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Ovarian cancer is an aggressive tumor that remains to be the most lethal

gynecological malignancy in women. Metabolic adaptation is an emerging

hallmark of tumors. It is important to exploit metabolic vulnerabilities of tumors

as promising strategies to develop more effective anti-tumor regimens. Tumor

cells reprogram the metabolic pathways to meet the bioenergetic,

biosynthetic, and mitigate oxidative stress required for tumor cell

proliferation and survival. Oxidative phosphorylation has been found to be

altered in ovarian cancer, and oxidative phosphorylation is proposed as a

therapeutic target for management of ovarian cancer. Herein, we initially

introduced the overview of oxidative phosphorylation in cancer.

Furthermore, we discussed the role of oxidative phosphorylation and

chemotherapeutic resistance of ovarian cancer. The role of oxidative

phosphorylation in other components of tumor microenvironment of ovarian

cancer has also been discussed.
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Introduction

Ovarian cancer is an aggressive tumor that remains to be the most lethal

gynecological malignancy in women (1). Resistance to conventional chemotherapeutic

regimens is the leading cause of death for ovarian cancer patients. Recent studies have

further investigated the biological behaviors of ovarian cancer cells and identified

signaling pathways related to metabolic adaptation (2). Targeting these metabolism-

related pathways represents a promising therapeutic strategy for overcoming

chemotherapeutic resistance and reducing its recurrence rate in patients with ovarian
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cancer, whereas more efforts should be paid to raise our

understanding of the underlying mechanisms of metabolic

adaptation in ovarian cancer.

Dysregulated cellular energetics are emerging hallmarks of

tumors. Tumor occurrence and development requires metabolic

reprogramming of tumor cells. Tumor cells reprogram the

metabolic pathways to meet the bioenergetic and biosynthetic

demands required for tumor cell proliferation and survival (3).

Additionally, the tumor microenvironment (TME) requires

tumor cells capabilities to adapt to the nutrient-deprived and

hypoxic environment to sustain tumor survival through diverse

metabolic pathways (4, 5). Growing evidence has illustrated that

metabolic phenotyping of components other than tumor cells

within the TME, including immune cells, adipocytes, and

cancer-associated fibroblasts, are also essential for tumor

development (4).
Overview of oxidative
phosphorylation in cancer

In 1920s, Otto Warburg first discovered that tumor cells rely

on glycolysis for ATP production, irrespective of the presence of

oxygen. The contribution of oxidative phosphorylation

(OXPHOS) in tumor cells has remained controversial. As

electrons pass through the ETC via four mitochondrial protein

complexes, namely NADH-Q oxidoreductase (complex I),

succinate-Q reductase (complex II), Q-cytochrome c

oxidoreductase (complex III), and cytochrome c oxidase

(complex IV), protons are pumped from the mitochondrial

matrix into the intermembrane space, which sets up the
Frontiers in Oncology 02
proton gradient. Complex V (ATP synthase) depends on the

gradient to drive ATP generation via via (6). (Figure 1) Tumor

cells have been reported to display enhanced aerobic glycolysis

and impaired OXPHOS. In contrast to this traditional concept,

although mutations of mitochondrial genes are commonly

observed in tumor cells, mitochondrial energy metabolism is

not inactivated, whereas the mitochondrial bioenergetic state is

altered (7, 8). OXPHOS is active in ovarian tumor cells. It has

been demonstrated that the reliance of ovarian tumor cells on

OXPHOS is closely related to the survival and proliferation of

cancer initiating stem cells. These surviving cancer stem cells

had increased mitochondrial biogenesis with higher OXPHOS

level (9). Thus, OXPHOS is proposed as a therapeutic target for

management of ovarian cancer (9). Therefore, OXPHOS plays a

key role in tumorigenesis of ovarian cancer, and targeting

OXPHOS is a promising therapeutic strategy.
Oxidative phosphorylation and
chemotherapeutic resistance of
ovarian cancer

The conventional chemotherapeutic regimen for patients

with ovarian cancer is a combination of paclitaxel and

carboplatin, which selectively target and eliminate fast-

proliferating tumor cells (10). In poorly vascularized and

hypoxic regions of tumors, environmental factors endow

tumor ce l l s to be quiescent and unresponsive to

chemotherapeutic regimens. Indeed, OXPHOS may not be

limited by poor oxygen supply in hypoxic tumors, and ATP

production from OXPHOS in tumors can be achieved at low
FIGURE 1

Illustration of mitochondrial electron transport, oxygen consumption and OXPHOS in cells.
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oxygen concentration (7). OXPHOS inhibition could be an

effective way to reduce the consumption of oxygen and to

consequently increase oxygen availability in the tissue. As a

result, oxygen could diffuse into initially hypoxic tumor regions,

reducing tumor hypoxia (7). Furthermore, this could be a

potential strategy for all hypoxic tumors, not simply those in

which OXPHOS is upregulated. OXPHOS has been regarded as

a critical metabolic vulnerability in chemotherapy-resistant

tumors (11) (Figure 2).

Numerous studies have pointed out the existence of tumor

subgroups with a preference for either aerobic glycolysis or

OXPHOS (11). Combined proteomic, metabolomic, and

bioenergetic analyses revealed that two heterogenous metabolic

subgroups co-exist in ovarian tumors, namely low- and high-

OXPHOS. High-OXPHOS tumors are characterized by elevated

levels of electron transport chain components and enhanced

mitochondrial respiration, while low-OXPHOS tumors exhibit a

glycolytic phenotype. In high-OXPHOS tumors, chronic

oxidative stress enhanced aggregation of PML-nuclear bodies,

leading to activation of the transcriptional co-activator PGC-1a.
Active PGC-1a further promotes the expression of electron

transport chain complexes, thus increasing OXPHOS.

Importantly, high-OXPHOS tumors display increased response

to conventional chemotherapies, such as taxane and platinum

(12). Therefore, metformin, respiratory complex I inhibitor,

elevates mitochondrial ROS production and enhances cell

death of high-OXPHOS cells, whereas it has little anti-tumor

effect on low-OXPHOS cells.

Chemotherapeutic regimens promote selection and

expansion of high-OXPHOS cancer stem cells. Combination of

chemotherapeutic regimens with anti-tumor drugs targeting

OXPHOS exerts a synergistic effect to improve the anti-tumor

effect in ovarian cancer, indicating a promising therapeutic
Frontiers in Oncology 03
approach for chemotherapy-resistant ovarian tumors.

Metabolic analysis revealed that resistant ovarian tumor cells

undergo a metabolic shift towards OXPHOS. This metabolic

shift coordinates with a re-organization of the mitochondrial

network and accumulates mitochondrial components (13).

Chemotherapy-resistant ovarian tumor cells display enhanced

OXPHOS compared with the sensitive counterpart. After

treatment with complex I inhibitor, metformin, and complex

V inhibitor, oligomycin, cisplatin sensitivity is restored. Tumor

necrosis factor-associated protein 1 (TRAP1), the mitochondrial

isoform of heat shock protein 90, is a key regulator of

metabolism (14). TRAP1 mediates a metabolic shift toward

OXPHOS, which can trigger altered cytokines generation and

gene expression within immune cells, ultimately resulting in

cisplatin resistance and metastasis in ovarian cancer (15).

Importantly, metabolic features of ovarian tumor cells have

predictive value for cisplatin sensitivity (14). TRAP1, as a

bioenergetic index and proinflammatory molecules, is a

predictive and prognostic biomarker of chemotherapeutic

outcome (16). Besides, as PGC1a is a key molecule for

integrating and coordinating nuclear DNA and mitochondrial

DNA transcriptional machinery, PGC1amay provide a target to

improve chemotherapy efficacy. PGC1a mediates OXPHOS

engaged in cisplatin resistance of ovarian tumor cells via

nucleo-mitochondrial transcriptional feedback (17, 18). High

expression of PGC1a confers on the tumor a unique molecular

signature, resulting in elevated OXPHOS and mitochondrial

biogenesis . Elevated OXPHOS ultimately conferred

vulnerability to OXPHOS inhibition (19). NADH production

in normal cells is reliant on the TCA cycle, while electron

transport in tumor cells is highly reliant on cytosolic NADH

produced by dehydrogenases, such as aldehyde dehydrogenase

(ALDH) (20, 21). Targeting OXPHOS in tumor cells by
FIGURE 2

Illustration of oxidative phosphorylation and chemotherapeutic resistance of ovarian tumors. OXPHOS, oxidative phosphorylation; ETC, electron
transport chain.
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inhibiting ALDH to reduce NADH generation can selectively

reduce ATP production, suppressing autophagy and causing

tumor cell death (22).
Oxidative phosphorylation and TME
of ovarian cancer

Considering that diverse and dynamic interactions of tumor

cells and other components of TME may exert a profound effect

on the metabolic adaptation of tumor, immune and stromal

cells, it is necessary to deepen the understanding of the complex

metabolic reprogramming within the TME (23).
Immune cells

Tumor cells not only evade immune surveillance and

defense but also create a hostile TME that perturb immune

cell metabolism and corresponding anti-tumor immunity.

Immune cells rely on diverse metabolic programs according to

their cell type and function, and the immuno-metabolic

interactions are critical for tumor development in the TME

(24, 25). The mechanisms of how altered metabolism

reprograms immune cell function are still being explored.

Tumor-associated macrophages (TAMs) exhibit a spectrum

of metabolic and functional profi les in response to

environmental stimuli, ranging from a pro-inflammatory and

tumor-inhibiting M1-like state to a regulatory and tumor-

promoting M2-like state (26). Metabolism governs

macrophage polarization, activation, and antitumor immunity

(27). Macrophages undergo a switch in their metabolic pathways

that leads to differentiation into either M1 or M2 subtypes in the

TME in response to cytokines produced by tumour cells (27). In

this context, metabolic interventions may be effective in

mediating anti-tumor effects that involve re-polarization of

TAMs (26). M1-polarized macrophages always exhibit a

glycolytic phenotype, while M2-polarized macrophages employ

OXPHOS for bioenergetic synthesis with increased number of

mitochondria and enhanced oxygen consumption rates (28).

Thus, increased OXPHOS in TAMs may contribute to pro-

tumorigenic effect, while targeting OXPHOS may be exploited to

facilitate anti-tumorigenic functions (29).

Growing evidence has illustrated that distinct metabolic

alterations are critical for effector function of T cell, including

CD4+ and CD8+ T cells (30). Given that T cells are engaged in

tumor development, it is necessary to elucidate the metabolic

phenotype of T cell and its impact on anti-tumor efficacy and

tumor progression. It has been demonstrated that ascites fluid

collected from ovarian cancer patients could activate IRE1a-XBP1
ER stress in T cells to inhibit mitochondrial function and anti-
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tumor immunity. Inhibition of IRE1a-XBP1 activation can restore

the OXPHOS and anti-tumor immunity against ovarian tumor

(31). Increased L-arginine levels in tumor cells lead to metabolic

switch from glycolytic phenotype to OXPHOS in activated T cells

and enhance T cell survival and anti-tumor efficacy (32).

Interleukin-10-Fc (IL-10/Fc) fusion protein has been identified to

mediate proliferation and effector function of terminally exhausted

CD8+ tumor infiltrating leukocytes via metabolic shift towards

OXPHOS through the mitochondrial pyruvate carrier. This

metabolic adaptation by enhancing OXPHOS can reverse

terminally exhausted T cells and improve the efficacy to

immunotherapy, indicating IL-10/Fc can synergize with other

cancer immunotherapies for better clinical outcome (33). Based

on these findings, OXPHOS is critical for effector function of T cells.

T regulatory cells (Tregs), an immunosuppressive subset of

CD4+ T cells, maintain immunological homeostasis by

enhancing self-tolerance and inhibiting autoimmune

responses. Transcription factor Foxp3 is specifically expressed

in Treg cells, and its expression is critical for differentiation and

suppressive function of Tregs (34). Precious studies have

reported that Tregs require OXPHOS for maintaining their

suppressive capacity (35, 36). Tregs lacking Lkb1 have

impaired mitochondria, reduced OXPHOS, and altered

metabolic pathways that impair survival and suppressive

capacity of Tregs (37). Foxp3 mediates metabolic rewiring of T

cells by reducing Myc-mediated glycolysis and elevating

OXPHOS. Thus, impairing electron transport chain complex I

of Tregs could inhibit suppressive function of Tregs in tumors

(38). Further studies are needed to explore the interaction

between OXPHOS of Tregs and its function in ovarian cancer.

Therefore, the dysregulated oxidative energetics of tumor

cells represent a metabolic vulnerability that could be exploited

to enhance anti-tumor immunity. Metformin alone brings

limited therapeutic benefit in highly aggressive tumors,

whereas combination of metformin with PD-1 blockade

improves anti-tumor effect of T cells (39). Metformin also

mediates CD8+ tumor-infiltrating leukocyte proliferation and

cytokine release, leading to an IFN-g-dependent reprogramming

of TME (40). Combination of radiotherapy and OXPHOS

inhibitors can overcome PD-1 resistance and improve anti-

tumor immunity (41). Impairing respiratory complex I can

suppress immune checkpoints in multiple cancer models,

uncovering a non-canonical role of electron transport chain

inhibitors in regulating immune checkpoints to improve the

anti-tumor efficacy (42).
Adipocytes

Adipocytes are one of the main stromal cell types in multiple

tissues, and thereby regarded as a key player in the TME. The

adipocyte-tumor interaction results in metabolic and functional
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alteration within these cells, thereby promoting tumor

development (43, 44). More importantly, ovarian tumors

exhibit a tendency to metastasize and colonize to the

omentum, a site that contains a large number of adipocytes

(43, 44). Adipocytes store triglycerides and have been reported to

transfer lipid directly to ovarian tumor cells in adipocyte-ovarian

tumor cell co-culture, resulting in an increase in mitochondrial

respiration to block ovarian cancer development (43–45).

Moreover, increased mitochondrial respiration has been

identified as a consequence of lipid transfer (36). The

capabilities of ovarian tumor cells to adapt and colonize lipid-

rich TME is essential for tumor development. Therefore,

targeting metabolic interaction between adipocyte and tumor

cells provides an opportunity for blocking ovarian cancer

development. Dihydropyrimidinase-like 4 (DPYSL4), a

member of the collapsin response mediator protein family, is

involved in ovarian tumor development. DPYSL4 participates in

the regulation of respiratory complexes I, III, and IV factors for

supercomplex assembly to mediate OXPHOS. In preadipocytes,

DPYSL4 overexpression can increase ATP production and

oxygen consumption. DPYSL4 improves intracellular energy

metabolism by localizing with mitochondrial super-complexes

and regulating steps of the TCA cycle (46). Therefore, exploring

key regulators of OXPHOS and metabolic adaptation in

adipocytes may provide promising therapeutic targets for the

treatment of ovarian tumors.
Cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) are an essential

component of the TME and exhibit diverse functions to

regulate tumor growth and metastasis. As such, CAFs are

regarded as a promising target for optimizing therapeutic

strategies against ovarian cancer. Numerous evidence has

proposed that CAFs function as main regulators in shaping

tumor metabolism especially through the dysregulation of

several metabolic pathways. Thus, it is essential to uncover

the mechanism of the CAFs-mediated metabolic shift to

character metabolic vulnerabilities of ovarian tumors. ITGB2

promoted glycolysis through PI3K/AKT/mTOR pathways in

CAFs and secreted lactate to promote OSCC proliferation by

enhancing OXPHOS capacities. Using metformin to target the

respiratory complex I could effectively inhibit the pro-

proliferative effects of ITGB2-expressing CAFs. Lactate from

ITGB2-expressing CAFs was absorbed and metabolized in oral

squamous cell carcinoma to generate NADH to fuel tumor

proliferation. Targeting respiratory complex I effectively

inhibited the pro-proliferative effects of ITGB2 expressing
Frontiers in Oncology 05
CAFs, further supporting lactate oxidation in oral squamous

cell carcinoma (47).
Clinical implications for
OXPHOS inhibition

The underlying mechanism of resistance to mitochondrial

metabolic targeting agents is complex and dynamic. For

instance, it has been demonstrated that BRCA1 deficiency

upregulates N-nicotinamide methyltransferase (NNMT),

which mediates metabolic reprogramming and sensitizes

ovarian tumor cells to mitochondrial metabolic targeting

agents . Mechanist ical ly , BRCA1 depletion leads to

metabolic adaptation of ovarian tumor cells by reducing

mitochondrial respiration and ATP production (48). Loss of

hexokinase 1 (HK1), a well-characterized enzyme engaged in

glycolysis, can sensitize ovarian cancer to high-dose

metformin (49). Hexokinase 2 (HK2) depletion suppresses

glycolysis and enhances OXPHOS, which further sensitizes

tumor cells to metformin. The combination of HK2 silencing

and metformin synergistically induces cell death and suppress

tumor growth (50). Collectively, synergistic inhibitors

targeting mitochondrial respiration and specific metabolic

vulnerabilities, such as glycolysis, open new avenues for anti-

tumor strategies. Combination treatment of OXPHOS

inhibitors with other chemotherapeutic agents and specific

targeted therapies such as Src and EGFR inhibitors, may be

potential therapeutic strategies (7). The mechanisms of

resistance to mitochondrial metabolic targeting agents still

require further investigations.

Exploring promising biomarkers for predicting therapeutic

response to mitochondrial metabolic targeting agents is essential

for precision treatment of ovarian cancer patients. Hig

expression of PGC1a and b have been identified as biomarkers

to select ovarian cancer patients that are more likely

to benefit from metformin monotherapy. (19). Metformin

monotherapy is also correlated with mitochondrial glycerol-

3-phosphate dehydrogenase (MGPDH) downregulation

and OXPHOS inhibition in tumor cells characterized by

high MGPDH expression are more sensitive to metformin (51).

It is necessary to identify molecular biomarkers to stratify

patients that would benefit most from the treatment of

OXPHOS inhibitors.

Targeting components of OXPHOS could open new avenues

for cancer management. NDUFS1 is a nuclear encoded subunit of

respiratory complex I. Xenografts established by CRISPR-Cas9

from NDUFS1−/− cells exhibit inhibited growth rates compared

with control groups, making NDUFS1 a suitable target for
frontiersin.org

https://doi.org/10.3389/fonc.2022.971479
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2022.971479
therapeutic intervention. IACS-10759 inhibits OXPHOS by

binding to mitochondrial respiratory complex 1 adjacent to the

entrance of the ubiquinone channel to impair ubiquinone

function, and is currently in phase I clinical development.

Targeting OXPHOS with IACS-10759 inhibits growth of

multiple tumor models with high antitumor efficacy (11).
Conclusion

Numerous studies have revealed that OXPHOS is

upregulated in some tumors, potentially rendering these

tumors more sensitive to OXPHOS inhibition. Targeting

OXPHOS has become a great potential option for anti-

tumor treatment, and there are multiple studies indicating

that OXPHOS inhibition is effective in some specific cancer

types. However, specifically targeting one subpopulation may

eventually fail and lead to a drug-resistant tumor. Inhibiting

OXPHOS may result in selecting highly aggressive glycolytic

subpopulations. Therefore, it is necessary to explore synergy

between OXPHOS inhibitors and drugs blocking glycolysis.

OXPHOS inhibition has been tested effectively in a series of

tumor types. Identification of specific cancer types and/or

molecular characteristics likely to respond to OXPHOS

inhibition is required to enable stratification of patients

most l ikely to benefit from this approach. Final ly ,
Frontiers in Oncology 06
combinations with other therapies should be further

explored to improve the effect of anti-OXPHOS therapy.
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