency of the decision-making

process of the healthcare systems. The relative importance of a biological parameter provided

by an XGBoost classifier fit on the training data for a particular task is used as the measure of

importance for selecting features. XGBoost is a powerful decision-tree-based ensemble algo-

rithm that uses a gradient boosting framework and estimates features that are the most dis-

criminative of model outcomes [40]. The relative importance of each feature is determined by

its accumulated use in each decision step in each tree of the ensemble.

The number of features to utilize for model training was obtained by iteratively training an

XGboost model on a collection of the top K most important features while increasing K by 1

during each iteration. The collection of features that achieved the best performance for 5-fold

cross validation on the training set was considered as the set of key features to train the final

models. The feature importance was obtained separately for the binary risk stratification and

mortality prediction models. The classification performance for selecting the optimal set of

features is evaluated using AUC score for risk stratification and average precision score for

mortality prediction. Average precision score is used for mortality prediction due to the imbal-

ance of samples representing fatal cases in mortality prediction.

Training

After obtaining the collection of important features, duplicates that arose due to the elimina-

tion of less important features were removed from the train set. The set was then normalized

to a range of 0–1 using min-max scaler to avoid any biases due to differences in scales across

parameters. The train set was then resampled using the SMOTE algorithm to reduce bias that

may arise due to the class imbalance observed. The SMOTE algorithm was chosen to generate

synthetic samples of the minority class due to its good performance. Various algorithms were

trained and compared on the resampled dataset to classify the samples depending on the task,
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either risk stratification or mortality prediction, with their respective feature set. We also built

another set of models trained on only patient vitals to gauge the prediction performance that

can be achieved with data acquired before blood test results.

Testing

The hold out test data of 115 patients was normalized with min-max scaler to a range of 0–1

using the min-max statistics obtained from the training set. Then the models built were evalu-

ated on the test set. We report the AUC and F1-scores of the algorithms as the mean and stan-

dard deviation of performance of trained models from 5-fold cross validation on the test set.

The model achieving the best performance was then tested and analyzed on the set of samples

corresponding to each individual day for a period of 14 days before the final outcome to

observe relevant trends.

Evaluation metrics

The following metrics were recorded to assess the predictive performance of the supervised

models. Formulae for the calculation of all metrics are given below. Here, TP, TN, FP, and FN

stand for true positive, true negative, false positive and false negative rates, respectively.

AUC (Area under ROC curve). AUC measures the area under the receiving operator

characteristic (ROC) curve, which plots true positive rate against false positive rate. AUC is

also commonly used in situations where the data has imbalanced classes, as the ROC measures

performance over many different thresholds.

• True Positive Rate (TPR): This measures how often the model predicts that a patient will sur-

vive when the person survives.

TPR ¼
TP

TP þ FN

• False Positive Rate (FPR): This measures how often the model predicts that a patient survives

when the person actually does not survive:

FPR ¼
FP

FPþ TN

F1 score. The F1 score measures the harmonic mean of precision of recall and is often

preferred to accuracy when the data has imbalanced classes:

F1 Score ¼
2 � Precision � Recall
Precisionþ Recall

where,

Precision ¼
TP

TP þ FP

and,

Recall ¼
TP

TPþ FN
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Structure learning

A data-driven structure learning approach was taken to learn actionable interventions for clin-

ical decisions. Eleven Bayesian networks were ensembled to create the consensus graph. Each

network was learned from a bootstrapped sample of the data, hence expected to be slightly dif-

ferent for each run. Hill climbing optimization algorithm was used to learn each network

using the Akaike Information Criterion score. Majority voting was used to construct the con-

sensus Bayesian network with the condition that edges with consistent presence and direction

in at least 6 out of 11 networks were selected. The consensus network was then parameterized

with conditional probabilities using junction tree algorithm, thus marginal probabilities and

conditional probabilities were inferred using Exact Inference method of Bayesian network

inference [41]. Structure learning, inference, and visualization were carried out using wiser
[25] package in R [42].

Results

Patients’ clinical diversity across disease sub-phenotype

Comparative analysis of clinical features between low and high-risk patients was carried out.

S1–S4 Tables show the diversity in categorical and continuous features between high and low

risk groups as well as between survivors and the dead. Fig 2A captures the distribution of

patients across respiratory/ventilator support and the hospital stay. The KS test showed that

none of the continuous features followed a normal distribution and hence the medians and

interquartile ranges are reported. The patients’ age ranged between 9 and 98 years with the

median age of 58 (48–66) years. The median age for the high-risk patients was 61 (53–68)

years while for the low-risk patients it was 53 (41–64) years. Out of the 544 patients, 164

(30.15%) were females while 380 (69.85%) were males. The blood clotting (D-dimer & ferritin),

inflammation (CRP, LDH) and immune features (NLR, LMR, NMR, PLR and IL6) were sig-

nificantly different for the low and high-risk groups. However, a significant overlap was

observed in most of the parameters, both when comparing the high-risk vs. low-risk and sur-

vived vs. dead categories precluding the possibility of the development of simple classification

Fig 2. Clinical sub-phenotypes and the co-morbidity feature diversity. (A) Clinical sub-phenotype diversity of the

COVID-19 patients. The patients are grouped into Recovered and Dead. Each circle represents individual patients;

the color of the circle indicates the severity of the patients whereas the size of the circle represents duration of hospital

stay. The numbers on the circle represents the duration in ICU. (B) Presence of different co-morbid conditions in

mild and severe patients. It represents a comparative view of the co-morbidities, patients with mild severity are

represented by blue color, while ones with severe COVID-19 infection are represented by orange.

https://doi.org/10.1371/journal.pone.0264785.g002
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models. We also observed differential abundance of co-morbidities across mild and severe

patients (Fig 2B). The increased incidence of hypertension, diabetes and cardiovascular co-

morbidities was seen in severe COVID-19 patients in our cohort.

Performance of Wuhan cohort trained model on the Indian cohort

Karthikeyan et.al. [19] built a neural network that predicted mortality in Wuhan cohort with

an accuracy of 96.5%, using only five parameters, age, lymphocyte (%), neutrophil (%), LDH

and CRP. The same model when tested on the New Delhi cohort (current dataset) predicted

mortality with an accuracy of only 58%. The drop in performance of the model when tested on

the Indian cohort shows that there is a significant difference between the two cohorts. Fig 3A

demonstrates that the Neural Net was performing much better in identifying the patients who

died (precision 84.85%) over those who survived (precision 49.54%). This suggests that the

patients who were expected to die based on the findings from Wuhan data were actually sur-

viving in the Indian cohort.

To understand the difference between cohorts, we compared the feature density histograms

of Indian and Wuhan cohorts (Fig 3B). It was observed that survival of patients with LDH in

Fig 3. (A) Confusion matrix of neural net trained on Wuhan data and tested on Indian data. This was done by

comparing actual and predicted mortality of patients in the dataset. (B) Comparison of the normalized histogram

plots of important features useful for predicting mortality from Wuhan and Indian Cohorts. It shows the

comparative distribution of clinical parameters between death and survival cases. (C) Pair-wise distances between

distributions of important features across the Indian vs. Wuhan survived and dead classes. Distance values were

calculated through Kolmogorov–Smirnov test.

https://doi.org/10.1371/journal.pone.0264785.g003

PLOS ONE COVID-19 Risk stratification for public health

PLOS ONE | https://doi.org/10.1371/journal.pone.0264785 March 17, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0264785.g003
https://doi.org/10.1371/journal.pone.0264785


the range 500-1000units per liter (U/L) is much higher in Indians compared to Wuhan. It can

also be observed that there are almost no survivors with an LDH value greater than 800U/L in

the Wuhan cohort while patients with LDH values of even about 1000U/L have survived in the

Indian Cohort. The survivability of patients with CRP greater than 50U/L is higher in the

Indian cohort compared to Wuhan. Similar conclusions can be drawn with Indian patients

having relatively lower lymphocyte (%) and higher neutrophil (%). This is interesting as the

likelihood of survival with higher neutrophil (%) or lower lymphocyte (%) is much lower [43].

Various matrices with two sample K-S statistics that measure pair-wise distances between

distributions of important biomarkers of survivors and the dead across Indian and Wuhan

cohorts has been shown in Fig 3C. It is observed that the distance between distributions of the

Indian Recovered (IR) and Indian Dead (ID) is significantly lower compared to the distance

between the distributions of the Wuhan Recovered (WR) and Wuhan Dead (WD) for all the

five biomarkers. This is mainly due to the differences between distributions of recovered across

Indian and Wuhan as the distance between the cohorts of the dead is low and the distance

between cohorts of the recovered is high. This suggests that Indian patients who were at risk of

death (with extreme neutrophil and lymphocyte percentages) have survived.

Characteristics of risk stratification models

XGboost was used to rank features based on the contribution of each feature to the perfor-

mance in risk stratification. S3 Fig shows the list of the top 25 features sorted in descending

order with respect to their relative importance in risk stratification. The 11 features that were

selected to train the models in the order of their importance are absolute neutrophil count,

LDH, lymphocyte (%), neutrophil (%), diabetes, ferritin, INR, interleukin-6 (IL-6), SpO2,

absolute eosinophil count and packed cell volume. S4 Fig shows the density distributions for

the top 4 features identified.

Comparison of the performance of various algorithms showed XGboost algorithm to per-

form the best with an F1-score of 0.810±0.01 as seen in Fig 4A. The model also yielded better

AUC (0.833±0.01) and average precision (0.891±0.01) (S5 Table). The confusion matrix of

predictions from an XGboost model trained on the entire train set is shown in S5 Fig. We also

Fig 4. (A) Comparison of F1 scores for various machine learning models that use patient vitals and lab test results. (B)

Performance of the ML models with respect to number of days to outcome.

https://doi.org/10.1371/journal.pone.0264785.g004
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evaluated how the performance of model changes with days to outcome, where the day of out-

come is either the day of discharge from the hospital or the day of death. Fig 4B shows that the

performance of the risk stratification model decreases as the samples approach the day of out-

come. This suggests that the feature difference between low risk and some high-risk patients

who are recovering is decreasing towards the day of outcome. However, the performance of

the mortality prediction model increases towards the day of outcome. Hence, selective use of

these two models depending on the number of days from infection may be effective.

Further, we trained and evaluated models with only patient vitals, co-morbidities, and medica-

tion information to evaluate the predictive performance that can be achieved without lab test

results. S6 Fig shows the F1 scores of various models that were built to use only these patient’s infor-

mation. The random forests algorithm performed the best with an F1 score of 0.76±0.02. The

important features selected were administration of steroids, SpO2, diabetes, thyroid problems, pres-

ence of any other co-morbidities, weight, temperature, respiration rate, hypertension, and BMI.

Characteristics of mortality prediction models

Similar to risk stratification, the features for mortality prediction were also analyzed for. We

observed the top 25 features with respect to their relative importance in mortality prediction,

sorted in descending order (S7 Fig). The nine features that were selected to obtain the results

in the order of their relative importance are D-dimer, ferritin, lymphocyte (%), NLR, WBC,

Trop I, INR, IL-6 and LDH. A representative density distribution for the top 4 identified fea-

tures has been shown in S8 Fig.

Among the models tested, Logistic regression performed the best with an F1-score of 0.710

0.02 (Fig 4A). The model also yielded better AUC (0.927 0.01) and average precision (0.801

0.02) (S6 Table). We also observed that the performance of the model increases as the samples

approach the day of outcome as (Fig 4B). We trained and evaluated models with only patient

vitals, co-morbidities, and medication information to evaluate the predictive performance that

can be achieved with data excluding lab test results. S6 Fig shows the F1-scores of various mod-

els that were built using the selected patient information. SVM performed the best with an F1

score of only 0.34 0.03. The important features selected were hypertension, co-morbidities

related to liver, cancer, SpO2, administration of antivirals and respiration rate.

Possible role of medication (steroids)

Closer look at the medication revealed that steroids have used in majority of the patients.

Whether that has potential role in disease outcome? We compared the differences in neutro-

phil and lymphocyte percentages across patients who were administered steroids and patients

who were not. Of the 544 patients, 338 (62.13%) patients were administered steroids. It was

observed that Methylprednisolone was the most widely administered steroid that was given to

262 different patients, followed by Dexamethasone (89 patients), Prednisolone (11 patients)

and Hydrocortisone and Triamcinolone were given to one patient each. It is to be noted that

there were instances where a single patient was administered with more than one of these.

Fig 5 shows the density histograms of neutrophil and lymphocyte percentages for survivors

and mild patients. It is observed that a higher proportion of the survivors and mild patients

who were administered steroids had extreme neutrophil and lymphocyte percentages indicat-

ing that administration of steroids may have had an impact on the patient outcome.

Explainable AI framework for guiding actions

We learned the structure of model in an explainable AI approach to serve as a framework for

decision-making in the Indian dataset. This requires the models to discover confounding,
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mediation and competing influences. These influences are discovered and transparently

revealed as network motifs, i.e., fork, chain and collider network edges in the graphical model

[41]. The overall mortality was primarily indicated by severity of illness and ferritin levels in

the blood. Ferritin was found to be the single most important predictor of mortality with a

75% increase in probabilistic influence for death when high levels of ferritin were present.

Among many novel influences discovered, our explainable AI model revealed disease severity,

platelet count, pulse rate and serum Vitamin D levels. Importantly, the latter was independent

of disease severity. Setting the Vitamin D level as high in the model led to a 19% increase in

probability of increase in days to outcome (mortality). The overall mortality was primarily

indicated by severity of illness and ferritin levels in the blood. Our model not only confirms

these findings but also quantifies these in a contextual network structure that can be deployed

as a model for New Delhi settings (Fig 6).

Discussion

COVID-19 has spread around the globe and the need for fast and effective resource allocation

is urgent, but very few studies have examined Indian cohorts. In this study, we analyzed 15648

samples of 544 patients, with confirmed diagnosis of COVID-19. Each sample contains 70

unique parameters including the grouped co-morbid conditions, patient vitals, patient demo-

graphic information, and lab test results. We found that existing mortality prediction models

trained on Wuhan cohort cannot be directly used for mortality prediction on the Indian

cohort due to cohort specific differences in response to COVID-19. We observed greater over-

lap between dead and survivors’ parameter/biomarker distributions in the Indian cohort than

in Wuhan. It was observed that KS distance between distributions of WR and IR for neutrophil

Fig 5. Distribution plots for lymphocyte (%) and neutrophil (%) in steroid administered and non-administered

patients having mild and severe disease.

https://doi.org/10.1371/journal.pone.0264785.g005
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and lymphocyte percentages is comparatively high while the distance between the distributions

of the dead (WD, ID) across the cohorts was low. This shows that the increased overlap in the

distributions in the Indian cohort is primarily due to survivors. Patients in India recovered

even when their neutrophil and lymphocyte percentages reached levels similar to the levels of

patients who died in Wuhan. A probable reason for the low mortality in the Indian cohort

may be the inclusion of steroids and immunosuppressant drugs in the treatment protocols

early on in the timeline of the pandemic. Studies have shown that use of steroids like Dexa-

methasone lowered COVID-19 fatalities when administered to patients who require supple-

mental oxygen [44–47]. We observed a relation between the usage of these drugs and the

survival of patients with extreme lymphocytes and neutrophils counts, which are associated

with mortality (Fig 7) [18,19,38,48,49].

Machine learning models for risk stratification and mortality prediction were developed

based on features extracted from Indian cohort. The important features for risk stratification

included blood parameters, diabetes, comorbid condition and oxygen saturation level. On the

other hand, mortality prediction is dependent only on blood parameters, inclusive of NLR,

WBC and Trop I. Blood coagulation parameters (ferritin, D-Dimer and INR), immune and

inflammation parameters (IL6, LDH and Neutrophil (%)) are common features for both risk

and mortality prediction. Some of these features have been identified as predictors of the pro-

gression of the COVID-19 disease [18,19,38,49,50].

The best performing model for risk stratification on the Indian dataset was the XGboost

classifier, which achieved an F1-score of 0.81±0.01 while Logistic regression yielded the best

performance for mortality prediction with an F1-score of 0.71±0.02. We also examined the

performance of these algorithms when trained on a dataset comprising of only vitals and clini-

cal attributes, as these are features that can be acquired quickly and may aid in the initial deci-

sion-making process. The best performing models gave an F1 score of 0.76±0.02 for risk

Fig 6. Explainable AI model to discover and quantify actionable factors. A zoomed in portion (A) of the complete

structure, (B) learned as directed acyclic graph revealed the key factors for Mortality and Days to outcome. Each node is

a variable, and the edges represent direction of probabilistic influence learned from data. In the Indian dataset, model

inference revealed that Serum Ferritin was the most important predictor of Mortality. Further, high levels of

25-hydroxy vitamin D delayed the Days to outcome independent of Severity Class, thus indicating a potential protective

effect despite the outcome being primarily determined by severity. The explainable framework is proposed to be used

for reasoning and decision-making in the Indian settings. Here we take two examples of outcomes of interest, i.e.

mortality and days to mortality. The change in percentage probability of the outcome in a certain interval (e.g. high

mortality or lower number of days to death) was inferred conditioned upon the learned associations in the network. S7

Table shows the inferences using the Exact Inference algorithm on the learned structure, which quantify the key

influences.

https://doi.org/10.1371/journal.pone.0264785.g006
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stratification and 0.34±0.3 for mortality prediction. The low performance of these models

shows the importance of blood parameters in describing the progression of COVID-19.

We observed that the progression of COVID-19 is accompanied by hemocytometric

changes with respect to the numbers of days to outcome (Fig 7). The final day of outcome was

considered as it is a more stable reference point compared to the day of admission as a patient

may be identified and admitted late in the progression of the disease. The patients who died

showed elevated levels of D-dimer, ferritin and NLR, while lymphocyte (%) levels dropped.

The separation of the biomarkers’ values between the two classes is observed to be consistent

through the course of the disease. This shows their plausible significance in making predic-

tions. Interestingly, the mortality prediction model performed better when nearing the day of

outcome whereas the performance of the risk stratification model decreased as we move

towards the day of the outcome. The differences between the survivors and the dead increase

as the time progresses as survivors recover from the conditions whereas patients who die do

not, making it easier for any predictive model to classify. The performance of risk stratification

decreases as we move towards the day outcome because as patients recover the differences

between low risk and high-risk candidates converge, making it more difficult for the model to

classify.

Our study provides a preliminary assessment of the clinical course and outcome of Delhi

patients. We intend to test these models in the future on larger data collected from multi-hos-

pitals located in different geographic locations in India. As more data becomes available, the

whole procedure can easily be repeated to obtain better models and more insights. Although

we had a pool of about 70 clinical measurements, here our modelling principle is a trade-off

between the minimal number of features and the capacity for good prediction, therefore avoid-

ing overfitting. Nevertheless, studies done on other cohorts have also identified these features

as key predictors [49].

The adoption of AI in healthcare is contingent upon building trust with the clinicians.

Hence, models that can encode the complexity of interactions between predictors yet are

transparent are crucial. In a recent systematic review of more than 400 AI models proposed for

Fig 7. Biomarker variations in different patient classes in due course of disease progression by (A) risk (B) mortality

parameters. Showing consistent separation of biomarker levels in mortality prediction parameters and a decrease in

separation of risk prediction parameters.

https://doi.org/10.1371/journal.pone.0264785.g007
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COVID-19 diagnosis from radiographs and scans, none were found to be reproducible and

transparent enough to be deployed in clinical settings [51]. Hence, we constructed a frame-

work for deployable, transparent and explainable model using the Bayesian graphical model

approach. This approach reveals the proximate factors that have the most probabilistic influ-

ence on the outcome of interest and differs from the traditional feature selection approach by

identifying the network motifs that encode confounding, mediation and competing effects.

Using this approach, we discovered Ferritin to be an independent and single most important

predictor of mortality, other than clinical severity. Other studies [52] have shown this before

in other cohorts in United Kingdom [51] and our approach validated this finding in a

completely different cohort using a smaller dataset through the use of explainable AI. We

believe that such data-driven Bayesian networks, by the virtue of yielding pathway structures,

can be contextualized to different settings using the Bayesian prior approach to structure

learning. Therefore, our study provides an opportunity to converge the plethora of diagnostic

variables observed in the early phases of disease into a few consequential parameters. These

parameters can be assessed thereafter by the clinicians using a clinically operable standalone

dashboard to effectively stratify patients. A brief outline of this approach and perspective is

summarized in the illustration Fig 8.

Conclusion

Accurate risk stratification and mortality prediction models based on vitals, co-morbidities

and blood parameters will help in rapid screening of infected patients and hence in optimal

use of the healthcare infrastructure. It is likely that cohort-specific difference may emerge due

to the difference in demographic conditions and healthcare setting. This necessitates the devel-

opment of population specific solutions. There is also a need to study the effectiveness of cer-

tain treatment protocols affecting mortality. Our study presents the first data collection effort

to develop predictive models and to study feature differences and the possible effect of steroids

in the Indian COVID-19 outcome. Risk stratification and mortality prediction models yielded

good performance and AUC scores of 0.83 and 0.92 respectively. Hematological parameters

are important features for risk stratification and mortality prediction models. The analysis

Fig 8. Model-based analysis of clinical data for risk stratification with potential clinical implementation. Machine

learning model-based analysis of clinical data variables to identify parameters for risk stratification, and development

of dashboard for implementation of the model at the clinical site.

https://doi.org/10.1371/journal.pone.0264785.g008
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showed that steroids might have played a role in patient survival with extreme neutrophils or

lymphocytes. This study would help accelerate the decision-making process in healthcare sys-

tems for focused and efficient medical treatments.

Supporting information

S1 Fig. Sample distribution for risk stratification with time to outcome.

(PDF)

S2 Fig. Sample distribution for mortality prediction with time to outcome.

(PDF)

S3 Fig. Top 25 important parameters for binary risk stratification.

(PDF)

S4 Fig. Distribution plots for four most important features used for risk stratification.

(PDF)

S5 Fig. Confusion matrices for mortality prediction with logistic regression and Risk Strat-

ification with XGBoost Classifier trained on entire train set.

(PDF)

S6 Fig. Comparison of F1 scores for various machine learning models that use only patient

vitals.

(PDF)

S7 Fig. Top 25 important parameters for mortality prediction.

(PDF)

S8 Fig. Distribution plots for four most important features used for predicting mortality.

(PDF)

S1 Table. Categorical features for risk stratification. Medians and P-values are given for

individual features.

(PDF)

S2 Table. Continuous features for risk stratification. Medians and P-values are given for

individual features.

(PDF)

S3 Table. Categorical features for mortality prediction. Medians and P-values are given for

individual features.

(PDF)

S4 Table. Continuous features for mortality prediction. Medians and P-values are given for

individual features.

(PDF)

S5 Table. Performance of the developed machine learning algorithms in risk stratification

reported as mean ± standard deviation.

(PDF)

S6 Table. Performance of the developed machine learning algorithms in mortality predic-

tion reported as mean ± standard deviation.

(PDF)

PLOS ONE COVID-19 Risk stratification for public health

PLOS ONE | https://doi.org/10.1371/journal.pone.0264785 March 17, 2022 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s014
https://doi.org/10.1371/journal.pone.0264785


S7 Table. The inferences using the exact inference algorithm on the learned structure.

(PDF)

S1 Data.

(XLSX)

Acknowledgments

Authors acknowledge Dr. Mitali Mukerji for facilitating collaboration with the clinical partner.

TS thanks Center of Excellence in Healthcare at IIIT-Delhi and the Delhi Knowledge Develop-

ment Foundation for support. Authors also acknowledge Dr. Aradhita Baral for her role in

research management for the multiple COVID-19 projects.

Author Contributions

Conceptualization: Ramanathan Sethuraman, Debasish Dash, Anurag Agrawal, Rajesh Pan-

dey, P. K. Vinod, U. Deva Priyakumar.

Data curation: Shanmukh Alle, Akshay Kanakan, Samreen Siddiqui, Priyanka Mehta, Neha

Mishra, Partha Chattopadhyay, Priti Devi, Swati Waghdhare, Akansha Tyagi, Bansidhar

Tarai, Pranjal Pratim Hazarik, Poonam Das, Sandeep Budhiraja, Vivek Nangia, Arun

Dewan, Ramanathan Sethuraman, C. Subramanian, Mashrin Srivastava, Avinash Chakra-

varthi, Johnny Jacob, Madhuri Namagiri, Varma Konala, Debasish Dash, Tavpritesh Sethi,

Sujeet Jha, Rajesh Pandey, P. K. Vinod, U. Deva Priyakumar.

Formal analysis: Shanmukh Alle, Akshay Kanakan, Akshit Garg, Akshaya Karthikeyan,

Priyanka Mehta, Neha Mishra, Partha Chattopadhyay, Tavpritesh Sethi, Rajesh Pandey, P.

K. Vinod.

Funding acquisition: Ramanathan Sethuraman, Varma Konala, Anurag Agrawal, Rajesh Pan-

dey, U. Deva Priyakumar.

Investigation: Mashrin Srivastava, Avinash Chakravarthi, Johnny Jacob, Madhuri Namagiri,

Anurag Agrawal, U. Deva Priyakumar.

Methodology: Shanmukh Alle, Akshay Kanakan, Akshit Garg, Akshaya Karthikeyan, Priyanka

Mehta, Rajesh Pandey, P. K. Vinod, U. Deva Priyakumar.

Project administration: Anurag Agrawal, Rajesh Pandey.

Resources: Samreen Siddiqui, Swati Waghdhare, Akansha Tyagi, Bansidhar Tarai, Pranjal Pra-

tim Hazarik, Poonam Das, Sandeep Budhiraja, Vivek Nangia, Arun Dewan, C. Subrama-

nian, Mashrin Srivastava, Avinash Chakravarthi, Johnny Jacob, Madhuri Namagiri, Varma

Konala, Tavpritesh Sethi, Sujeet Jha, Anurag Agrawal, Rajesh Pandey, P. K. Vinod, U. Deva

Priyakumar.

Supervision: Anurag Agrawal, Rajesh Pandey, P. K. Vinod.

Validation: Samreen Siddiqui, Akansha Tyagi, Bansidhar Tarai, Sandeep Budhiraja, Sujeet

Jha, Rajesh Pandey.

Visualization: Shanmukh Alle, Akshit Garg, Priyanka Mehta, Partha Chattopadhyay, Tavpri-

tesh Sethi, P. K. Vinod, U. Deva Priyakumar.

Writing – original draft: Shanmukh Alle, Akshay Kanakan, Akshit Garg, Akshaya Karthike-

yan, Priyanka Mehta, Partha Chattopadhyay, Tavpritesh Sethi, Anurag Agrawal, Rajesh

Pandey, P. K. Vinod, U. Deva Priyakumar.

PLOS ONE COVID-19 Risk stratification for public health

PLOS ONE | https://doi.org/10.1371/journal.pone.0264785 March 17, 2022 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264785.s016
https://doi.org/10.1371/journal.pone.0264785


Writing – review & editing: Shanmukh Alle, Akshay Kanakan, Akshit Garg, Akshaya Karthi-

keyan, Priyanka Mehta, Partha Chattopadhyay, Ramanathan Sethuraman, Tavpritesh Sethi,

Sujeet Jha, Anurag Agrawal, Rajesh Pandey, P. K. Vinod, U. Deva Priyakumar.

References
1. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus Disease 2019 (COVID-19): A Per-

spective from China. Radiology. 2020 Aug; 296(2):E15–E25. https://doi.org/10.1148/radiol.

2020200490 PMID: 32083985

2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel

coronavirus in Wuhan, China. Lancet. 2020 Feb 15; 395(10223):497–506. https://doi.org/10.1016/

S0140-6736(20)30183-5 PMID: 31986264

3. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid

spread of severe acute respiratory syndrome coronavirus 2. Emerging Infect Dis. 2020 Jul; 26(7):1470–

1477. https://doi.org/10.3201/eid2607.200282 PMID: 32255761

4. Ponsford MJ, Gkatzionis A, Walker VM, Grant AJ, Wootton RE, Moore LSP, et al. Cardiometabolic

Traits, Sepsis, and Severe COVID-19: A Mendelian Randomization Investigation. Circulation. 2020

Nov 3; 142(18):1791–1793. https://doi.org/10.1161/CIRCULATIONAHA.120.050753 PMID: 32966752

5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients

With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17; 323

(11):1061–1069. https://doi.org/10.1001/jama.2020.1585 PMID: 32031570

6. Liu Y, Mao B, Liang S, Yang J-W, Lu H-W, Chai Y-H, et al. Association between age and clinical charac-

teristics and outcomes of COVID-19. Eur Respir J. 2020 May 27; 55(5). https://doi.org/10.1183/

13993003.01112-2020 PMID: 32312864

7. Bajgain KT, Badal S, Bajgain BB, Santana MJ. Prevalence of comorbidities among individuals with

COVID-19: A rapid review of current literature. Am J Infect Control. 2021 Feb; 49(2):238–246. https://

doi.org/10.1016/j.ajic.2020.06.213 PMID: 32659414

8. Ji Y, Ma Z, Peppelenbosch MP, Pan Q. Potential association between COVID-19 mortality and health-

care resource availability. Lancet Glob Health. 2020 Apr; 8(4):e480. https://doi.org/10.1016/S2214-

109X(20)30068-1 PMID: 32109372

9. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and Validation of a Clinical Risk

Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern

Med. 2020 Aug 1; 180(8):1081–1089. https://doi.org/10.1001/jamainternmed.2020.2033 PMID:

32396163

10. Bhargava A, Fukushima EA, Levine M, Zhao W, Tanveer F, Szpunar SM, et al. Predictors for Severe

COVID-19 Infection. Clin Infect Dis. 2020 Nov 5; 71(8):1962–1968. https://doi.org/10.1093/cid/ciaa674

PMID: 32472676

11. Mahdavi M, Choubdar H, Zabeh E, Rieder M, Safavi-Naeini S, Jobbagy Z, et al. A machine learning

based exploration of COVID-19 mortality risk. PLoS One. 2021 Jul 2; 16(7):e0252384. https://doi.org/

10.1371/journal.pone.0252384 PMID: 34214101

12. Kar S, Chawla R, Haranath SP, Ramasubban S, Ramakrishnan N, Vaishya R, et al. Multivariable mor-

tality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Sci Rep.

2021 Jun 17; 11(1):12801. https://doi.org/10.1038/s41598-021-92146-7 PMID: 34140592

13. Subudhi S, Verma A, Patel AB, Hardin CC, Khandekar MJ, Lee H, et al. Comparing machine learning

algorithms for predicting ICU admission and mortality in COVID-19. npj Digital Med. 2021 May 21; 4

(1):87. https://doi.org/10.1038/s41746-021-00456-x PMID: 34021235

14. Magunia H, Lederer S, Verbuecheln R, Gilot BJ, Koeppen M, Haeberle HA, et al. Machine learning iden-

tifies ICU outcome predictors in a multicenter COVID-19 cohort. Crit Care. 2021 Aug 17; 25(1):295.

https://doi.org/10.1186/s13054-021-03720-4 PMID: 34404458

15. Hao B, Sotudian S, Wang T, Xu T, Hu Y, Gaitanidis A, et al. Early prediction of level-of-care require-

ments in patients with COVID-19. Elife. 2020 Oct 12;9. https://doi.org/10.7554/eLife.60519 PMID:

33044170

16. Xie J, Hungerford D, Chen H, Abrams ST, Li S, Wang G, et al. Development and external validation of a

prognostic multivariable model on admission for hospitalized patients with COVID-19. medRxiv. 2020

Mar 30.

17. Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for Progression Risk in Patients With

COVID-19 Pneumonia: The CALL Score. Clin Infect Dis. 2020 Sep 12; 71(6):1393–1399. https://doi.

org/10.1093/cid/ciaa414 PMID: 32271369

PLOS ONE COVID-19 Risk stratification for public health

PLOS ONE | https://doi.org/10.1371/journal.pone.0264785 March 17, 2022 18 / 20

https://doi.org/10.1148/radiol.2020200490
https://doi.org/10.1148/radiol.2020200490
http://www.ncbi.nlm.nih.gov/pubmed/32083985
https://doi.org/10.1016/S0140-6736%2820%2930183-5
https://doi.org/10.1016/S0140-6736%2820%2930183-5
http://www.ncbi.nlm.nih.gov/pubmed/31986264
https://doi.org/10.3201/eid2607.200282
http://www.ncbi.nlm.nih.gov/pubmed/32255761
https://doi.org/10.1161/CIRCULATIONAHA.120.050753
http://www.ncbi.nlm.nih.gov/pubmed/32966752
https://doi.org/10.1001/jama.2020.1585
http://www.ncbi.nlm.nih.gov/pubmed/32031570
https://doi.org/10.1183/13993003.01112-2020
https://doi.org/10.1183/13993003.01112-2020
http://www.ncbi.nlm.nih.gov/pubmed/32312864
https://doi.org/10.1016/j.ajic.2020.06.213
https://doi.org/10.1016/j.ajic.2020.06.213
http://www.ncbi.nlm.nih.gov/pubmed/32659414
https://doi.org/10.1016/S2214-109X%2820%2930068-1
https://doi.org/10.1016/S2214-109X%2820%2930068-1
http://www.ncbi.nlm.nih.gov/pubmed/32109372
https://doi.org/10.1001/jamainternmed.2020.2033
http://www.ncbi.nlm.nih.gov/pubmed/32396163
https://doi.org/10.1093/cid/ciaa674
http://www.ncbi.nlm.nih.gov/pubmed/32472676
https://doi.org/10.1371/journal.pone.0252384
https://doi.org/10.1371/journal.pone.0252384
http://www.ncbi.nlm.nih.gov/pubmed/34214101
https://doi.org/10.1038/s41598-021-92146-7
http://www.ncbi.nlm.nih.gov/pubmed/34140592
https://doi.org/10.1038/s41746-021-00456-x
http://www.ncbi.nlm.nih.gov/pubmed/34021235
https://doi.org/10.1186/s13054-021-03720-4
http://www.ncbi.nlm.nih.gov/pubmed/34404458
https://doi.org/10.7554/eLife.60519
http://www.ncbi.nlm.nih.gov/pubmed/33044170
https://doi.org/10.1093/cid/ciaa414
https://doi.org/10.1093/cid/ciaa414
http://www.ncbi.nlm.nih.gov/pubmed/32271369
https://doi.org/10.1371/journal.pone.0264785


18. Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction

model for COVID-19 patients. Nat Mach Intell. 2020 May; 2(5):283–288.

19. Karthikeyan A, Garg A, Vinod PK, Priyakumar UD. Machine Learning Based Clinical Decision Support

System for Early COVID-19 Mortality Prediction. Front Public Health. 2021 May 12; 9:626697. https://

doi.org/10.3389/fpubh.2021.626697 PMID: 34055710

20. Becerra-Flores M, Cardozo T. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate.

Int J Clin Pract. 2020 Aug; 74(8):e13525. https://doi.org/10.1111/ijcp.13525 PMID: 32374903

21. Saha P, Banerjee AK, Tripathi PP, Srivastava AK, Ray U. A virus that has gone viral: amino acid muta-

tion in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus,

infectivity. Biosci Rep. 2020 May 29; 40(5).

22. Wang R, Hozumi Y, Yin C, Wei G-W. Mutations on COVID-19 diagnostic targets. Genomics. 2020 Nov;

112(6):5204–5213. https://doi.org/10.1016/j.ygeno.2020.09.028 PMID: 32966857

23. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking Changes in

SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020 Aug

20; 182(4):812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043 PMID: 32697968

24. Jha IP, Awasthi R, Kumar A, Kumar V, Sethi T. Learning the Mental Health Impact of COVID-19 in the

United States With Explainable Artificial Intelligence: Observational Study. JMIR Ment Health. 2021 Apr

20; 8(4):e25097. https://doi.org/10.2196/25097 PMID: 33877051

25. Sethi T, Mittal A, Maheshwari S, Chugh S. Learning to Address Health Inequality in the United States

with a Bayesian Decision Network. AAAI. 2019 Jul 17; 33:710–717.

26. Awasthi R, Patel P, Joshi V, Karkal S, Sethi T. Learning Explainable Interventions to Mitigate HIV Trans-

mission in Sex Workers Across Five States in India. arXiv. 2020 Nov 30;

27. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and

Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region,

Italy. JAMA. 2020 Apr 28; 323(16):1574–1581. https://doi.org/10.1001/jama.2020.5394 PMID:

32250385

28. Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G, et al. Association Between Hypoxemia and Mortality in

Patients With COVID-19. Mayo Clin Proc. 2020 Jun; 95(6):1138–1147. https://doi.org/10.1016/j.

mayocp.2020.04.006 PMID: 32376101

29. Duan J, Wang X, Chi J, Chen H, Bai L, Hu Q, et al. Correlation between the variables collected at admis-

sion and progression to severe cases during hospitalization among patients with COVID-19 in Chong-

qing. J Med Virol. 2020 Nov; 92(11):2616–2622. https://doi.org/10.1002/jmv.26082 PMID: 32470186

30. Yang A-P, Liu J-P, Tao W-Q, Li H-M. The diagnostic and predictive role of NLR, d-NLR and PLR in

COVID-19 patients. Int Immunopharmacol. 2020 Jul; 84:106504. https://doi.org/10.1016/j.intimp.2020.

106504 PMID: 32304994

31. Rizo-Téllez SA, Méndez-Garcı́a LA, Flores-Rebollo C, Alba-Flores F, Alcántara-Suárez R, Manjarrez-
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