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Abstract: Cataract is a leading cause of blindness worldwide. Currently, restoration of vision in
cataract patients requires surgical removal of the cataract. Due to the large and increasing number of
cataract patients, the annual cost of surgical cataract treatment amounts to billions of dollars. Limited
access to functional human lens tissue during the early stages of cataract formation has hampered
efforts to develop effective anti-cataract drugs. The ability of human pluripotent stem (PS) cells to
make large numbers of normal or diseased human cell types raises the possibility that human PS cells
may provide a new avenue for defining the molecular mechanisms responsible for different types of
human cataract. Towards this end, methods have been established to differentiate human PS cells
into both lens cells and transparent, light-focusing human micro-lenses. Sensitive and quantitative
assays to measure light transmittance and focusing ability of human PS cell-derived micro-lenses
have also been developed. This review will, therefore, examine how human PS cell-derived lens
cells and micro-lenses might provide a new avenue for development of much-needed drugs to treat
human cataract.

Keywords: human pluripotent stem cell; lens; micro-lens; cataract; bioinformatics; risk factor;
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1. Introduction

Cataract is a condition in which light transmission through the ocular lens is decreased, resulting
in reduced vision and blindness. The ability to define the initiating molecular mechanisms of human
cataract formation—and, therefore, effective treatments to inhibit or delay cataract progression—has
largely been hampered by the lack of access to functional human lens tissue at the initial stages
of cataract formation. The ability of human pluripotent stem (PS) cells to (i) self-renew and (ii)
differentiate into any cell type of the body, means human PS cells can provide a large-scale source
of normal or diseased human cells for research [1–4]. Consequently, human PS cells are enabling
new research approaches into human cell and tissue development, elucidation of molecular disease
mechanisms, drug discovery and toxicity assessments, and investigation of candidate cell-based
therapies. This review will explore how human PS cell technology is being applied to cataract research,
with particular emphasis on cataract disease modelling, drug discovery and toxicity assessment.

2. Human PS Cell-Derived Organoids

The types of human PS cells most widely used for research are embryonic stem cells [5,6]
and induced pluripotent stem cells [7–9]. Cell culture maintenance of human PS cells involves
non-trivial tasks compared to culture of non-pluripotent cell lines. This is due to human PS cells
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being highly sensitive to variations in basic culture parameters, including the size of cell aggregates,
cell and/or cell-aggregate density, time in culture, growth factor and extracellular matrix composition
and concentrations, etc.

Significant efforts were made worldwide to identify effective proliferation and maintenance
conditions for human PS cells. A comparison of published culture media by the International Stem
Cell Initiative identified three media conditions capable of sustained maintenance of multiple human
PS cell lines across five independent laboratories [10]. Nowadays, commercially available human PS
cell media provide defined, feeder-free culture conditions for robust and reproducible expansion of
human PS cells.

As a consequence of having reliable human PS cell maintenance conditions, human PS cell
differentiation strategies are now being improved to the extent where generating large numbers
of purified, differentiated cells is possible for a variety of cell types. Moreover, human PS cell
differentiation strategies have begun to evolve to the point where they can reproducibly generate large
numbers of small, three-dimensional human tissues, termed ‘organoids’. These stem-cell-derived
organoids mimic aspects of the cellular arrangement, and to varying extents, the overall function,
of human tissues [11–13]. Human PS cell-derived organoids, therefore, have the potential to provide
new and powerful tools for elucidating molecular mechanisms of disease progression that are specific
to individual disease risk factors, as well as associated drug discovery studies [14–16].

3. Human PS Cell-Derived Lens Epithelial Cells and Micro-Lenses

As summarized by Murphy et al., a number of methods have been used to produce lens epithelial
cells (LECs) at different levels of purity from human pluripotent stem cells [17]. The method that
generates the most purified LEC population involves cell purification via an antibody that detects the
ROR1 (receptor tyrosine kinase-like orphan receptor 1) cell surface antigen. Subsequent aggregation
and culture of these purified LECs generates micro-lenses that share key properties of primary human
lenses, including:

(i) The ability to transmit and focus light;
(ii) A cellular architecture consisting of LECs and a mass of lens fibre cells;
(iii) Expression and accumulation of lens-specific crystallin proteins;
(iv) Ultrastructural changes, including lens fibre cell denucleation and formation of complex

membrane interdigitations.

Of the various methods used to produce lens cells from human PS cells, the ROR1-LEC/micro-lens
system shares the largest number of functional lens properties with primary human lenses, in particular,
the ability to focus light. Accordingly, this review will focus on how the ROR1-LEC/micro-lens system
might be used to investigate cataract formation.

To test whether human PS cell-derived micro-lenses might be suitable for investigating cataract
formation in vitro, ROR1-expressing LECs were exposed to a drug (Vx-770) suspected of causing
non-congenital cataract in young cystic fibrosis patients [18,19]. Strikingly, micro-lenses treated with
high Vx-770 concentrations lost their ability to transmit and focus light [17]. These findings suggest
human PS cell-derived, ROR1-expressing LECs and micro-lenses could aid identification of the specific,
initiating cataract molecular mechanisms that result from different cataract risk factors. The ability
to precisely alter the environment in which stem-cell-derived, human lens cells and micro-lenses are
cultured—for example, by changing the concentration of oxygen (hypoxia, normoxia, hyperoxia),
nutrients, drugs, etc.—provides a new opportunity to define how individual or combinations of factors
lead to cataract initiation and progression.

4. Cataract: Impairment of Lens Function

The term cataract describes an opacification of all or specific regions of the ocular lens. Cataracts
can cause reduced vision and blindness by impairing the lens’ ability to focus light onto the retina.
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Various anatomical and molecular changes have been associated with cataractous lenses including
brunescence, formation of light scattering particles, and localized changes in the refractive index [20–22].
These effects can reduce the luminosity, contrast and/or clarity (‘acuity’) of images being received by
the retina. The magnitude of these effects depends on the cataract morphology and the proportion of
the pupillary area occupied by the cataract (see Figure 1).

Figure 1. Diagram of the lens and cataract types. (a) Location of the lens, lens epithelial cells (LECs)
and lens fibre cells within the eye. Black dots indicate nuclei within epithelial cells and differentiating
fibre cells. (b) Location of different types of cataract within the lens, including anterior subcapsular
cataract (ASC), posterior subcapsular cataract (PSC), cortical cataract (CC) and nuclear cataract (NC).
(c) Location of posterior capsule opacification (PCO) in the lens capsular bag after cataract surgery. Lens
epithelial cells undergo an epithelial-to-mesenchymal transition (EMT) and cause capsular wrinkling.

Cataracts typically occur in adults, though they can also occur in children—for example, congenital
and traumatic cataracts. In adults, cataracts most often present slowly and painlessly. Due to the
subtle progression of cataract formation, many patients are often unaware of the initial changes in their
vision [23]. The gradual nature of cataract formation, together with the inability to access lens tissue
at the early stages of disease initiation, has made identification of risk-factor-specific mechanisms of
cataract formation highly challenging.

5. Types of Cataract

Cataracts can be defined by different characteristics, for example, their location within the lens.

• Nuclear cataract is located in the center (or ‘nucleus’) of the lens. With ageing, the lens nucleus
can darken, changing from clear to yellow and even brown; a process called brunescence [24,25].

• Cortical cataract forms within the peripheral layers of lens fibre cells, situated outside of the lens
nucleus. Cortical cataract (e.g., diabetic cataract) often has a wedge- or spoke-like appearance
pointing towards the centre of the lens, and is frequently associated with glare [25,26].

• Anterior subcapsular cataract arises within the anterior LEC monolayer; it results from abnormal
growth and/or differentiation of lens epithelial cells, resulting in fibrotic plaques [25,27].

• Posterior subcapsular cataract forms under the posterior lens capsule due to abnormal growth
and differentiation of LECs or immature lens fibre cells [28]; it can cause light sensitivity and
glare [25,29].

• Posterior capsule opacification (PCO) is the most common complication of primary cataract
surgery. PCO develops from residual LECs not removed during primary cataract surgery. These
cells proliferate, migrate and undergo abnormal differentiation on the posterior capsule, causing
capsular wrinkling [30].
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6. Cataract Surgery

Currently, cataract development cannot be delayed. However, cataracts can be surgically treated
via phacoemulsification to remove the lens cells and associated cataract—this typically happens after
significant loss of vision has occurred. Lens cell removal is followed by implantation of a rigid plastic
intraocular lens that restores a fixed focal point onto the retina (Figure 1). Cataract surgery generally
restores vision immediately, and so has become common place in developed countries where the
required equipment and expertise are readily available. Vision restoration in cataract patients restores
more than just the lifestyle and functioning capacity of the patient. Due to the care that cataract patients
require as a result of their vision loss, vision restoration via cataract surgery often has wider effects
on family members and caregivers—for instance, freeing time for family members to return to the
workforce [31,32].

Millions of cataract surgeries are performed worldwide each year, costing billions of dollars. In
the USA, for 2004, the direct medical costs attributed to cataract were estimated at $6.8 billion [33].
Cataracts also contribute to an estimated $8 billion in annual productivity losses per year in the
USA [33]. Additionally, estimates suggest between $65 and $157 million is spent annually treating
PCO [34,35]. Despite this large investment in cataract health services, cataract continues to be a leading
cause of blindness worldwide, with the number of patients with low vision or blindness due to cataract
having increased from ~50 million in 1990 to ~65 million in 2015 [36]. Additional, less frequent but
large-impact complications of cataract surgery include: refractive error, retinal detachment and visual
impairment [37,38]. As a result of these side-effects, there is significant patient, clinical, industry and
academic interest in identifying effective anti-cataract drugs to delay cataract formation. Notably, it
has been estimated that delaying cataract formation by 10 years could almost halve the number of
cataract surgeries required [39]. At present, however, no effective anti-cataract drug has been identified
for humans. This is largely due to the inability to access human lens material during the early stages of
cataract formation.

7. Cataract Risk Factors

Cataracts are often categorized based on the location in which they develop within a lens, though
it is unlikely the molecular pathology of cataract formation is the same for all cataract subtypes. While
some later aspects of cataract formation may be common to more than one type of cataract—for
example, light-scattering particles such as protein aggregates [40] or multi-lamellar bodies [41]—it is
likely that at least some of the initiating mechanisms of cataract formation are unique to each particular
cataract risk factor responsible for cataract formation.

Various environmental cataract risk factors have been identified, including age [42], heat [43,44],
UV light [45–47], smoking [48], diabetes [49], oxidation [24] and some drugs, such as glucocorticoids [28].
Over 300 genetic mutations have also been associated with congenital cataract or adult cataract [50],
including crystallin [51,52] and connexin mutations [53]. Partial molecular mechanisms have been
postulated for some forms of cataract, such as congenital cataracts caused by connexin mutations [54]
and age-related cataract [55,56].

Much of our knowledge of lens biology has come from in vitro and in vivo studies of animal lens
and cataract development, including drosophila, mice, rats, dogs, cows, salamanders, rabbits, and
kangaroo [24,57–69]. These animal-based studies have been valuable in providing a framework for
understanding human lens and cataract biology. Nevertheless, animal models are poorly predictive of
human biology [70–72]. While various animal models have been used to test the ability of different
molecules to delay cataract formation [73,74], to date, no effective anti-cataract drug has been identified
for human patients.

From a practical perspective, in vitro models for anti-cataract drug discovery benefit from the
ability to be performed at a small scale (for targeted studies of drug candidates) to large scale (for
drug screening assays). These requirements mean that whole animal lenses are poorly suited to many
anti-cataract drug discovery approaches. In addition to scalability issues and inherent species-specific
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differences compared to humans, in vitro animal-based cataract models—such as explanted lens
tissue—often lack the three-dimensional arrangement of normal lens tissue. As a result, cataract
models that rely on explanted lens tissue [75,76] may not mimic some important lens parameters that
occur in vivo, such as lens capsule-mediated access of drugs to lens cells.

To try and avoid the limitations inherent to animal-based investigations of cataract formation [56],
primary human lens material has been used [77]. This includes the human lens capsular bag model,
emulsified lens material obtained through cataract surgery, and small numbers of donated human
lenses. These studies have defined important differences between late-stage adult cataract and aged,
non-cataractous lenses. This includes a role for the lens epithelium in maintaining lens health through
ion transport/homeostasis, and subsequent circulation of anti-oxidants through the lens [55] that
appears to be affected in late-stage cataract. Nevertheless, key aspects of lens circulation still need to
be defined, including how cataract progression is affected by functional heterogeneity within the lens
epithelium—and more research is needed. However, the small amount of primary human material
that can be accessed—together with the late stage of cataractogenesis obtained and the irregular
supply of primary human material—makes it challenging to use these models for defining initiating
mechanisms of primary cataract formation. Immortalized human cell lines have been employed as an
alternative [78,79], but how closely these cells reflect normal lens biology is debatable. Furthermore,
human lens cell lines have not been shown to develop into transparent, light-focusing three-dimensional
lens tissue—a key feature of normal lens biology.

8. Defining Cataract Mechanisms with ROR1-Expressing Lens Cells and Micro-Lenses

As described in Section 3, human PS cells can be used to generate large numbers of ROR1-expressing
LECs and micro-lenses. Exposing these micro-lenses to clinically relevant doses of a potential cataract
risk factor (Vx-770) reduced micro-lens transparency and focusing [17]. The ability to collect cell culture
samples at any time after treatment suggests ROR1-expressing LECs and micro-lenses could provide
valuable new systems for defining the initiating mechanisms of PCO and primary human cataract. Being
able to control which cataract risk factor or combinations of risk factors the lens cells and micro-lenses
are exposed to could provide new insights into the initial stages of cataract formation—insights that
cannot be obtained using mouse lenses or primary human lens tissue. For example, an interesting
approach could be to study human PS-cell-derived micro-lenses that possess crystallin mutations, with
and without exposure to environmental cataract risk factors. Defining the molecular consequences of
cataract risk factors on functional human micro-lenses could potentially also provide new information
on lens-protection mechanisms. These new insights could then lead to new candidate anti-cataract
drug targets and/or anti-cataract drugs.

The variety of cataract risk factors available for modelling via stem-cell-derived LECs and
micro-lenses (noted above) can be prioritized based on the complexity required to replicate particular
risk factors in vitro. Currently, used drugs that have primary cataract as a side-effect might be the
simplest cataract risk factors to investigate, due to the ease in which they can be added to culture
media over a range of clinically relevant concentrations. For example, dexamethasone is routinely
prescribed to treat a variety of disorders, such as rheumatoid arthritis [80], ocular inflammation [81], and
post-surgical inflammation [82,83]. Notably, long-term use of dexamethasone has been associated with
posterior subcapsular cataract [84–86]. Preliminary data from our group has shown that micro-lenses
exposed to dexamethasone have reduced light transmission and focusing ability (Figure 2). These data
suggest that further investigation of this system could identify how dexamethasone-induced cataract
occurs in humans.
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Figure 2. Dexamethasone induces cataract-like effects in human micro-lenses after 8 days of
treatment. (a) Phase contrast images show that exposing micro-lenses to increasing concentrations
of dexamethasone (dex.) decreases light transmittance (top row) and focusing ability (bottom row).
(b) Quantitative image analysis showing that increasing dexamethasone concentration significantly
decreases micro-lens light transmittance compared to control (vehicle-only) treatment. (c) Quantitative
image analysis showing that increasing dexamethasone treatment decreases micro-lens focusing ability
compared to control (vehicle-only) treatment. The micro-lenses were derived from human-induced
pluripotent stem cells, and were cultured for 10 days until light focusing occurred, after which time,
treatment was initiated. Error bars represent standard error of the mean; eight micro-lenses from three
independent experiments were analysed for each treatment.

9. Drug Toxicity Assessment Using ROR1-Expressing Lens Cells and Micro-Lenses

In addition to their potential for defining initiating mechanisms of human cataract formation,
ROR1-expressing LECs and micro-lenses have significant potential for providing a new, large-scale
and high-throughput system for assessing lens toxicity assessment. For example, new drugs could
be tested using the micro-lenses to quantify their effects on human micro-lens transparency and/or
focusing. Such an application would be consistent with how human PS-cell-derived cardiomyocytes
have been approved by the US Food and Drug Administration for cardiotoxicity assessment of new
drugs [87]. Alternatively, older drugs that failed pre-clinical development due to the appearance of
cataracts in animal models could be re-investigated using the micro-lens system—in order to determine
whether they similarly cause cataract in functional human lens tissue.

Defining drug-induced molecular consequences within human micro-lenses could also identify
potential cataract biomarkers to stratify patients at low- vs. high-risk of cataract formation. For example,
higher concentrations of particular drugs may cause cataract formation [17]. Therefore, identifying
patients that experience higher ocular drug concentrations (e.g., by quantifying drug concentration in
the tear film) may enable stratification of patients into low- vs. high-risk of cataract formation. In turn,
this information could identify patients in need of more frequent assessment of lens/eye health, and/or
enable improved drug prescribing to minimize cataract formation in patients.

Defining molecular mechanisms of cataract formation using micro-lenses could also potentially
identify candidate co-therapies to avoid cataract formation—in a similar way to co-therapies being
used to avoid side-effects of other drugs. For example, folate is co-prescribed with methotrexate
for rheumatoid arthritis/rheumatic diseases, in order to avoid hepatotoxicity and gastrointestinal
side-effects caused by methotrexate-based treatment [88]. Defining the molecular mechanisms of
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drug-induced cataract formation could offer similar opportunities for co-therapy development to avoid
cataract formation.

10. Conclusions and Future Perspectives

Human PS-cell-derived lens cells and micro-lenses can provide a large-scale source of functional
human lens tissue, possessing a range of morphological, molecular and functional similarities to
primary human lenses. These ROR1-expressing lens cells and micro-lenses can be used to model
individual or combined cataract risk factors, and associated human cataract initiation events in vitro.
They can also be applied to small-scale or large-scale drug discovery and toxicity assays. Given the
large annual financial burden cataract surgery places on health systems worldwide, investigating
human cataract formation using ROR1-expressing lens cells and micro-lenses has significant potential
to reduce the personal, social and economic consequences of cataract.
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