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Trp–His covalent adduct in bilirubin 
oxidase is crucial for effective 
bilirubin binding but has a minor 
role in electron transfer
Tomáš Kovaľ 1, Leona Švecová1,2, Lars H. Østergaard   3, Tereza Skalova   1, 
Jarmila Dušková1, Jindřich Hašek1, Petr Kolenko   1,2, Karla Fejfarová1, Jan Stránský1, 
Mária Trundová1 & Jan Dohnálek   1

Unlike any protein studied so far, the active site of bilirubin oxidase from Myrothecium verrucaria 
contains a unique type of covalent link between tryptophan and histidine side chains. The role of this 
post-translational modification in substrate binding and oxidation is not sufficiently understood. 
Our structural and mutational studies provide evidence that this Trp396–His398 adduct modifies T1 
copper coordination and is an important part of the substrate binding and oxidation site. The presence 
of the adduct is crucial for oxidation of substituted phenols and it substantially influences the rate of 
oxidation of bilirubin. Additionally, we bring the first structure of bilirubin oxidase in complex with one 
of its products, ferricyanide ion, interacting with the modified tryptophan side chain, Arg356 and the 
active site-forming loop 393-398. The results imply that structurally and chemically distinct types of 
substrates, including bilirubin, utilize the Trp–His adduct mainly for binding and to a smaller extent for 
electron transfer.

Bilirubin oxidase (MvBOx; EC 1.3.3.5) from the ascomycete plant pathogen Myrothecium verrucaria (Albifimbria 
verrucaria) is a member of the blue multicopper oxidase family (MCO). MCOs are capable of oxidizing various 
organic and/or inorganic substrates and reducing oxygen to water without release of reactive oxygen species1–6. 
MvBOx, composed of 534 amino acid residues, consists of three cupredoxin-like domains with four copper ions 
forming two active sites7,8. These copper ions can be divided into three classes according to their spectroscopic 
properties9,10. One copper ion is of type I (T1Cu) and is present at the so called T1Cu site near the protein surface. 
Coordination of this copper ion is responsible for the distinctive blue color of MvBOx and all MCOs (absorption 
at 600 nm) and for oxidation of substrates with the Cu2+ ion being an electron acceptor9–11. T1Cu is connected 
with the trinuclear cluster (TNC), composed of one type II (T2Cu) and two type III (T3Cu) copper ions, via 
a conserved His–Cys–His motif (serving as electron transfer path). The binuclear T3Cu site with a bridging 
hydroxyl or dioxygen is responsible for a characteristic shoulder at approximately 330 nm in UV–VIS absorption 
spectrum. At the TNC one molecule of O2 is reduced to two molecules of water using four electrons supplied by 
the T1Cu site9–18.

MvBOx can oxidize a variety of substrates (Fig.  S1) including bilirubin, 2,2′-azino-bis(3-et
hylbenzothiazoline-6-sulfonic acid) (ABTS), substituted phenols, or ferrocyanide ([Fe(CN)6]4−), with different 
pH optima for different classes of substrates6,19. MvBOx can be utilized for a range of purposes. In medicine, it is 
used for diagnostics of bilirubin in serum19–21, in biotechnology for decolorization of synthetic dyes or detoxifica-
tion of the environment19,22,23. It also shows a potential for use in biosensors and biofuel technology24–33.

The mechanism of dioxygen reduction inside the TNC as well as the electron transfer path between the T1Cu 
site and the TNC are very similar within the MCO family and are well understood. They were intensively stud-
ied using biochemical, structural, and computational methods12,16,34–36. However, the mechanism of substrate 
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binding and oxidation at the T1Cu site varies among MCOs and is known only for several representatives (e.g. 
laccases37–39). In most laccases and many other MCOs the T1Cu site can be directly accessed by substrate, usu-
ally with a direct contact (or with a very short distance) of the oxidized moiety to one of the T1Cu-coordinating 
histidine side chains. In MvBOx the T1Cu site is separated from bulk solvent by additional amino acid residues, 
including Trp396. This raises questions regarding the separation of the substrate binding site and the T1Cu site 
in relation to the enzyme function.

Five structures of MvBOx have been published so far7,8,40, however, they do not show binding of any ligands 
besides water molecules in the proximity of the T1Cu site. Here we present the first complex of MvBOx with a 
product, ferricyanide ion ([Fe(CN)6]3−), binding close to the T1Cu site, together with the structure-function 
analysis of the protein layer between the T1Cu site and the identified substrate binding site containing a natural 
post-transitional modification, the covalent crosslink between T1Cu-bound His398 and Trp39640. We examined 
its role in the reaction mechanism by mutagenesis connected with structure-function analysis.

Results
Structure of MvBOx wild type from acidic pH.  The crystal structure of MvBOx wild type (MvBOxWT) 
in complex with ferricyanide (PDB ID 6I3J; WT:FECN) was obtained from a strongly acidic crystallization con-
dition (pH 3.1). MvBOx crystallized in the space group F222 with two monomers in the asymmetric unit (ASU). 
Nevertheless, the protein fold is very similar to the previously reported structures of MvBOx (Fig. 1a), one from 
a basic condition with a positional r.m.s.d. of 533 Cα atoms of 0.30 Å (PDB ID 2XLL, crystallization at pH 8.7, 
space group P1, four monomers in ASU8), and the second one from an acidic condition (PDB ID 6IQZ, pH 5, 
space group C2, one monomer in ASU40) with an r.m.s.d. of 0.25 Å. The structures were superimposed using the 
Secondary structure matching algorithm (SSM) in Coot41. Glycosylation of MvBOx in the strongly acidic condi-
tion (at Asn472 and Asn482) is preserved and was modelled (Fig. 1a). Conformations of all residues (including 
the side chains) around the T1Cu site are basically the same in all three structures (Fig. S2).

Trp396–His398 crosslink.  The covalent crosslink between the Trp396 and His398 side chains was ini-
tially identified due to the observed close contact between Trp396-Cδ1 and His398-Nε2 supported by the electron 
density (Fig. 1). The existence of the Trp396–His398 crosslink was confirmed afterwards by mass spectrometry 
observing an ion at m/z 649.8327 (4+) corresponding to the modified WELINAGNGWTHPIHIHLVDFK pep-
tide (Fig. S3). The correct assignment of the peptide ion was confirmed by collision induced dissociation.

Refinement of this type of covalent link required a proper definition of its geometry. There were several 
examples of X-ray structures of small molecules in the Cambridge Structural Database (CSD, see Materials and 
Methods for details) containing this type of bond and suitable for extraction of geometrical restraints. The initial 
refinement of the structure imposing only a covalent link restraint with the target value of the distance between 
Trp396-Cδ1 and His398-Nε2 of 1.41 Å led to small distortions of the planar side chains of both residues and a slight 
deviation of the new bond from the planes of both side chains (with opposite signs in chains A and B). Therefore, 

Figure 1.  (a) Structure of MvBOxWT from strongly acidic condition. The structure (6I3J) is shown in 
secondary structure representation (helices are colored red, β–strands yellow, loops green). Copper ions are 
shown as orange spheres. The Trp396–His398 adduct (shown as magenta sticks), oligosaccharides modifying 
asparagine side chains (black sticks), the N-terminus, T1 copper and the trinuclear copper cluster are labeled. 
(b) Chemical environment of the Trp–His adduct in MvBOx. Hydrogen bond distances are given in Ångströms. 
Values in parentheses are for chain B of the structure 6I3J. The CH – π interactions of Trp396 are marked. The 
indole–imidazole moiety of the adduct is shown with carbon colored magenta. T1Cu is shown as orange sphere. 
Molecular graphics were created using PyMOL (Schrödinger, LLC).
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co-planarity of the bond with each side chain (independently) was further restrained, with target values of bond 
distances and angles in the nearest vicinity derived from the CSD entries. In this way the distance was refined to 
1.42 Å and 1.40 Å (in chains A and B, respectively), following closely the set target values for the bond distance 
(1.41 Å) and the nearby environment. This approach led to a successful refinement of this moiety and to a good 
agreement with electron density without any difference peaks at this site.

The Trp396 side chain of the Trp–His adduct in MvBOx is involved in several interactions (Fig. 1b). 
Trp396-Nε1 forms hydrogen bonds to the main chain oxygen of Phe354 and the side chain oxygen of Asn391. 
It is also involved in CH–π interactions with Gly393-Cα and the Trp361 side chain. The closest surroundings of 
Trp–His in MvBOx is further formed by the side chain of Arg356 and the main chain atoms of the 393–395 loop 
(Gly393, Asn394, Gly395).

Functional mutants of MvBOx Trp396.  To analyze the role of the Trp396–His398 adduct, three func-
tional variants of MvBOx were designed and prepared. Trp396 was mutated to alanine (MvBOxW396A) in order 
to enable direct solvent access to His398, to phenylalanine (MvBOxW396F) in order to introduce an aromatic 
residue not capable of crosslink formation, and to aspartic acid (MvBOxW396D) in order to disrupt this site by 
introducing negative charge. All three MvBOx variants have the same composition of the secondary structure 
elements (overall structure) as the wild type (See Fig. S4 for CD spectrometry results) and all have the T1Cu site 
preserved, which is clear from the blue color of their solutions (See Fig. S5 for UV-VIS spectra).

Structures of MvBOx mutants Trp396Ala and Trp396Phe from acidic pH.  Similarly to the struc-
ture of WT:FECN, also the crystal structure of MvBOxW396A in complex with ferricyanide (PDB ID 6I3K; 
W396A:FECN) and the structure of MvBOxW396F without any ligand near the T1Cu site (PDB ID 6I3L; W396F) 
were obtained from the same acidic crystallization condition. Both proteins crystallized in the space group F222. 
In neither mutant the protein fold was affected by the mutation. The positional r.m.s.d. of 533 Cα atoms between 
the structures WT:FECN (PDB ID 6I3J, chain A) and W396A:FECN (PDB ID 6I3K, chain A) or W396F (PDB 
ID 6I3L, chain A) was 0.23 Å and 0.21 Å, respectively. The surroundings of the T1Cu site were also unaffected 
(Figs S6 and S7).

Coordination of T1Cu.  The coordination of T1Cu in WT:FECN differs in two features when compared 
to those of MCOs without the Trp–His adduct (e.g. CotA42). The first difference lies in the fact that T1Cu is 
no longer in the imidazole plane of coordinating His398, but the histidine side chain is tilted by about 15–20°. 
The second difference is a longer coordination distance (~2.2 Å) between T1Cu and His462-Nδ1 (Fig. 2). These 
features are present only in the structure WT:FECN (PDB ID 6I3J). In the structures of both mutants (PDB ID 
6I3K and 6I3L) T1Cu is coordinated in the plane of the His398 side chain and the distance between T1Cu and 
His462-Nδ1 is shorter (~2.0 Å) and similar with that in CotA or other MCOs.

Binding of ferricyanide in the active site of MvBOxWT and MvBOxW396A.  A ferricyanide ion 
was identified in the active site of both WT:FECN and W396A:FECN (PDB ID 6I3J and 6I3K, respectively) using 
difference electron density (mFo-DFc) after the phase problem solution. Its presence was confirmed by a peak in 
anomalous difference Fourier at the iron atom and composite omit map (Fig. 3). Complexes were prepared by 
soaking crystals in the solution containing ferrocyanide (substrate, see Materials and Methods section). During 
this process crystals of both MvBOxWT and MvBOxW396A gradually changed their blue color to transparent 

Figure 2.  Coordination of T1Cu: (a) in the structure of WT:FECN (PDB ID 6I3J, carbon green), (b) in 
W396A:FECN (PDB ID 6I3K, carbon light blue), and (c) in W396F (PDB ID 6I3L, carbon pale orange). 
Distances are given in Ångströms with 0.01 Å precision to support the discussion of the T1Cu environment 
changes. Values in parentheses are for chain B of the corresponding structure. T1 copper is shown as orange 
sphere. The Phe396 side chain in the structure W396F adopts two conformations marked conf. A and conf. B. 
Molecular graphics were created using PyMOL (Schrödinger, LLC).
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which proved the reduction of the T1Cu site in parallel with ongoing oxidation of ferrocyanide in the crystals 
(Supplementary video sequences 1 and 2).

In WT:FECN, the ferricyanide ion was bound in close proximity of the Trp396–His398 adduct, interact-
ing with the main chain nitrogen atoms of Asn394 and Gly395 through one of its cyanide moieties and with 
the Arg356 side chain through two adjacent cyanide moieties (Fig. 3a). The shortest distance observed between 
ferricyanide and T1Cu is 11.4 Å (Fig. S8a). This is well within the 14 Å limit identified as the boundary for effi-
cient electron transfer in proteins43. Moreover, ferricyanide in this position is not involved in any symmetry 
(crystal-induced) contacts, which supports the suggestion that this is a genuine substrate/product binding site. 
Therefore, we refer to this site as oxidation site 1 (OS1). For visualization of the MvBOx surface belonging to OS1 
refer to Fig. S9.

In the structure W396A:FECN, a ferricyanide ion is bound in the same site but shifted towards the T1Cu site, 
with the closest observed distance to T1Cu now being 9.2 Å (Fig. S8b), and interacting through a water molecule 
with His398 which coordinates T1Cu. It still interacts with the main chain nitrogen atoms of Asn394 and Gly395 
but now through two of its cyanide moieties. It also interacts with the main chain nitrogen atom of Ala396 and 
with Arg356 via two adjacent cyanide moieties (Fig. 3b).

Electron density for several other ferricyanide ions was identified and modeled in both WT:FECN and 
W396A:FECN (not shown) but none of them in close proximity of the T1Cu site. Some of these additional ferri-
cyanide ions are involved in the formation of crystal contacts. A similar behavior of ferricyanide was observed in 
crystals of another MCO, two-domain laccase from Streptomyces coelicolor44.

Analysis of enzymatic activity of WT and mutant MvBOx.  Enzymatic activities of MvBOxWT 
and of the variants W396A, W396F, and W396D were analyzed using four different substrates: inor-
ganic ([Fe(CN)6]4− (ferrocyanide); substituted phenol 2,6-dimethoxyphenol (DMP); 2,2′-azinobis-(3-et
hylbenzothiazoline-6-sulfonate (ABTS) as a standard substrate for MCOs analysis; and bilirubin as the canon-
ical substrate for bilirubin oxidase (Fig. S1). Kinetic profiles are presented in Fig. 4 and kinetic parameters are 
summarized in Table 1. The kinetic profile for oxidation of bilirubin always showed sigmoidal dependence 
and the parameters were calculated using Eq. 1 (Materials and Methods). Kinetic parameters for oxidation of 

Figure 3.  Binding of ferricyanide in the active site of MvBOx wild type and its W396A mutant. (a) Binding of 
ferricyanide in OS1 of the WT:FECN structure (6I3J, carbon green). The ferricyanide ion and Trp–His adduct 
are shown with carbon colored magenta. (b) Binding of ferricyanide (magenta) in OS1 of the W396A:FECN 
structure (6I3K, carbon light blue). One water molecule (shown as red sphere, in two alternative positions) 
connects ferricyanide and His398. Interacting residues are marked. Distances are given in Ångströms. If values 
differ in chain A and B, they are given in parentheses for chain B of the corresponding structure. T1Cu is shown 
as orange sphere. The composite omit electron density map (2mFo-DFc) is shown as grey mesh and contoured 
at 1.0 σ level around the ferricyanide ion at the bottom of each panel. The map was calculated using Phenix67. 
Anomalous difference Fourier is shown as red mesh and contoured at 2.5 σ level around iron. Molecular 
graphics were created using PyMOL (Schrödinger, LLC).
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Figure 4.  Oxidation of (a) bilirubin; (b) K4Fe(CN)6; (c) ABTS; and (d) DMP by MvBOxWT (solid line, ●), 
MvBOxW396A (dotted line, ▲), MvBOxW396F (dot-dash line, ▢), and MvBOxW396D (dashed line, ◆). Plots 
show the reaction velocity v as a function of substrate concentration. The curves were fitted using the program 
GraphPad Prism 7.02 (GraphPad Software). Standard deviations are marked as error bars. In the case of the 
mutant MvBOxW396D (all substrates) and all mutants (only DMP), a simple connecting line was used to link 
the mean values.

Substrate Enzyme 
variant KM (mM)

Vmax  
(nmol·min−1 μg−1) K1/2 (mM)

Vmax 
(nmol·min−1·μg−1) h

Bilirubin

MvBOxWT 0.060 ± 0.002 15.8 ± 0.4 1.9 ± 0.1

W396A 0.160 ± 0.050 17.0 ± 6.0 2.2 ± 0.3

W396F 0.079 ± 0.004 8.8 ± 0.5 (4.1 ± 0.7)#

K4Fe(CN)6

MvBOxWT 1.2 ± 0.2 460 ± 20

W396A 1.2 ± 0.2 490 ± 20

W396F 1.5 ± 0.2 590 ± 20

ABTS

MvBOxWT 0.30 ± 0.02 30.3 ± 0.3

W396A 3.1 ± 0.2 37.5 ± 0.9

W396F 6.8 ± 0.4 33.8 ± 0.9

DMP

MvBOxWT 20.1 ± 0.9 3.78 ± 0.08

Table 1.  Kinetic parameters for oxidation of bilirubin, K4Fe(CN)6, ABTS, and DMP calculated for the 
measurements shown in Fig. 4. The parameters were calculated with use of the Michaelis-Menten equation (KM, 
Vmax) for K4Fe(CN)6, ABTS, and DMP. The allosteric sigmoidal equation (Equation 1, K1/2, Vmax, h) was used for 
bilirubin oxidation. The parameters for DMP as substrate and mutant enzymes could not be calculated due to 
almost zero activity. #The value of h lies within a range of 2–4. Exact value cannot be determined due to the high 
error present in some of the points obtained for the measurement of bilirubin oxidation by mutant W396F.
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6Scientific Reports |         (2019) 9:13700  | https://doi.org/10.1038/s41598-019-50105-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

ferrocyanide, ABTS, and DMP were calculated using the Michaelis-Menten equation, providing the data con-
verge. Otherwise the kinetic parameters remained uncalculated and a simple connecting line was used in the 
graphs.

Oxidation rate and affinity of bilirubin are affected by mutations of Trp396.  Oxidation of bilirubin was meas-
ured by detection of decrease of bilirubin concentration over time. For calculations of kinetic parameters, 
the values of absorbance decrease with an inverted sign were used. Since the F test and the AICc (corrected 
Akaike’s Information Criterion) calculations test confirmed that the measured data should be interpreted by 
a sigmoidal dependence on bilirubin concentration, the allosteric sigmoidal equation (Eq. 1 in Materials and 
Methods) was used to fit the data (Fig. 4a). The K1/2 values for the wild type and the W396F variant are compa-
rable (0.060 ± 0.002 mM and 0.079 ± 0.004 mM, respectively) but Vmax of W396F (8.8 ± 0.5 nmol·min−1 ·μg−1) 
is roughly a half of the wild type value (15.8 ± 0.4 nmol·min−1 ·μg−1). Kinetic parameters for the oxidation of 
bilirubin using the W396A variant are determined with considerably greater errors in comparison with the 
other MvBOx variants. In this case, kinetic measurements at saturating bilirubin concentrations (>160 µM) were 
attempted but yielded high errors and measurements were not interpretable by mean values. The W396D variant 
showed practically zero activity ([−0.4 ± 2.8] % of MvBOxWT reaction velocity with 120 μM bilirubin for 2 min). 
The results are summarized in Fig. 4a and Table 1.

Oxidation of ferrocyanide is significantly affected only for mutant Trp396Asp.  MvBOxWT, MvBOxW396A, and 
MvBOxW396F showed similar kinetic parameters for oxidation of ferrocyanide (Fig. 4b, Table 1). The muta-
tion W396D led to a considerable decrease in the enzymatic activity ([1.27 ± 0.06] % of reaction velocity of 
MvBOxWT with 10 mM K4Fe(CN)6 as substrate for 3 minutes).

Oxidation of ABTS is affected by mutations of Trp396.  The affinity to the substrate ABTS significantly decreased 
for variants W396A and W396F (3.1 ± 0.2 mM and 6.8 ± 0.4 mM, respectively) compared to MvBOxWT 
(0.30 ± 0.02 mM). The Vmax value (30.3 ± 0.3 nmol·min−1·μg−1 for MvBOxWT) slightly increased for both W396A 
and W396F (37.5 ± 0.9 nmol·min−1·μg−1 and 33.8 ± 0.9 nmol·min−1·μg−1, respectively). The mutation W396D 
led to null activity ([−0.8 ± 0.3] % of MvBOxWT reaction velocity for 20 mM ABTS as substrate for 3 min). The 
results are summarized in Fig. 4c and Table 1.

All mutations of Trp396 diminish oxidation of DMP.  All mutants show negligible activity compared to 
MvBOxWT. Therefore, a simple connecting line was used to connect the mean values in the kinetic profile 
(Fig. 4d). The variants W396A, W396F, and W396D reached 5.0 ± 2.0%, 10.0 ± 3.0%, and 0.6 ± 0.3% of the 
MvBOxWT reaction velocity for 30 mM DMP as substrate in 4 min, respectively. The results are summarized in 
Fig. 4d and Table 1.

Discussion
Structure of MvBOx is maintained under extreme pH.  The comparison of the MvBOx structures 
from acidic (pH 3.1, PDB ID 6I3J and pH 5.0, PDB ID 6IQZ) and basic (pH 8.7, PDB ID 2XLL) crystallization 
conditions proves that the MvBOx structure did not change with the change of pH (Fig. S2). It should be noted 
that the same glycosylation pattern (at Asn472 and Asn482) is present under all the studied pH values and that the 
position of glycosylation differs from fungal laccases45. This lack of pH-dependent structural differences suggests 
that different pH optima for the individual types of substrates cannot be connected with structural changes (e.g. 
pH 4 for oxidation of ABTS;6 pH around 8.4 for oxidation of bilirubin18). This observation is in agreement with 
the findings of Otsuka et al., according to which the pH optimum of MvBOx is predominantly determined by the 
difference between the redox potentials of MvBOx and of the particular substrate6.

Trp396–His398 covalent crosslink is natively present in MvBOx and its existence is not pH 
dependent.  As the existence of the Trp396–His398 covalent crosslink in MvBOx was confirmed using LC–
MS/MS (Fig. S3) we can conclude that it is present in the enzyme in solution. Moreover, it is present not only 
in the structure from the strongly acidic crystallization condition reported here (PDB ID 6I3J), but also in the 
previously reported structures of MvBOx from acidic (6IQZ) and basic condition (2XLL), as discussed by Akter 
et al.40. Based on these results it is safe to conclude that the Trp–His adduct is present in native MvBOx in solution 
over a broad range of functionally relevant pH values. This is important for relevance of the mutagenesis–activity 
studies presented in this work.

Trp396 and His398, along with several residues in their proximity, are conserved in many homologues of 
MvBOx from fungi and bacteria (Fig. S10). Conservation of these residues indicates the possible existence of the 
same Trp–His crosslink in bilirubin oxidases or closely related enzymes from other organisms.

Trp396–His398 adduct modifies coordination of T1Cu.  The presence of the Trp396–His398 adduct in 
MvBOx has measurable effects on the coordination of T1 copper as described in the Results section. The signifi-
cant tilt of the His398 imidazole moiety coordinating T1Cu is also observable in electron density in the structure 
of MvBOx wild type 2XLL8 and present in the structure of MvBOx wild type determined by Akter et al. (PDB ID 
6IQZ40). However, this tilt is not in the structure of MvBOx M467Q which, due to the mutation, does not contain 
the Trp396–His398 crosslink (PDB ID 6IQY40). As the T1Cu site in the structures W396A:FECN (PDB ID 6I3K) 
and W396F (6I3L) did not show this tilt either, we conclude that it is caused by the coordination of T1Cu by the 
Trp396–His398 adduct (Fig. 2).

The longer coordination distance of T1Cu to His462-Nδ1 observed in the case of WT:FECN (Fig. 2) is also 
present in the structure 2XLL (refined to approximately 2.2 Å8), but not in the structure of MvBOx wild type 
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determined by Akter et al.40. And so this change of T1Cu coordination distance in connection with the adduct 
presence requires further investigation.

Trp396–His398 crosslink formation.  To the best of our knowledge, the Trp–His crosslink has been 
observed only in MvBOx, but covalent crosslinks between side chains of residues Tyr and Cys, Tyr and Met, Tyr 
and Trp, Tyr and His, and Cys and His were identified in several enzymes, with three types of copper-containing 
oxidases among them46. Tryptophan side chain, especially the indole group, is reactive and susceptible to chem-
ical modifications47. It can undergo electrochemical oxidation on carbon Cδ1 48 with an oxidation peak potential 
of 0.64 V at pH 749. The redox potential of the T1Cu site was identified as the main reason for the Trp396–His398 
adduct formation in MvBOx also by Akter et al. in their recent work40.

According to our analysis, the observed rotamer of the Trp396 side chain is the only standard tryptophan 
rotamer acceptable for this site without any clashes with the surrounding residues. This is true for both, the Trp–
His adduct (PDB ID 6I3J, this work) and also for the structure without the crosslink between Trp396 and His398 
(6IQY40). Therefore, we can conclude that the particular fold of the enzyme in this region is actually in favor of the 
adduct formation by placing the indole group in a close contact with the His398 side chain.

Ferricyanide binds to positively charged site near Trp396–His398 adduct.  The surface of MvBOx 
near the T1Cu site is positively charged (Fig. S11a), as observed previously in investigations of the orientation of 
MvBOx molecules on negatively charged electrodes for direct electron transfer50–52. OS1, the ferricyanide binding 
site of MvBOx (Fig. 3a), is a part of this positively charged surface near the T1Cu site. Thus, this crystallograph-
ically identified site OS1 is the central site for substrate oxidation of MvBOx substrates and its properties must 
influence substrate binding and catalytic efficiency of the enzyme.

Trp396–His398 adduct has no significant structural role in MvBOx.  The structure of MvBOx was 
not affected by the mutation of Trp396 to Ala and Phe (Figs S6 and S7). An X-ray structure of MvBOxW396D 
could not be determined, because this variant did not crystallize. Nevertheless, based on the CD (Fig. S4), and 
UV-VIS (Fig. S5) spectra it can be concluded that also this mutation did not change the secondary structure com-
position of MvBOx and the existence of the T1Cu site. So neither the elimination of the Trp396–His398 adduct, 
nor functional changes of the T1Cu site environment (direct solvent access to His398, aromatic residue without 
the crosslink or introduction of a negatively charged residue) have significant effects on the MvBOx structure. 
The presence of the Trp396–His398 adduct in MvBOx plays a minor role in its thermal stability (Fig. S12) as fol-
lows from the slight decrease of the melting temperature (Tm) of the W396A and W396F mutants (by about 5 °C 
and 7 °C, respectively). The W396D mutation caused a significant decrease of Tm (by about 20 °C). This can be 
explained by exchanging a hydrophobic residue (Trp) for a hydrophilic one (Asp) and also possibly by introduc-
ing negative charge to the otherwise positively charged site (Fig. S11b).

Trp396–His398 adduct participates in substrate binding and oxidation, depending on substrate 
type.  The kinetic data measured for MvBOxWT and the Trp396 mutants (Table 1, Fig. 4) clearly show that 
different substrates utilize the Trp396–His398 adduct in different ways and that the adduct (or possibly Trp396) is 
crucial only in the case of DMP as substrate. Simultaneously, mutation of Trp396 to Asp disabled oxidation of all 
substrates as this mutation changed the electrostatic potential distribution in OS1 (Fig. S11b).

Trp396–His398 adduct is important in bilirubin oxidation.  Our kinetic data for bilirubin show that the Trp396–
His398 adduct is most probably involved in both, the substrate binding and its oxidation. All the investigated 
mutations always led to a significant decrease of the catalytic efficiency (Vmax/K1/2) for bilirubin. The W396A 
mutant binds bilirubin with a lower affinity when compared to the wild type. The W396F mutant retained affinity 
comparable with that of the wild type, but with a lower maximal reaction velocity. In addition, both mutants 
showed much more distinctive allosteric effect (Table 1, Fig. 4a). On the structural level, the mutation of Trp396 
to Phe allows for conservation of the aromatic moiety in the proximity of the T1Cu site (Fig. 2c), whereas the 
mutation to Ala disposes of the aromatic moiety and instead allows for solvent access to His398 coordinating 
T1Cu (Fig. 3b). Considering these differences (both structural and in the enzymatic activity) it is clear that the 
Trp396–His398 adduct is involved in binding of bilirubin, although bilirubin can still bind to MvBOx mutants 
not containing tryptophan at the position 396. One of the possible explanations for the substantial decrease in bil-
irubin oxidation observed in the M467Q mutant5, which contains Trp396 but without the crosslink to His39840, 
is the usage of low substrate concentration (27 μM). At this concentration, the activity may be influenced by the 
allosteric effect observed in the mutants W396A and W396F (Fig. 4a).

Trp396–His398 adduct and ferrocyanide oxidation.  In the case of ferrocyanide, the kinetic parameters of 
MvBOxWT and both mutants W396A and W396F are similar. Ferricyanide (product) binds in the same site in 
both MvBOxWT and MvBOxW396A, although in two different poses. And even if Trp396 forms a part of the 
ferricyanide binding site in the wild type, it is not necessary for its binding. The main structural features, which 
ferricyanide utilizes, are the main chain nitrogen atoms of Asn394 and Gly395 together with the side chain of 
Arg356 (Fig. 3). The main difference in binding of ferricyanide between MvBOxWT and MvBOxW396A lies in 
the fact that the replacement of Trp by Ala allows ferricyanide to bind closer to T1Cu. Ferricyanide in the W396A 
mutant interacts with T1Cu-coordinating His398 through a water molecule, possibly mediating electron transfer. 
The W396D mutant is almost inactive (~1% of the wild type activity). Possibly, the negatively charged aspartic 
acid side chain either compensates the partial positive charges of the Asn394/Gly395 main chain nitrogen atoms 
or directly repels the negatively charged ferrocyanide ion and so interferes with its binding. Preservation of fer-
rocyanide activity was also reported for the M467Q mutant5. From these results, it can be concluded that the 
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Trp396–His398 adduct itself is not important for binding of ferrocyanide. The geometry and positive electrostatic 
potential of OS1 are sufficient for its binding close enough in the proximity of T1Cu for efficient electron transfer 
(within 14 Å limit43; see Fig. S8). Although the adduct is probably involved in electron transfer in MvBOxWT, 
its presence is not crucial in the case of ferrocyanide oxidation as electron transfer can be realized using another 
path, possibly via the protein main chain of the loop forming OS1 (residues 394–398) or via water molecule in 
the case of W396A:FECN.

Trp396–His398 adduct and ABTS oxidation.  The mutations of Trp396 to Ala or Phe have similar effects. ABTS 
binds to both mutants with a significantly lower affinity, but the maximal velocity is not affected. So, in the case 
of ABTS, the Trp396–His398 adduct plays a role in the substrate binding. The electron transfer in this case can be 
realized via the adduct or via another path (possibly main chain of the loop forming OS1).

Trp396–His398 adduct and DMP oxidation.  As all the mutants studied here had a significantly lower activ-
ity toward DMP when compared to the wild type of MvBOx, the kinetic parameters could not be calculated. 
Attempts to obtain structural information for a complex of MvBOx and DMP failed. It remains to be deciphered 
if the observed lack of activity towards DMP in the mutants is caused by a lower substrate affinity, disturbance of 
the electron transfer path upon elimination of the Trp396–His398 adduct or simply by the unfavorable difference 
in the redox potential between DMP and the individual enzyme variants.

OS1, Trp–His adduct, and electron transfer.  Based on the presented results, we propose that all the 
substrates studied here utilize the oxidation site 1 (OS1), although the different substrates very likely bind at or 
near OS1 in a different way. OS1 comprises of residues which contribute only toward substrate binding (Asn197, 
Arg356, and Asn394) and residues which also participate in electron transfer from substrate to T1Cu (Trp396 of 
the Trp–His adduct, Gly395, and possibly also Asn394). In the case of ferrocyanide oxidation, the structures of 
the complexes enable a deeper analysis of the mechanism of substrate binding and oxidation, including the details 
of ferro/ferricyanide interactions with MvBOx.

For all substrate types, it seems that oxidation always relies, besides the difference between the redox poten-
tials of substrate and MvBOx, on the interplay between the Trp396–His398 adduct and the main chain nitrogen 
atoms of the 393–395 loop forming the positively charged binding site. Other residues in the vicinity of the 
Trp396–His398 adduct may also play roles in substrate binding and/or oxidation (most likely including Arg356, 
Trp361, and Asn197). The Trp–His adduct is not the only possible electron transfer route in MvBOx. The whole 
loop 393–396 is important in substrate binding, adduct formation, and electron transfer. For some substrates, it 
likely participates in electron transfer via its main chain atoms.

Conclusion
Formation of the covalent link between the side chains of Trp396 and T1 copper-coordinating His398, confirmed 
in M. verrucaria bilirubin oxidase, is facilitated by the enzyme fold and local organization of the protein chain. 
The Trp396 indole ring effectively mimics the position of substrates in other multicopper oxidases and is activated 
by the T1Cu site redox potential. The adduct participates in formation of the oxidation site 1 involved in substrate 
binding and oxidation of all substrates including larger and/or aromatic compounds and bilirubin. Mutations 
of Trp396 influence the enzyme activity but not the enzyme structure (except the replaced residue). Based on 
the mutagenesis and kinetics results, different substrate types must bind in the proximity of the Trp–His adduct, 
while at the same time utilize this unique substrate oxidation site differently. As most of the studied substrates, 
including bilirubin, are oxidized even in the absence of this adduct, its role in electron transfer is not crucial. In 
the case of ferricyanide binding, except the Trp–His adduct, also Arg356 and the loop 393–398 are important for 
substrate/product-enzyme interactions.

Materials and Methods
Cloning of bilirubin oxidase wild type.  Gene for bilirubin oxidase was amplified from M. verru-
caria (A. verrucaria) strain ATCC24571 by primers 5′-AGAGCGAUACCATGTTCAAACACACAC and 
5′-AACGTCACGUCTACTCGTCAGCTGCGGC having overhangs that incorporated a single deoxyuracil resi-
due (dU) flanking the 3′ end of the homology region. The amplified DNA (band of 2059 base pairs) was used for 
USER® cloning into an expression vector.

Construction of mutated variants of bilirubin oxidase.  Genes of all variants were gen-
erated by spliced overlap extension (SOE) polymerase chain reaction (PCR) with flanking primers 
5′-AGAGCGAUACCATGTTCAAACACACAC (forward) and 5′-AACGTCACGUCTACTCGTCAGCTGCGGC 
(reverse) and hybrid primers containing the desired codon change. The resulting oxidase variant genes were 
cloned into an expression vector by USER®.

Expression and purification.  All samples were expressed and purified similarly as described in Kovaľ et al.53.  
In detail, constructs were verified by DNA sequencing and transformed into protoplasts of Aspergillus oryzae for 
expression driven by the TAKA amylase promoter. The transformed strain of A. oryzae was grown for 3 days at 
30 °C and 200 rpm in shake flasks containing MDU-2BP (45 g of maltose, 1 g of MgSO4.7H2O, 1 g of NaCl, 2 g of 
K2SO4, 12 g of KH2PO4, 7 g of yeast extract, 0.5 ml of trace elements, and 1% (w/v) urea per l). Additional CuSO4 
was added to the shake flasks to a final concentration of 0.5 mM. The fermentation broth was sterile filtered to 
remove fungal hyphae. Salts and other low molecular weight solutes were removed by ultrafiltration. 1 M Tris/
HCl, pH 7.5 was added to the resulting retentate to a final concentration of 25 mM. pH and ionic strength were 
determined to be within the acceptable range for anion exchange chromatography. The chromatography was then 
conducted with an ÄKTA Prime instrument (Amersham Biosciences). Briefly, the protein was bound to a column 
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with 20 ml Q Sepharose High Performance pre-equilibrated with 25 mM Tris/HCl, pH 7.5. After a thorough 
wash with the equilibration buffer, the bound protein was eluted from the column with a linear NaCl gradient 
(0–0.5 M) in the equilibration buffer over ten column volumes. MvBOx eluted at approximately 250 mM NaCl. 
Collected fractions containing pure MvBOx, as estimated by SDS-PAGE, were pooled. All purification steps were 
carried out at room temperature.

Mass spectrometry.  MvBOxWT was digested by trypsin. Peptides were further analyzed by LC-MS/MS 
using a 15 T solariX FT-ICR mass spectrometer (Bruker Daltonics) operating in positive mode.

MvBOx activity assay.  The steady-state kinetic parameters for all MvBOx variants were determined using 
four distinct substrates: potassium ferrocyanide (further referred to as ferrocyanide because only [Fe(CN)6]4− 
anion undergoes oxidation), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), bilirubin, and 
2,6-dimethoxyphenol (DMP). All reactions were monitored spectrophotometrically using a CLARIOstar 
Monochromator Microplate Reader (BMG Labtech, Ortenberg, GE). Reactions were monitored for substrates 
[Fe(CN)6]4− and ABTS at 420 nm (ε420 = 1.04 mM−1 cm−1 54 and ε420 = 36 mM−1 cm−1 55, respectively), for DMP at 
468 nm (ε468 = 14.8 mM−1 cm−1)56, and for bilirubin at 440 nm (ε440 = 56.3 mM−1 cm−1)57. Single reactions (100 μl 
total volume) were prepared in triplicates and run in black 96-well plates (BRAND, Wertheim, GE). All reactions 
were carried out at 27 °C.

Oxidation of K4Fe(CN)6 (0.1–10 mM) was done using 50 mM Bis-Tris, pH 6 and 25 mM NaCl with 0.15 μg of 
enzyme for 3 min (total volume 100 μl). Oxidation of ABTS (0.2–20 mM) was done using 100 mM sodium acetate, 
pH 4 with 0.06 μg of enzyme for 3 min. Oxidation of bilirubin (1–180 μM) was done using 200 mM Tris-HCl, pH 
8.7 with 0.02 μg of enzyme for 3 min. Oxidation of DMP (0.5–60 mM) was done using 50 mM Bis-Tris, pH 6.8 and 
25 mM NaCl with 0.4 μg of enzyme for 4 min.

Steady-state kinetic parameters (maximal velocity Vmax and Michaelis-Menten constant KM) were calculated 
using the Michaelis-Menten non-linear regression equation with GraphPad Prism version 7.02 for Windows 
(GraphPad Software, La Jolla California USA, www.graphpad.com). In the case of bilirubin, the non-hyperbolic 
data with “S-shaped” sigmoidal behavior were taken into consideration by application of the Hill equation (Eq. 1, 
according to GraphPad Prism 7.02 Software):
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h h
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K1/2 is the concentration of substrate at the half of the maximal velocity Vmax, h is a Hill slope. When h = 1, 
K1/2 is the KM value. To evaluate the best fit, the F test and the corrected Akaike’s Information Criterion (AICc) 
calculations were performed using the GraphPad QuickCalcs Web (http://www.graphpad.com/quickcalcs/
ConfInterval1.cfm, accessed May 2017). The equation best fitting the particular data was used for the final calcu-
lation of the kinetic parameters.

Crystallization, data collection, structure solution, and refinement.  For crystallization, 
MvBOxWT, MvBOxW396A, and MvBOxW396F were concentrated in the storage buffer (25 mM Tris/HCl, pH 
7.5 with 250 mM NaCl) to 25 mg ml−1 using a 10 kDa cut–off Nanosep centrifugal device (Pall Corporation). 
Initial screening for crystallization conditions was done only for MvBOxWT using the hanging drop vapor diffu-
sion setup with a protein to reservoir drop volume ratio of 1:1 (0.5 μl + 0.5 μl). Screening using several commer-
cially available crystallization screens did not yield hits. As the theoretical pI of mature MvBOx is 4.97, a limited 
crystallization screen containing acidic conditions was used58. Initial hits were observed after 1–3 days using 25% 
(w/v) PEG 3350, 0.1 M citric acid, pH 3 as a reservoir solution and this condition was further optimized. Crystal 
of MvBOxWT used for X-ray analysis was obtained using the hanging drop vapor diffusion method. The drop 
was composed of 1 μl of protein mixed with 1 μl of reservoir solution (0.1 M succinic acid, 14% (w/v) polyethylene 
glycol 3350). Succinic acid was not titrated. Solution obtained by mixing the reservoir solution with the storage 
buffer in ratio 1:1 had pH 3.1. Crystals of MvBOxW396A and MvBOxW396F were obtained using the same res-
ervoir solution and sitting drop setup with 0.5 μl + 0.5 μl drop volume. All crystallization trials were done at 18 °C.

Prior to vitrification using liquid nitrogen, crystals of MvBOxWT and MvBOxW396A were soaked in reser-
voir solution containing 10 mM K4Fe(CN)6 and cryoprotectant for 90 seconds (for MvBOxWT, a combination 
of 15% (w/v) polyethylene glycol 200, 1% (v/v) glycerol, 1% (v/v) ethylene glycol, and 1% (v/v) propylene gly-
col; for MvBOxW396A 25% (v/v) glycerol). Both crystals changed appearance from blue to transparent indi-
cating reduction of T1Cu (Supplementary video sequences 1 and 2). Soaking solution changed color from pale 
yellow to darker yellow indicating oxidation of ferrocyanide ([Fe(CN)6]4−) to ferricyanide ([Fe(CN)6]3−). An 
MvBOxW396F crystal was soaked in solution containing 25% (v/v) glycerol and 10 mM pyrogallol in reser-
voir solution for 60 seconds. An MvBOxWT crystal was mounted in nylon CryoLoop (Hampton Research), 
MvBOxW396A and MvBOxW396F crystals in round LithoLoop (Molecular Dimensions). For WT and W396A 
crystals, diffraction data were collected with 0.91841 Å wavelength at beamline BL 14.1 of the BESSY II synchro-
tron radiation source (Helmholtz Zentrum Berlin, DE) at 100 K. Data for WT:FECN were collected using a MAR 
Mosaic CCD 225 detector and a mini kappa goniometer, data for W396A:FECN were collected using a Dectris 
Pilatus 6 M detector and a mini kappa goniometer59. Data for W396F were collected at 100 K and with 1.3418 Å 
wavelength (gallium Kα) using a D8 VENTURE diffractometer, a Photon II detector (Bruker) and a METALJET 
X-ray source (Excillum). Data were processed and scaled using XDS or XDSGui60 and merged using Aimless61. 
For all structures, the phase problem was solved by molecular replacement using Molrep62 and the structure of 
Myrothecium verrucaria bilirubin oxidase (PDB code 2XLL)8 as a template.
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All three structures were manually edited using Coot63 and refined using restrained refinement in REFMAC564 
with Rfree as a cross validation method. The last refinement cycle was done using all reflections. Structures were 
validated using the tools implemented in Coot, the structure-validation web service Molprobity65 and the wwPDB 
Validation service66. Data collection and processing statistics are reported in Table 2.

The complexes of MvBOxWT and MvBOxW396A with ferricyanide ([Fe(CN)6]3−, product) reported 
here (PDB ID 6I3J and 6I3K, respectively) were obtained by soaking of the crystals in excess of ferrocyanide 
([Fe(CN)6]4−, substrate). The oxidation of ferrocyanide and reduction of MvBOx during the soaking of the crystal 
was clearly observable (see above). However, due to the fact that the trinuclear copper cluster in WT:FECN is fully 
reduced (Fig. S13), the observed ligand could still be ferrocyanide. Unfortunately, ferrocyanide and ferricyanide 
are not distinguishable at the obtained resolutions. We chose to model product (ferricyanide, [Fe(CN)6]3−) in 
both structures. The geometrical restraint library for the link between Trp396 and His398 was built based on data 
found in the crystallographic database of organic compounds (Cambridge Structural Database, The Cambridge 
Crystallographic Data Centre). The particular geometry of the link was identified in 3 records of CSD with ID 
codes CIMGUC (occurrence 4×), CIMHAJ (1×) and SEPXOC (1×). Records CIMGUC and CIMHAJ were cho-
sen for extraction of averaged geometrical parameters, which were directly used for construction of the restraints. 
Orientation of the new C-N bond was restrained independently in the planes of the two corresponding planar 
side chains.

Data Availability
The crystal structures and corresponding data were deposited in the Protein Data Bank under the codes 6I3J (wild 
type in complex with ferricyanide) 6I3K (mutant W396A with ferricyanide) and 6I3L (mutant W396F). All other 
source data are available upon reasonable request.

Structure Wild type + ferricyanide
W396A 
mutant + ferricyanide W396F mutant

PDB ID 6I3J 6I3K 6I3L

Data collection

X-ray source BESSY II, BL14.1 BESSY II, BL14.1 MetalJet D2

Wavelength (Å) 0.91841 0.91841 1.3418

Detector MAR mosaic CCD Pilatus 6 M Photon II

Detector distance (mm) 313.5 266.7 75

No. of oscillation images 217 1000 400

Exposure time per image (s) 2 0.2 90

Oscillation width (°) 0.5 0.1 0.3

Space group F222 F222 F222

Unit-cell parameters a, b, c (Å) 134.4, 203.9, 226.7 136.9, 201.8, 217.9 136.3, 200.7, 217.1

Resolution range (Å) 47.30–2.59 (2.67–2.59) 47.93–1.60 (1.63–1.60) 45.54–2.10 
(2.14–2.10)

No. of observations 313528 (21715) 739043 (37457) 400760 (13579)

No. of unique reflections 48305 (4411) 195423 (9686) 83782 (3866)

Data completeness (%) 100.0 (99.9) 99.6 (99.8) 97.3 (82.4)

Redundancy 6.5 (4.9) 3.8 (3.9) 4.8 (3.5)

Mosaicity (°) 0.22 0.07 0.13

Average I/σ(I) 13.5 (2.0) 9.2 (1.5) 7.3 (2.1)

Solvent content (%) 62.2 61.0 60.4

Rmerge 0.144 (0.858) 0.074 (0.635) 0.188 (0.649)

Rmeas 0.157 (0.963) 0.086 (0.738) 0.212 (0.759)

CC(1/2) 0.994 (0.608) 0.998 (0.700) 0.990 (0.697)

Wilson B factor (Å2) 30.7 10.9 16.7

Refinement

Rwork 0.160 0.131 0.159

Rfree 0.226 0.154 0.196

Average B factor (Å2) 36.1 15.5 19.8

R.m.s.d. bonds from ideal (Å) 0.009 0.011 0.009

R.m.s.d. angles from ideal (°) 1.350 1.670 1.539

Ramachandran favoured (%) 94.45 95.77 95.30

Ramachandran outliers (%) 0 0 0

Table 2.  Statistics of data collection and processing and structure refinement parameters for MvBOx and its 
variants. Values in parentheses are for the highest resolution shell.

https://doi.org/10.1038/s41598-019-50105-3


1 1Scientific Reports |         (2019) 9:13700  | https://doi.org/10.1038/s41598-019-50105-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
	 1.	 Murao, S. & Tanaka, N. A new enzyme bilirubin oxidase produced by Myrothecium verrucaria MT-1. Agric. Biol. Chem. 45, 

2383–2384 (1981).
	 2.	 Tanaka, N. & Murao, S. Difference between various copper-containing enzymes (Polyporus laccase, mushroom tyrosinase and 

cucumber ascorbate oxidase) and bilirubin oxidase. Agric. Biol. Chem. 47, 1627–1628 (1983).
	 3.	 Guo, J., Liang, X. X., Mo, P. S. & Li, G. X. Purification and properties of bilirubin oxidase from Myrothecium verrucaria. Appl. 

Biochem. Biotechnol. 31, 135–143 (1991).
	 4.	 Xu, F. et al. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox 

potential, substrate specificity, and stability. Biochim. Biophys. Acta 1292, 303–311 (1996).
	 5.	 Kataoka, K. et al. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in 

Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Biochemistry 44, 7004–7012 (2005).
	 6.	 Otsuka, K., Sugihara, T., Tsujino, Y., Osakai, T. & Tamiya, E. Electrochemical consideration on the optimum pH of bilirubin oxidase. 

Anal Biochem. 370, 98–106 (2007).
	 7.	 Mizutami, K. et al. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 Å resolution using a twinned crystal. Acta 

Cryst. F66, 765–770 (2010).
	 8.	 Cracknell, J. A., McNamara, T. P., Lowe, E. D. & Blanford, C. F. Bilirubin oxidase from Myrothecium verrucaria: X-ray determination 

of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction. Dalton Trans 40, 
6668–6675 (2011).

	 9.	 Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2605 (1996).
	10.	 Sakurai, T. & Kataoka, K. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem. Record 7, 

220–229 (2007).
	11.	 Quintanar, L. et al. Shall We Dance? How A Multicopper Oxidase Chooses Its Electron Transfer Partner. Acc. Chem. Res. 40, 

445–452 (2007).
	12.	 Bento, I., Martins, L. O., Gato Lopes, G., Carrondo, M. A. & Lindley, P. F. Dioxygen reduction by multi-copper oxidases; a structural 

perspective. Dalton Trans. 7, 3507–3513 (2005).
	13.	 Yoon, J. & Solomon, E. I. Electronic Structure of the Peroxy Intermediate and Its Correlation to the Native Intermediate in the 

Multicopper Oxidases: Insights into the Reductive Cleavage of the O-O bond. J. Am. Chem. Soc. 129, 13127–13136 (2007).
	14.	 Kataoka, K. et al. Four-electron Reduction of Dioxygen by a Multicopper Oxidase, CueO, and Roles of Asp112 and Glu506 Located 

Adjacent to the Trinuclear Copper Centre. The journal of biological chemistry 284, 14405–14413 (2009).
	15.	 dos Santos, L., Climent, V., Blanford, C. F. & Armstrong, F. A. Mechanistic studies of the ‘blue’ Cu enzyme, bilirubin oxidase, as a 

highly efficient electrocatalyst for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 12, 13962–13974 (2010).
	16.	 Bento, I. et al. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. 

BMC Structural Biology 10, 28 (2010).
	17.	 Iwaki, M. et al. ATR-FTIR study of the protonation states of the Glu residue in the multicopper oxidases, CueO and bilirubin 

oxidase. FEBS Lett. 584, 4027–4031 (2010).
	18.	 Shimizu, A. et al. Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands. Biochemistry 38, 

3034–3042 (1999).
	19.	 Mano, N. Features and applications of bilirubin oxidases. Appl Microbiol Biotechnol. 96, 301–307 (2012).
	20.	 Doumas, B. T., Yein, F., Perry, B., Jendrzejczak, B. & Kessner, A. Determination of the sum of bilirubin sugar conjugates in plasma by 

bilirubin oxidase. Clin. Chem. 45, 1255–1260 (1999).
	21.	 Kimura, S., Iyama, S., Yamaguchi, Y., Hayashi, S. & Yanagihara, T. Enzymatic assay for conjugated bilirubin (Bc) in serum using 

bilirubin oxidase (BOD). J Clin Lab Anal. 13, 219–223 (1999).
	22.	 Liu, Y., Huang, J. & Zhang, X. Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase. J Biosci Bioeng. 

108, 496–500 (2009).
	23.	 Han, X., Zhao, M., Lu, L. & Liu, Y. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium 

verrucaria 3.2190. Fungal. Biol. 116, 863–871 (2012).
	24.	 Ramirez, P. et al. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of 

bilirubin oxidase. Biochim. Biophys. Acta, Bioenerg. 1777, 1364–1369 (2008).
	25.	 Brocato, S., Lau, C. & Atanassov, P. Mechanistic study of direct electron transfer in bilirubin oxidase. Electrochim. Acta 61, 44–49 

(2012).
	26.	 Leech, D., Kavanagh, P. & Schuhmann, W. Enzymatic fuel cells: Recent progress. Electrochim. Acta 84, 223–234 (2012).
	27.	 Filip, J., Sefcovicova, J., Gemeiner, P. & Tkac, J. Electrochemistry of bilirubin oxidase and its use in preparation of a low cost 

enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochim. Acta 87, 366–374 (2013).
	28.	 Mano, N. & Edembe, L. Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosensors and Bioelectronics 50, 

478–485 (2013).
	29.	 Santoro, C., Babanova, S., Erable, B., Schuler, A. & Atanassov, P. Bilirubin oxidase based enzymatic air-breathing cathode: Operation 

under pristine and contaminated conditions. Bioelectrochemistry 108, 1–7 (2016).
	30.	 Mazurenko, I. et al. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and 

Mediated O2 Reduction. ACS Appl. Mater. Interfaces 8, 23074–23085 (2016).
	31.	 Filip, J., Andicsova-Eckstein, A., Vikartovska, A. & Tkac, J. Immobilization of bilirubin oxidase on graphene oxide flakes with 

different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate 
and current density. Biosens Bioelectron. 89, 384–389 (2017).

	32.	 Mano, N. & de Poulpiquet, A. O2 Reduction in Enzymatic Biofuel Cells. Chem. Rev. 118, 2392–2468 (2018).
	33.	 Lopez, F., Zerria, S., Ruff, A. & Schuhmann, W. An O2 Tolerant Polymer/Glucose Oxidase Based Bioanode as Basis for a Self-

powered Glucose Sensor. Electroanalysis 30, 1311–1318 (2018).
	34.	 Cracknell, J. A. & Blanford, C. F. Developing the mechanism of dioxygen reduction catalyzed by multicopper oxidases using protein 

film electrochemistry. Chemical Science 3, 1567–1581 (2012).
	35.	 Agbo, P., Heath, J. R. & Gray, H. B. Modeling Dioxygen Reduction at Multicopper Oxidase Cathodes. J. Am. Chem. Soc. 136, 

13882–13887 (2014).
	36.	 Komori, H. & Higuchi, Y. Structural insights into the O2 reduction mechanism of multicopper oxidase. The Journal of Biochemistry 

158, 293–298 (2015).
	37.	 Bertrand, T. et al. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and 

correlation with kinetics. Biochemistry 41, 7325–7333 (2002).
	38.	 Enguita, F. J. et al. Substrate and Dioxygen Binding to the Endospore Coat Laccase from Bacillus Subtilis. J. Biol. Chem. 279, 

23472–23476 (2004).
	39.	 Kallio, J. P. et al. Structure Function Studies of a Melanocarpus albomyces Laccase Suggest a Pathway for Oxidation of Phenolic 

Compounds. J. Mol. Biol. 392, 895–909 (2009).
	40.	 Akter, M. et al. Redox potential-dependent formation of an unusual His-Trp bond in bilirubin oxidase. Chemistry 24, 18052–18058 

(2018).

https://doi.org/10.1038/s41598-019-50105-3


1 2Scientific Reports |         (2019) 9:13700  | https://doi.org/10.1038/s41598-019-50105-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	41.	 Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. 
Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

	42.	 Enguita, F. J., Martins, L. O., Henriques, A. O. & Carrondo, M. A. Crystal Structure of a Bacterial Endospore Coat Component. J. 
Biol. Chem. 278, 19416–19425 (2003).

	43.	 Moser, C. C., Anderson, J. L. & Dutton, P. L. Guidelines for tunneling in enzymes. Biochim Biophys Acta. 1797, 1573–1586 (2010).
	44.	 Skalova, T. et al. Structure of laccase from Streptomyces coelicolor after soaking with potassium hexacyanoferrate and at an 

improved resolution of 2.3 Å. Acta Crystallogr F Struct. Biol. Cryst. Commun. 67, 27–32 (2011).
	45.	 Orlikowska, M. et al. Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus. Int. J. Biol. 

Macromol. 107, 1629–1640 (2018).
	46.	 Ravikiran, B. & Mahalakshmi, R. Unusual post-translational protein modification: the benefits of sophistication. RSC Adv. 4, 

33958–33974 (2014).
	47.	 Ehrenshaft, M., Deterding, L. J. & Mason, R. P. Tripping Up Trp: Modification of Protein Tryptophan Residues by Reactive Oxygen 

Species, Modes of Detection, and Biological Consequences. Free Radic Biol Med. 89, 220–228 (2015).
	48.	 Nguyen, N. T., Wrona, M. Z. & Dryhurst, G. Electrochemical oxidation of tryptophan. J. Electroanal. Chem. 199, 101–126 (1986).
	49.	 Enache, T. A. & Oliveira-Brett, A. M. Pathways of Electrochemical Oxidation of Indol Compounds. Electroanalysis 23, 1337–1344 

(2011).
	50.	 Yang, S., Liu, J., Quan, X. & Zhou, J. Bilirubin Oxidase Adsorption onto Charged Self-Assembled Monolayers: Insights from 

Multiscale Simulations. Langmuir 34, 9818–9828 (2018).
	51.	 Xia, H., Kitazumi, Y., Shirai, O. & Kano, K. Enhanced direct electron transfer-type bioelectrocatalysis of bilirubin oxidase on 

negatively charged aromatic compound-modified carbon electrode. J. Electroanal. Chem. 763, 104–109 (2016).
	52.	 Sakai, K., Xia, H., Kitazumi, Y., Shirai, O. & Kano, K. Assembly of direct-electron-transfer-type bioelectrodes with high performance. 

Electrochimica Acta 271, 305–311 (2018).
	53.	 Kovaľ, T. et al. Structural and Catalytic Properties of S1 Nuclease from aspergillus oryzae responsible for substrate recognition, 

cleavage, non–specificity, and inhibition. PLoS ONE 11, e0168832 (2016).
	54.	 Wang, J. et al. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD+ regeneration. Biotechnol. Lett. 

38, 1315–1320 (2016).
	55.	 Reiss, R., Ihssen, J. & Thöny-Meyer, L. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC 

Biotechnology 11, 9 (2011).
	56.	 Durand, F. et al. Bilirubin oxidase from Bacillus pumillus: A promising enzyme for elaboration of efficient cathodes in Biofuel cells. 

Biosens Bioelectron. 35, 140–146 (2012).
	57.	 Sigma-Aldrich bilirubin oxidase assay protocol, www.sigmaaldrich.com.
	58.	 Fejfarová, K. et al. Crystallization of nepenthesin I using a low-pH crystallization screen. Acta Crystallogr F Struct. Biol. Cryst. 

Commun. 72, 24–28 (2016).
	59.	 Mueller, U. et al. Facilities for macromolecular crystallography at the Helmholtz–Zentrum Berlin. J Synchrotron Radiat. 19, 442–449 

(2012).
	60.	 Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 

(2010).
	61.	 Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 

1204–1214 (2013).
	62.	 Vagin, A. & Teplyakov, A. MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 30, 1022–1025 (1997).
	63.	 Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 

(2004).
	64.	 Murshudov, G. N., Vagin, A. & Dodson, E. J. Refinement of Macromolecular Structures by the Maximum-Likelihood method. Acta 

Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
	65.	 Chen, V. B., Arendall, W. B., Headd, J. J. & Keedy, D. A. MolProbity: all-atom structure validation for macromolecular 

crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
	66.	 Berman, H. M., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nature Structural Biology 10, 980 

(2003).
	67.	 Afonine, P. V. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. 

Crystallogr. 66, 213–221 (2010).

Acknowledgements
This work was supported by the institutional support of IBT CAS, v. v. i. (RVO: 86652036), by the European 
Regional Development Fund (CZ.02.1.01/0.0/0.0/15_003/0000447, CZ.02.1.01/0.0/0.0/16_013/0001776, and 
CZ.1.05/1.1.00/02.0109), and by the Ministry of Education, Youth and Sports of the Czech Republic (LM2015043, 
support of Biocev-CMS). We would like to thank Drs Jiri Pavlicek, Petr Pompach and Tatsiana Charnavets from 
the Centre of Molecular Structure, Biocev for assistance with data acquisition.

Author Contributions
T.K. and J.Do. designed research; L.H.O., T.K. and L.S. prepared samples; T.K. performed crystallization and 
biophysical characterisation; T.K., L.S., T.S., P.K., J.S. and J.Do. performed data collection and processing; T.K. and 
L.S. performed structure solution and refinement, T.K., L.S., P.K. and J.Do. performed structure validation; L.S. 
performed kinetic measurements; T.K., L.S., T.S., P.K., J.Du., J.H., M.T., K.F. and J.Do. analyzed and interpreted 
the data; J.Du. secured laboratory background; T.K., L.S., and J.Do. wrote the manuscript with contributions from 
all authors.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-50105-3.
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-019-50105-3
http://www.sigmaaldrich.com
https://doi.org/10.1038/s41598-019-50105-3


13Scientific Reports |         (2019) 9:13700  | https://doi.org/10.1038/s41598-019-50105-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-50105-3
http://creativecommons.org/licenses/by/4.0/

	Trp–His covalent adduct in bilirubin oxidase is crucial for effective bilirubin binding but has a minor role in electron tr ...
	Results

	Structure of MvBOx wild type from acidic pH. 
	Trp396–His398 crosslink. 
	Functional mutants of MvBOx Trp396. 
	Structures of MvBOx mutants Trp396Ala and Trp396Phe from acidic pH. 
	Coordination of T1Cu. 
	Binding of ferricyanide in the active site of MvBOxWT and MvBOxW396A. 
	Analysis of enzymatic activity of WT and mutant MvBOx. 
	Oxidation rate and affinity of bilirubin are affected by mutations of Trp396. 
	Oxidation of ferrocyanide is significantly affected only for mutant Trp396Asp. 
	Oxidation of ABTS is affected by mutations of Trp396. 
	All mutations of Trp396 diminish oxidation of DMP. 


	Discussion

	Structure of MvBOx is maintained under extreme pH. 
	Trp396–His398 covalent crosslink is natively present in MvBOx and its existence is not pH dependent. 
	Trp396–His398 adduct modifies coordination of T1Cu. 
	Trp396–His398 crosslink formation. 
	Ferricyanide binds to positively charged site near Trp396–His398 adduct. 
	Trp396–His398 adduct has no significant structural role in MvBOx. 
	Trp396–His398 adduct participates in substrate binding and oxidation, depending on substrate type. 
	Trp396–His398 adduct is important in bilirubin oxidation. 
	Trp396–His398 adduct and ferrocyanide oxidation. 
	Trp396–His398 adduct and ABTS oxidation. 
	Trp396–His398 adduct and DMP oxidation. 

	OS1, Trp–His adduct, and electron transfer. 

	Conclusion

	Materials and Methods

	Cloning of bilirubin oxidase wild type. 
	Construction of mutated variants of bilirubin oxidase. 
	Expression and purification. 
	Mass spectrometry. 
	MvBOx activity assay. 
	Crystallization, data collection, structure solution, and refinement. 

	Acknowledgements

	Figure 1 (a) Structure of MvBOxWT from strongly acidic condition.
	Figure 2 Coordination of T1Cu: (a) in the structure of WT:FECN (PDB ID 6I3J, carbon green), (b) in W396A:FECN (PDB ID 6I3K, carbon light blue), and (c) in W396F (PDB ID 6I3L, carbon pale orange).
	Figure 3 Binding of ferricyanide in the active site of MvBOx wild type and its W396A mutant.
	Figure 4 Oxidation of (a) bilirubin (b) K4Fe(CN)6 (c) ABTS and (d) DMP by MvBOxWT (solid line, ●), MvBOxW396A (dotted line, ▲), MvBOxW396F (dot-dash line, ▢), and MvBOxW396D (dashed line, ◆).
	Table 1 Kinetic parameters for oxidation of bilirubin, K4Fe(CN)6, ABTS, and DMP calculated for the measurements shown in Fig.
	Table 2 Statistics of data collection and processing and structure refinement parameters for MvBOx and its variants.




