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ABSTRACT
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter 
themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell 
activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as 
the “hallmarks of cancer” are significantly influenced by the activation of oncogenes, impacting most, if 
not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor 
genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated 
with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic muta-
tions extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveil-
lance. While T cells have been more studied, the results obtained highlight NK cells as emerging key 
protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies 
highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting 
angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will 
critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immu-
nosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint 
inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell- 
based immunotherapies, which are increasingly recognized as promising alternatives for treating low- 
antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
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1. Introduction

1.1. Introducing natural killer cells

Natural killer (NK) cells play an essential role in antitumoral 
and antiviral responses, being the first line of defense against 
cancer and viral infections.1–3 In humans, NK cells are identi-
fied by the expression of CD56 and the absence of CD3 surface 
markers.4,5 Based on the expression level of two markers, CD56 
and CD16, two conventional NK cell subsets have been 
described in humans: CD56bright CD16dim and CD56dim 

CD16bright (from now on referred as CD56bright and CD56dim 

NK cells, respectively).
Both subsets are phenotypically and functionally distinct. 

Whereas the first are mainly located in secondary lymphoid 
organs and tissues, the second group can predominantly be 
found circulating in peripheral blood.5 In terms of cytotoxicity, 
CD56bright subset is less cytolytic. Indeed, since they are the 
predominant producers of immunoregulatory cytokines (e.g., 
interferon-gamma (IFNγ), tumor necrosis factor (TNF), gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF), 

IL-10 and IL-13), they are frequently known as pro-inflam-
matory NK cells.6 On the other hand, CD56dim NK cells, 
while expressing high levels of cytotoxic molecules (per-
forin and granzyme B) as well as CD16a receptor (also 
known as IgG Fc receptor IIIA, FcγRIIIA), exhibit lower 
cytokine production compared to CD56bright NK cells. 
Nonetheless, CD56dim NK cells are highly cytotoxic and 
proficient in performing Antibody-Dependent Cellular 
Cytotoxicity (ADCC).7

Finally, shared with some subsets of activated T cells (e.g., 
CD4-Th1 and γδT cells), NK cells have a central role in the 
production of IFNγ.8,9 This pleiotropic cytokine regulates the 
expression of crucial genes implicated in regulated cell death 
(e.g., Bcl2-family proteins, caspases, or death receptors), 
inflammation, cell cycle regulation, and transcriptional activa-
tors’ expression.10–12

Tumor cells have developed numerous highly sophisticated 
resistance mechanisms tied to cancer progression to avoid the 
multiple mechanisms of cancer immunosurveillance. These 
resistance mechanisms, defined by Hanahan and Weinberg as 
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“hallmarks of cancer”, are significantly influenced by the acti-
vation of oncogenes.13 Oncogenes are known for their ability to 
promote cell transformation, which provides malignant cells 
with survival and proliferation advantages. More recently, they 
have been shown to modify the cell niche establishing immu-
nologically ‘cold’ tumor microenvironments (TMEs). Cold 
tumors seem not to generate adequate protective immune 
responses and do not present good responses to some types 
of immunotherapies, especially those related to antigen-speci-
fic responses.14,15 Paradoxically, oncogenic changes would also 
be responsible for inducing an inflammatory microenviron-
ment characterized by epithelial production of cytokines like 
IL23 and CCL9 shaping the TME toward conditions that will 
favor the development of certain tumors. This phenomenon 
operates through various pathways, including facilitating 
malignant cell proliferation and survival, promoting angiogen-
esis and metastasis, reprogramming stromal cells, and disrupt-
ing adaptive and NK cell immune responses.16–18 In those 
cases, only malignant cells that adapt to the cellular stress 
imposed by oncogenesis and the TME will progress. During 
this phase of selective pressure, malignant cells with specific 
molecular alterations that confer immunoevasion are prefer-
entially selected.15

Consequently, the identification and comprehensive under-
standing of these genes and their impact on the immune 
system’s response are paramount in the fight against cancer. 
Therefore, this review will focus on the major oncogenic driver 
mutations and how they modify the antitumoral potential of 
NK cells, with special emphasis on the regulation of NK cell 
recognition of tumor cells. Before that, we will briefly intro-
duce the main mechanisms involved in NK cell-mediated 
control of cancer cells and tumor evasion strategies to under-
stand better the potential impact of oncogenes in this process.

1.2. Dr. Jekyll: natural killer cells against cancer

In contrast to cytotoxic CD8+ T cells, NK cells do not require prior 
antigen exposure to mediate their antitumor function.4 As shown 
in Figure 1a, NK cells possess several activating and inhibitory 
receptors. The balance between activating and inhibitory signals 
will determine whether NK cells will kill the target cells.19,20

As mentioned, NK cells are armed cytotoxic cells with high 
expression of perforin (PRF) and granzymes (GZMs), execu-
tors of granular exocytosis pathway. PRF is a protein that forms 
pores in the target cell membrane, permitting GZMs to enter 
inside the cell and inducing cell death.21–23 GZMs are a family 
of serine-proteases comprised of (Figure 1b) five members in 
humans and ten in mice.24–26 Among these, GZMB has the 
most potent cytotoxic activity mainly inducing apoptosis.27–29 

The cytotoxic activities of other GZMs remain controversial, 
but it is clear that GzmA, GzmM, or GzmK are involved in 
regulating the inflammatory response through extracellular 
mechanisms.26,30–36

Recently, it has been described that granular exocytosis 
pathway can be implicated in other types of regulated cell 
death, such as necroptosis and pyroptosis.37 In addition to 
induce cell death, GZMs have been associated with additional 
biological functions, including inflammation, autoimmunity, 
extracellular matrix degradation, and related pathologies 

including sepsis, cardiovascular disease, skin disorders, arthri-
tis of ulcerative colitis among others.35,38,39 However, a more 
detailed description of these serine-proteases is out of the scope 
of this review, and it has been the topic of recent excellent 
reviews.29,38,40,41

Besides granular exocytosis, NK cells can induce cell 
death by an additional mechanism based on death ligands, 
which are members of the TNF superfamily of proteins (see 
Figure 1c).42 The most commonly expressed death ligands 
in NK cells are TNFα (Tumor necrosis factor), FasL (Fas 
Ligand), and TRAIL (TNF-related apoptosis inducing 
ligand).

1.3. Mr. Hyde. Tumor immunoevasion from NK cell 
immunosurveillance

One of the primary functions of NK cells is to exert tumor- 
suppressive activity. Nonetheless, NK cells may paradoxically 
modulate tumor variants capable of evading NK cell immuno-
surveillance. In doing so, they inadvertently contribute to these 
tumor cells evading antitumoral mechanisms. These observa-
tions led to the development of the immunoediting theory, 
which is divided into three phases “the three Es”: elimination, 
equilibrium, and escape.43,44

Elimination corresponds to immunosurveillance.45 In this 
initial phase, NK cells play an essential role in eliminating 
emerging tumor cells due to their unique capacity to rapidly 
recognize and kill transformed cells. As cytotoxic cells of the 
innate immune system, they circulate with all the necessary 
molecules to recognize and eliminate tumor cells without prior 
antigen presentation.46,47 In the emblematic study by Imai et al. 
(2000), it was observed that low NK cell activity was associated 
with an increased cancer risk during an 11-year follow-up 
period,48 highlighting the importance of NK cells in the initial 
stages of tumor cell control.

However, some cells occasionally manage to evade the 
immune system, including NK cells,43 initiating the second 
phase, equilibrium. During this period, immune cells, notably 
T cells, gain major relevance, continuing to target and elim-
inate tumor cells.49,50 However, some tumor cells survive by 
entering a quiescent state and acquiring immunosuppressive 
properties, such as increasing the expression of anti-apoptotic 
molecules (e.g., Bcl-2)51 and reducing antigen or major histo-
compatibility complex (MHC) class I expression, limiting T- 
cell recognition and subsequent killing of the cancer cells.52 

Here, NK cells play a crucial role because their ability to 
recognize tumor cells that have adapted to escape T-cell killing 
facilitated by the absence of MHC, the principal inhibitory 
ligand for NK cell receptors, enabling them to kill these ‘low 
immunogenic cells’ (Figure 1a). Notably, oncogenic transfor-
mation during these stages have been shown to modulate 
HLA-I expression, thus, contributing to recognition of cancer 
cells by NK cells.53,54

After a while, tumor cells begin to proliferate and 
divide massively again, the phase is considered the escape 
phase.45,55 Again, NK cells play a pivotal role in metastasis 
control and tumor progression, as observed in small cell 
lung cancer, where evasion of NK cells by reduction of 
NKG2D-ligands reflects increased aggressiveness.56
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Throughout this development, the tumor microenviron-
ment (TME) is also established and shaped to promote cancer 
cell immunoevasion. This results in dampening NK cell func-
tion and altering their phenotype throughout the entire tumor 
progression process57,58 which will be discussed in the next 
section.

2. The tumor microenvironment inhibits NK cell 
function

As aforementioned, an additional factor that strongly affects the 
modulation of NK cell responses is the TME. The TME encom-
passes all tumor components, including the different non-tumor 
cell populations: immune cells, fibroblasts, and cells that 

comprise the blood vessels.59,60 Within the TME, numerous 
complex interactions exist between extracellular matrix, nonim-
mune, immune and cancerous cells, each having a clear impact 
on tumor progression, invasion, and metastasis.61

These interactions collectively generate an immunosuppres-
sive environment that hinders effective immune responses, 
leading to poor trafficking and immune infiltration of tumors. 
The most relevant TME factors regulating NK cell activity are 
discussed below:

2.1. The TME architecture

TME architecture plays a crucial role in orchestrating both 
tumor immunity and therapeutic responses. Tumor initiation 

Figure 1. NK cell-mediated cytotoxicity. NK cells express several receptors on their surface that will positively or negatively regulate their activity (A). NK cells possess 
two main mechanisms to induce the target cell death, granular exocytosis (B) and expression of death receptors (C). Figure created with BioRender.com.
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and expansion depend entirely on the organization of the TME 
and physiological processes like angiogenesis, immune cell 
infiltration, and cancer cell proliferation.

In a ground-breaking study elucidating NK cell implications 
in mouse skin graft rejection, it was demonstrated that their 
migration to peripheral tissues elicits a distinctive dampening 
of their cytotoxic activity, mediated by the presence of col-
lagens and elastin. This phenotypic alteration redirects NK cell 
functionality toward an augmented secretion of specific che-
mokines and cytokines like INF, CCL2, and CXCL10, thereby 
assuming a supportive role in T cell priming. This intriguing 
reprogramming of NK cell function provides a rationale for the 
selective loss of MHC-I expression observed in solid cancers 
but not leukemias.62

2.2. Nutrient deprivation

The effect of the tumor microenvironment (TME) on NK cell 
metabolism must also be taken into account as it is crucial for 
their function.63–65 During tumor progression, cancer cells 
must adjust their metabolic activity to maintain the high bio-
synthetic rates required for rapid cell growth, despite low 
nutrient and oxygen availability. These adaptations are essen-
tial for cancer cell survival. Metabolic remodeling is believed to 
be a dynamic process that varies depending on the specific 
needs of the tumor. However, like other tumorigenic events, 
this metabolic adaptation is likely influenced by the actions of 
oncogenes and tumor suppressors.

Unlike normal cells, cancer cells preferentially utilize the 
glycolytic pathway over oxidative phosphorylation (OXPHOS) 
for glucose metabolism.66 This preference reduces glucose 
availability and contributes to an acidic pH due to lactate 
production.67,68 Moreover, hypoxia is observed due to limited 
oxygen availability, which reduces NK cell cytotoxic activity.69 

Specifically, hypoxia reduces NK cell activity by downregulat-
ing NK cell activating receptors and cytotoxic molecules like 
GZMB. Additionally, amino acid availability regulates NK cell 
functionality and signaling by maintaining important meta-
bolic regulators like mTOR and c-Myc.70,71

2.3. Immunosuppressive cells

The main immunosuppressive cells in TME are tumor-asso-
ciated macrophages (TAMs), Myeloid- derived suppressor cells 
(MDSCs), T regulatory cells (Tregs), tumor-associated neutro-
phils (TANs), and cancer-associated fibroblast (CAFs), with 
high capacity of immunosuppressive NK cells.59,61,72–81 

Notably, MDSCs are a group of myeloid-derived suppressor 
cells, precursors of dendritic cells, macrophages, and granulo-
cytes, that have the ability to regulate immune response 
negatively.82–84 Indeed, cancer-expanded MDSC can induce 
anergy of NK cells via membrane-bound TGF-β1.85

CAFs are another significant source of TGF-β in the TME.86 

They play a pivotal role in ECM remodeling, as well as in 
cancer cell proliferation and invasion. CAFs modulate NK 
cells to an inactive phenotype through various mechanisms, 
including the recruitment of other immunosuppressive cells, 
such as M2 macrophages, as observed in colorectal cancer.87 

Notably, it has also been shown that oncogenes promotes 

transformation of normal fibroblasts into CAFs.88 They play 
a pivotal role in ECM remodeling, as well as in cancer cell 
proliferation and invasion.86

2.4. Cytokine profile

The influence of the TME on NK cell responses extends to its 
role in modulating the secretion of specific cytokines and 
factors by cancer cells. It is well known that cancer cells can 
modify the microenvironment in their vicinity by the secretion 
of specific cytokines or factors that directly or indirectly pre-
vent NK cell activation or modulation to a less cytolytic phe-
notype (e.g., IL-6, IL-10, TGF-β, prostaglandin E2 (PGE2), or 
indoleamine 2,3-dioxygenase (IDO). Remarkably, TGF-β is a 
master regulator of NK cell activity, promoting an immuno-
suppressive effect89 galectin-9, highly expressed in many 
human cancers, can interact with TIM-3 on the surface of 
NK cells, limiting their cytotoxicity90,91; and the enzyme IDO 
which is widely present in tumors and contributes to the loss of 
NK cell cytotoxicity.92 However, not all the signals block the 
antitumoral phenotype. Other molecules in the TME also help 
induce an antitumoral activity, like IL-15 mostly secreted by 
myeloid cells,93 with an important role in NK cell survival, 
activation and proliferation.93,94 Another activating signals in 
TME are the DAMPs (damage-associated molecular patterns) 
that trigger the production of type I IFNs, which increase NK 
cell antitumoral function.95

2.5. Receptor-ligand interactions

Some other relevant mechanisms described for NK cell immu-
nosuppression are the modulation or release of NK cell recep-
tor ligands by tumor cells to avoid receptor signaling.94,96–98 

For example, already in 2013, Reiners, KS. et al., discovered 
that chronic lymphocytic leukemia patients were able to evade 
the antitumor activity of NK cells due to the secretion of the 
soluble ligand BAG6/BAT3 blocking the activating NK cell 
receptor NKp30.78,97

Similarly, NKG2D ligands, such as MICA/B (MHC class I 
chain- related proteins A and B) and ULBPs, are often shed by 
tumor cells, which blocks the activating receptor NKG2D in 
NK cells.96 This process will be discussed in detail later, focus-
ing on how oncogenes affect these ligands. NKG2DL expres-
sion on cell membranes can be reduced through proteolysis by 
some metalloproteinases (ADAM9, ADAM10, ADAM17), and 
matrix metalloproteinase (MMP9, MMP14) to form soluble 
NKG2DL.99 NKG2D is a major activating receptor of NK 
cells, and many independent studies have shown down-regula-
tion of NKG2D surface expression on NK cells from patients 
with cancer. This effect was attributable to the presence of 
soluble NKG2D ligands (NKG2DL)100 and linked to anergic 
NK cells in several tumors. These anergic NK cells present 
impaired degranulation capabilities, reducing the release of 
PFN, GZMs, and antitumor cytokines.85,101,102

On the other hand, the downregulation of MHC-I is a well- 
known immune evasion mechanism in cancer, exposing 
tumoral cells to NK cell attack, since MHC-I serves as their 
primary inhibitory ligand. MHC class I molecules represent a 
fundamental molecular framework that mediates the activation 
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and function of cytotoxic effector cells of both the adaptive and 
innate immune systems, such as CD8+ T cells and NK cells. T 
cells are activated upon recognizing a tumor-associated neo-
peptide on an MHC I complex, eliminating the target cell. 
However, many tumors evolve to evade this recognition by 
downregulating MHC-I molecules on their surface. To counter 
this, the human immune system has developed specific killer 
cell immunoglobulin-like receptors (KIRs) and leukocyte Ig- 
like receptors (LIRs) expressed by NK cells that bind to MHC I 
molecules and inhibit NK cell activation. Consequently, if 
MHC-I expression is impaired, the inhibitory signal is reduced, 
facilitating the activation of the ‘missing self ’ signaling pathway 
and resulting in the cytotoxic destruction of the target 
cell.52,62,103,104

MHC-I molecules are highly polymorphic, reflected by a high 
number of HLA-A, -B and -C alleles. Variations in MHC-I alleles 
pose challenges for NK cell surveillance, affecting directly their 
education and their ability to recognize aberrant cells.103–105 Some 
alleles effectively engage inhibitory receptors, while others fail due 
to genetic differences. In HIV infections, individuals with poorly 
recognized alleles have been related to NK cell immunoescape.105 

The diverse HLA-I repertoire influences NK cell surveillance 
efficiency and cancer susceptibility. Understanding the regulation 
of HLA-NK cell interactions is crucial for immune recognition 
mechanisms and design of effective NK cell-based targeted 
therapies.

In addition to classic MHCs, non-classical HLA (HLA-E 
and HLA-G) have an important role in cancer. HLA-E and 
HLA-G are peptide-dependent MHC I molecules with low 
levels of heterogeneity compared to classical MHC I molecules 
Peptide-bound HLA-E serves as a dominant inhibitory ligand 
for the dimeric CD94/NKG2A receptor on NK cells and are 
frequently upregulated in many cancers, suggesting that this 
axis functions as an acquired resistance mechanism in the 
tumor microenvironment.106,107

The other non-classical HLA, HLA-G, present numerous 
isoforms, soluble or membrane-bound.108 It modulates NK cell 
activity by engaging inhibitory receptors like KIR2DL1, 
KIR2DL2/3, KIR2DL4 or ILT2. HLA-G is poorly expressed 
on adult healthy tissues, and its expression is increased in 
tumor cells favoring immune-evasion.108,109

When discussing immunomodulatory receptors and ligands 
in cancer, the PD-1 and PD-L1/PD-L2 duo has gained signifi-
cant attention due to their crucial clinical applications with 
antibodies designed to inhibit this pathway. It has been 
observed that both PD-1 and PD-L1 molecules are expressed 
in NK cells under different conditions and that these molecules 
regulate NK cell function. PD-1 is increased in degranulated- 
NK cells upon exposure to tumor cells,110 as well as in the NK 
cells from cancer patients.111 Similarly, PD-L1 expression is 
upregulated by IL-2 exposure,112 highlighting the significance 
of this axis in NK cells, as observed during the elucidation of 
the anti-PD-1/PD-L1 therapies mechanism.113 It is noteworthy 
that PD-1 expression in NK cells is much lower than in T cells 
and is not induced by stimuli such as cytokines112 but interac-
tion with target cells111 which could lead to negative results 
when analyzing their membrane expression in NK cell cultures. 
Many studies still debate its expression, suggesting that it may 
be important to consider the models and controls used. This 

controversy is highlighted by observations from two groups 
that conducted similar experiments using the CT26 cell line in 
mice to study PD-1 levels in NK cells. One study concluded 
that NK cells lack PD-1 expression, while the other observed 
remarkable expression.114,115

With all of these mechanisms, cancer cells manage to sculpt 
an immunosuppressive TME for NK cells. Consequently, 
adoptive cell therapies, whether T or NK cell-based, are cur-
rently ineffective in treating solid tumors.116,117 Despite NK 
cells continuously combating transformed cells to prevent 
cancer development, they are highly susceptible to changes in 
their environment. These environmental changes can cause 
NK cells to switch from their antitumor or pro-inflammatory 
roles to behaviors that promote tumor formation, angiogen-
esis, and metastasis.118,119

A comprehensive understanding of the mechanisms 
involved in NK cell-mediated cancer immunosurveillance 
has paved the way for investigating the impact of various 
components within the TME on the elimination of cancer 
by NK cells. Recent evidence suggests that oncogenes and 
tumor suppressor genes not only influence the characteris-
tics of tumor cells but also play a crucial role in enabling 
cancer cells to shape the TME to evade immune-mediated 
destruction. However, the specific links between these 
changes and NK cell function during cancer immunosur-
veillance and immunotherapy remain underexplored 
despite new studies in recent years. In the following lines, 
we will discuss current evidence and speculate how onco-
genic-driven transformation might regulate NK cell antitu-
moral activity.

3. Oncogenes and tumor suppressor genes in NK cell 
immunoevasion

3.1. A brief introduction to oncogenic transformation

Oncogenes and tumor suppressor genes are frequently 
mutated or modified during cancer progression. In healthy 
cells, there are some genes, commonly known as proto-onco-
genes, which are necessary for cell growth regulation and 
differentiation, but when these genes, or their expression, 
are altered (at this point, they are termed oncogenes), they 
contribute to promoting cancer development.120 The change 
from proto-oncogene to oncogene can result from mutations, 
chromosomal rearrangements, amplifications, or viral inser-
tions. In most cases, this will likely result in uncontrollable 
tumor growth and apoptosis resistance.121,122 On the other 
hand, tumor suppressor genes encode growth-inhibitory pro-
teins, meaning that their loss would cause deregulation of cell 
proliferation. In contrast to passenger mutations, driver 
mutations frequently occur in cancer-related genes and are 
involved in oncogenic signaling pathways.123 Most relevant 
and best-characterized oncogenes and tumor suppressor 
genes include transcription factors (Myc, fos, jun, rel), 
GTPases (Ras), kinases (Raf, PI3K, Stat3, Src, Syk, BTK, 
EGFR, VEGFR), Rb, and p53 (see Figure 2).Within the next 
sections, we will focus on the available evidence that links the 
oncogenic function of some of these genes to tumor cell 
evasion from NK cell function.
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3.2. Myc family

Myc alterations, including amplifications and activation, have 
been observed in over half of all cancer cases. Its pivotal role in 
regulating metabolic features, cell proliferation, growth, DNA 
replication, and numerous cellular processes tightly links it to 
multiple cancer hallmarks. It should be highlighted that similar 
to other oncogenes, Myc overexpression alone is usually insuf-
ficient for tumorigenesis induction.124–126 The Myc family 
proteins comprise l-Myc (e.g., embryonic brains, kidney, and 
lung tissue), n-Myc (early developmental stages of neuronal 
tissues), and c-Myc (plenty of adult tissues).127 As a transcrip-
tion factor, Myc will form a dimmer with Myc-associated 
factor X (MAX). Once they have dimerized, they will bind E- 
boxes (CACGTG) to the DNA within the enhancers and pro-
moters of target genes. Those genes encode for proteins like 
CDK4 (Cyclin-dependent kinase 4), the phosphatase CDC25A, 
p15, p21, the oncoprotein prothymosin α (PTMA), and 

E2F1.128–130 Myc is also known for being able to regulate the 
expression of anti-apoptotic (e.g., Bcl-2 and Mcl-1) and proa-
poptotic proteins (e.g., Bax).131

Of those three Myc isoforms, c-Myc has been shown to reg-
ulate carcinogenesis and progression in many cancers like breast, 
cervix, colon, stomach, lungs, and multiple myeloma.132,133 For 
example, in lung cancer, c-Myc is frequently dysregulated and 
associated with unfavorable patient survival as it activates cell 
cycle-driving proteins and increases the expression of anti-apop-
totic proteins like Bcl-2 and Mcl-1 that could affect NK cell 
cytotoxicity.134–136 While the impact of c-Myc modulation on 
the tumor cell death machinery in NK cell immunosurveillance 
has not been explicitly examined, indirect evidence suggests that 
the relationship is more complex than initially anticipated. The 
role of anti-apoptotic proteins in impeding NK cell-mediated 
cancer elimination remains unclear. Studies employing specific 
protocols, combining stimulatory cells and cytokines, have 

Figure 2. Oncogenic signaling pathways of myc (A), Ras (B), and PI3K (C). Figures created with BioRender.com.
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demonstrated that activated NK cells can effectively target cancer 
cells expressing these proteins.137 Conversely, a recent report 
indicated that under conditions of limited NK cell activation 
and reduced numbers, overexpression of Bcl-XL or deficiency in 
Bak/Bax may aid tumors in evading NK cell-induced cell death.138 

Recently it was shown that Myc could inhibit the formation of 
RIPK1-RIPK3 complex which is required for initiation of necrop-
totic cell death,139 although it is not known if NK cells activate 
necroptotic cell death in cancer cells. Consequently, the role of c- 
Myc modulation in the tumor cell death machinery, contributing 
to resistance against NK cells, remains ambiguous and necessitates 
further investigation.

MYC amplification can also alter the TME by modifying the 
metabolic characteristics of the cell. Although very little is 
known about the metabolic features of MYCN-amplified 
tumors, MYCN-amplified cells display enhanced expression 
of proteins and genes involved in glycolysis, OXPHOS, and 
ROS detoxification.140,141 This enhances these metabolic path-
ways, leading to nutrient deprivation and acidification of the 
environment, contributing to impair NK cell activity.65,69,142

In addition to direct modulation of cancer cell machinery, 
cancer cell-associated c-Myc has been shown to influence the 
TME and viceversa. c-Myc, which is highly expressed in breast 
cancer cells, can regulate angiogenesis, the function of CAFS, 
and the response of immune cells, including NK cells.143 

Mezquita, P. et al., found that c-Myc could increase VEGF 
(Vascular endothelial growth factor) expression, thus inducing 
angiogenesis.144

c-Myc can also increase the expression of miR-105 in tumor 
cells’ vesicles, leading to up-regulation of c-Myc in CAFs, and 
reprogramming their metabolism toward a protumoral 
function.145 Although these studies did not address the impact 
of these changes in NK cell activity, other evidence has shown 
that CAFs modulate NK cell function,59,61,72–81 and, thus, 
pending of experimental validation, it could be speculated 
that c-Myc-mediated regulation of CAFs could impact NK 
antitumoral function as explained below.

CAFs have been identified as key players in neutralizing the 
NK cells’ ability to eliminate cancer cells, employing a range of 
intricate mechanisms.61,72,81 These include the secretion of solu-
ble mediators like PGE2 and TGF-β,86 which alter NK cell 
activation receptors such as NKG2D, NKp30, and NKp44 as 
well as cytotoxic molecule expression.146–148 Moreover, CAFs 
can produce IDO. Therefore, they restrict not only NK cells’ 
cytokine production but also their cytotoxicity.149 The role of 
PGE2 and IDO as NK cell activation suppressors was already 
described by Li, T. et al., in 2012. Based on their results, these 
two molecules suppress the activation of NK cells, thereby 
promoting tumor immune escape and creating favorable condi-
tions for tumor progression.86 Besides this, CAFs also up-reg-
ulate immune checkpoint molecules such as PD-L1.150 

Additionally, CAFs engage in synergistic interactions with 
other immune cells, contributing to the recruitment of M2 
macrophages within the tumor environment and cooperating 
with them, which enhances inhibition of NK cell function.87 In 
this line, c-Myc is overexpressed in TAFs and, after its activation 
by Wnt ligands from cancer cells, promotes M2 polarization and 
tumor cell progression, albeit the impact of immunosurveillance 
and NK cell function was not analyzed.143,151

Interestingly, once activated, c-Myc induces the expression of 
miR-17, which excludes immune cells such as NK cells due to the 
down-regulation of NKG2D ligands, MICA, and MICB and the 
up-regulation of CCL9 and IL-23.18,152 Both cytokines, CCL9 
and IL-23, are responsible for the rapid loss of T and B cells 
following Myc activation. However, while CCL9 alone is mainly 
required for the recruitment of PD-L1+ macrophages and angio-
genesis, IL-23 alone is needed for the rapid exclusion of NK 
cells.18 Since NK cells express the inhibitory checkpoint PD-1, 
their cytotoxic activity would be inhibited or down-regulated by 
the action of the recruited PD-L1+ macrophages.110 However, 
the impact of the PD-1/PD-L1 axis and its alternative ligand PD- 
L2 on NK cell function remains controversial as discussed above. 
On the other hand, IL-23 has been related to NK cell-mediated 
control of tumor initiation and metastasis control in mouse 
cancer models. IL-23-deficient mice showed metastatic resis-
tance mediated by NK cells, indicating that IL-23 can suppress 
NK cells’ surveillance, antimetastatic and immunotherapeutic 
activity.153

As previously discussed, c-Myc can modify the expression 
of NKG2D ligands like MICA/B and ULBPs in chronic mye-
loid leukemia (CML) cells, reducing NK cell recognition.18,154 

Interestingly, inhibition of c-Myc by siRNA or chemical com-
pounds restores ligand expression and NK cell killing potential 
confirming a causal effect of c-Myc in NK cell mediated recog-
nition and elimination of CML cells. Myc oncogene is well 
known to drive T- and B-lymphoid malignancies, including 
Burkitt’s lymphoma (BL) and Acute Lymphoblastic Leukemia 
(ALL).154 Recently, it was shown that Myc overexpression 
altered the secretion of Type I IFNs from the T/B-lympho-
blasts, causing a decrease in IL-15 and its receptor, which 
prevented NK cell maturation.155,156 The effects of c-Myc on 
NK cell activity were shown to be enhanced by expression of 
oncogenic KRasG12D. In the KRasG12D mouse lung adenoma 
model, activation of Myc in this model induced more aggres-
sive invasive adenocarcinomas by a mechanism depending on 
CCL9 and IL-23, which as indicated above, affected NK cell 
activity by recruiting PD-L1+ macrophages and depletion of 
NK cells.18

Despite all these findings, it should be noted that the role of 
Myc oncogene in the regulation of NK cell activity is intriguing 
since it has been shown that Myc activation in cancer cells 
triggered the up- regulation of NKG2D ligands and down- 
regulation of the MHC class I, both potent activating signals 
for NK-like cells.18,157–159 A potential explanation for these 
apparently contradictory findings is that during the first stages 
of tumor development NK cells are prepared to eliminate 
cancer cells that have suffered oncogenic Myc transformation 
to avoid cancer progression, while, in more advanced stages, 
cancer cells have acquired the ability of using c-Myc to prevent 
NK cell action or by inducing NK cell anergy through chronic 
exposure to NKG2D ligands as discussed above. Further stu-
dies will be required to validate this hypothesis. Besides c-Myc, 
n-Myc amplification has also been established to affect the 
TME with potential impact on NK cell activity, although direct 
evidence for this is still unavailable. It was shown that n-Myc 
expression in neuroblastoma cells inhibited the expression of 
Th1-type chemokines such as CXCL9 and CXCL10, preventing 
the infiltration of T cells in tumors with a subsequent reduction 
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of IFNγ and TNFα, creating a less pro-inflammatory 
microenvironment.125,160 From these results, a reduction in 
NK cell infiltration could also be anticipated as CXCL9/10 
are potent chemoattractants of NK cells,161,162 albeit this spec-
ulation will require experimental validation.

Besides its direct impact on the resistance of cancer cells to 
NK cells and its role in shaping the TME to inhibit NK cell 
activity, Myc expression in immune cells can also influence NK 
cell function, contributing to cancer immunoevasion. One 
notable example is the promotion of immune- suppressive 
cells, such as Treg cells, which are well-established inhibitors 
of NK cell activity. Myc has been demonstrated to facilitate 
Treg cells’ proliferation and functional activation by regulating 
their metabolism.163,164 While the specific influence of Myc 
expression on Treg function and its consequent impact on 
NK cell inhibition have not been thoroughly investigated, 
recent research indicates that inhibiting Myc enhances the 
antitumoral activity of CD8+ T cells. This effect is achieved 
by suppressing Treg function, as demonstrated in a study 
where Myc inhibition led to increased CD8+ T cell activity.165 

These findings underscore the intricate interplay between Myc 
expression, Treg cells, and NK cell function in the complex 
landscape of cancer immunoevasion.

3.3. RAS

RAS proteins are essential components of signaling pathways 
coupled cell surface receptors. It is a GTPase protein, mutated 
in various cancers. About 20% of cancer patients carry a 
mutated version.166 It belongs to a small GTPases superfamily 
composed of more than 150 members. This superfamily of 
proteins can be subclassified into RAS, RHO, RAB, and ARF 
families. Among them, the Ras family is encoded by three 
ubiquitously expressed genes: HRAS, KRAS (the most frequent 
mutated isoform), and NRAS. Usually, Ras aberrant functions 
in the context of cancer originate from single mutations at 
codons 12, 13, or 61 taking place in conserved sites, causing 
constitutive activation of Ras and its signaling pathways invol-
ving Raf/Mek/Erk, PI3K, and Ral GDS.167

The Ras-mutated protein form was reported to induce 
NKG2D ligand expression by a Raf-MAPK/MEK and PI3K 
signaling pathway and independently of the DNA damage 
sensors, which are usual triggers of NKG2D ligand expression 
after DNA damage and/or oxidative stress.86,168 Furthermore, 
it is worth noting that the oncogene Ras has been documented 
to have a role in the context of non-small cell lung cancer, 
wherein the mutation of KRAS is associated with an elevation 
in the expression of PD-L1.169,170 This finding has been asso-
ciated with a better response to anti-PD-1 antibodies,170,171 

mainly due to CD8+sT cells, and the role of NK cells in these 
responses is still unclear.

Regarding the potential modulation of Ras mutations in cell 
death induced by NK cells, it should be noted that most of the 
studies that have directly addressed this question have found 
that NK cells are able to kill cancer cells using natural cyto-
toxicity or ADCC, irrespectively of mutations in Ras/Raf 
pathways.171 Interestingly, it was found that colorectal cancer 
(CRC) cells with mutant KRAS showed resistance to perforin- 
independent ADCC in comparison with wild-type KRAS, 

which was linked to KRAS-mediated resistance to death 
receptors.172,173 However, when total cell death induced by 
NK cells was analyzed, no differences were observed between 
wt and mutant Ras, suggesting that only those tumor cells with 
mutations in Ras and, in addition, resistant to the PRF/GZM 
pathway, might acquire survival advantaged against NK cells. 
Although mutations that generate PRF resistance in cancer 
cells have not been described so far Ras mutated tumor cells 
overexpressing PI-9,174 a GZMB serpin inhibitor, could be 
more resistant to NK cell mediated cell death. Additionally, 
mutated Ras tumor cells could be more resistant to NK cell 
serial killing a process in which PRF and FasL pathways seem 
to act sequentially for optimal elimination of cancer cells, at 
least in vitro.175

In 2020 Daia, E. et al., demonstrated that KRASG12D is 
packaged into exosomes that are engulfed by macrophages 
via AGER (advanced glycosylation end-product specific recep-
tor) with the subsequent polarization of macrophages into an 
M2 tumor-promoting state.176 As indicated above, M2 macro-
phages are able to suppress NK cells killing ability by different 
means including cooperation with CAFs, generation of anti- 
inflammatory cytokines and attraction of Treg cells.87,177,178 

However, the specific role of KRASG12D endocyted by macro-
phages on NK cell activity was not analyzed in that study.176 

Drawing insights from related studies, although not explicitly 
tested, one can speculate on the potential impact of oncogenic 
RAS variants on NK cell activity. This speculation is based on 
findings such as neutrophil attraction through KRAS-depen-
dent IL-8 induction which could potentially influence NK cell 
activity through mechanisms like NETosis, a network extra-
cellular trap made by DNA and proteins released by neutro-
phils under specific conditions.179–183 Additionally, these RAS 
variants may affect NK cells by promoting the production of 
anti- inflammatory molecules (ARG1, ROS, NO, PGE2)184 and 
facilitating IL-10/TGF-β1-dependent Treg infiltration.185 

Similarly, different studies have correlated the presence of 
KRAS mutations with the generation of immunosuppressive 
TME in CRC by recruiting MDSCs, which prevented T cell 
infiltration and activation, although NK cells were not 
analyzed.186,187 This finding was also extended to lung 
adenocarcinoma.188

Mutations in Ras pathways have been linked to the modula-
tion of cell death machinery, leading to an anti-apoptotic 
profile and HLA-I downregulation.189–191 This alteration may 
potentially modulate NK cell-mediated antitumoral activity. 
However, the presence of Ras/Raf mutation did not affect the 
sensitivity of a panel of CRC cell lines to activated allogeneic 
NK cells; instead, it was mostly regulated by HLA-I levels 
independently of the driver mutation.171

3.4. PI3K (PIK3R1 and PIK3CA)

The phosphoinositide 3 kinase (PI3K) is a heterodimer com-
posed of a regulatory subunit (p85), encoded by PIK3R1 gene, 
and a catalytic subunit (p100), encoded by PIK3CA gene. This 
signaling pathway responds to various extracellular signals 
through different tyrosine kinase-like receptors like ErbB 
family, or insulin-like growth factor 1 receptor (IGF1R)192,193 

generating the intermediate metabolite PiP3 by PiP2 
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phosphorylation that subsequently activates PKB/AKT/mTOR 
pathways. This pathway that is negatively regulated by the 
action of the PTEN phosphatase,194 participates in several 
cellular processes including protection from apoptosis,195 pro-
liferative response to growth factors,196,197 trafficking of intra-
cellular vesicles, cell adhesion,198 reorganization of the actin 
cytoskeleton199 and activation of immune cells including 
NK200 and T cells.201 Notably, the PI3K-AKT-mTOR signaling 
pathway is the most frequently mutated in human cancer, 
being the following alterations the most common ones: 
PIK3CA, PIK3R1, PTEN, AKT, TSC1, TSC2, LKB1 (also 
known as STK11) and mTOR.202 An example is breast cancer, 
where PTEN loss of or reduction in function is commonly 
found, allowing the constitutive activation of PI3K pathways, 
although the significance of this finding is still 
unclear.192,203,204

Like other oncogenes, the direct evidence linking mutations 
in the PI3K pathway to NK function is limited, with most 
connections being speculative. The hypotheses are primarily 
derived from observations of its impact on the TME and T cell 
function or infiltration. For instance, PI3KCA mutations have 
been associated with the presence of immunosuppressive 
molecules/cells in the TME, potentially influencing NK cell 
activity, although this aspect remains unexplored. 
Correlations have been observed, such as increased Treg, 
reduced T cell infiltration, increased PD-L1 expression and 
heightened resistance to immunotherapy in different cancer 
types linked to PIK3CA mutations.192,203 In addition, similarly 
to Ras and Myc, speculations could be established from the 
studies relating PI3K mutation and regulation of cell death 
pathways in cancer cells, which could affect NK cell-mediated 
tumor cell death. For example, AKT inhibits pro-apoptotic 
caspase-9 and Bad and reduced expression of proapoptotic 
BH3-only proteins,205 although, as indicated above, it is not 
clear yet the conditions at which these alterations can favor 
cancer immunoevasion of NK cell- mediated killing.137,138

While there are no studies specifically examining the influ-
ence of oncogenic mutations in the PI3K/AKT/TOR pathway 
on NK cell antitumoral activity, insights can be gleaned, and 
speculative observations can be made based on studies explor-
ing the role of this pathway in the regulation of NK cell ligand 
expression. Several studies have analyzed the role of PI3K in 
the expression of inhibitory (classical and non-classical HLA-I) 
and activating (MIC, ULBP and Rae families) ligands in 
humans and mice. Independent studies using chemical inhibi-
tors and activators found that activation of PI3K-AKT pathway 
inhibited HLA-I expression in cancer cells.206,207 Another 
study found that placental- derived leptin enhanced inhibitory 
non-classical HLA-G molecule expression in trophoblasts by 
the MEK/Erk and PI3K-AKT pathways.208 While the latter is 
not explicitly mentioned in a tumoral context, it is worth 
experimentally validating this extrapolation since, although 
potential differences are recognized, the interaction between 
mother and fetus bears notable similarities to the immune- 
cancer relationship. Indeed, with appropriate caution, regulat-
ing immunity at mother-fetus interface has inspired different 
discoveries in cancer immunoevasion.209

Regarding activating ligands, constitutive activation of PI3K 
pathways can increase the expression of various ligands from 

the MIC, ULBP, and Rae families in cancer cells.210–213 

Although these ligands are typically defined as stress response 
ligands due to their association with cellular stress, the term 
“stress” is challenging to define, and the specific molecular 
pathways underlying their activation are complex. NKG2D 
ligands are regulated at multiple stages of biogenesis, including 
transcription, RNA stabilization, protein stabilization, and 
cleavage from the cell membrane. Ongoing in-depth studies 
have provided increasingly detailed insights into the specific 
pathways that modulate the expression levels of these 
proteins.213,214

For example, it has been shown that HER2 signaling induces 
the expression of MICA/B via the PI3K/AKT pathway in breast 
cancer cells, enhancing their susceptibility to NK cells.210 

Similarly, the EGFR tyrosine kinase inhibitor (TKI) gefitinib 
has been reported to downregulate the expression of MICB and 
ULBP–2/5/6 in non-small-cell lung cancer cells, likely through 
inhibition of the PI3K/AKT pathway.215 However, other stu-
dies have shown that EGFR TKIs, such as erlotinib and gefiti-
nib, can enhance the susceptibility of lung cancer cells to NK 
cell-mediated lysis by inducing ULBP1, attributing this 
increase to the inhibition of the PKC pathway.216 It is impor-
tant to note that these studies used different cell lines, which 
may exhibit varying expression of driver oncogenes or even 
different sensitivities to these drugs.

In addition, treatment with vorinostat or pterostilbene up- 
regulated MICA expression via the PI3K/AKT signaling 
pathway and improved the ability of NK cells to kill cancer 
cells.211,212 Finally, BCR/ABL activation in chronic leukemia 
cells enhanced MICA expression and NK cell-dependent cyto-
toxicity by a pathway dependent on PI3K/mTOR.213 

Interestingly, BCR/ABL inhibition by Imatinib was shown to 
decrease MICA protein secretion, leading to increased suscept-
ibility of cancer cells to NK cells. Thus, the efficacy of Imatinib in 
enhancing NK cell killing may not be attributed to an increase in 
MICA activation receptor expression, but rather to a decrease in 
soluble MICA levels.213 All these findings are good examples of 
how drugs used in cancer treatment can affect NK cell antitu-
moral activity by regulating the activity of potential oncogenic 
proteins, providing the basis for the possible use of oncogenes as 
targets to enhance NK cell-based therapies.

It is worth mentioning a recent paper showing that IL-18 
enhances MICA/B expression in dendritic cells favoring NK 
cell-DC interaction.217 Although in a different context, since 
IL-18 is usually enhanced in some tumors, it is tempting to 
speculate on the implications of this finding in the recognition 
of cancer by NK cells.

As deduced from the preceding findings, PI3K activation 
seems to promote a shift toward NK cell activation and tumor 
recognition, seemingly indicating the tumor’s strategy to evade 
T cells. However, as indicated above, additional mechanisms 
related to the immunosuppressive profile of TME, some of 
which are also regulated by the PI3K pathway, are likely to 
contribute to the immunoescape of NK cell immunosurveil-
lance. Thus, interfering with these immunosuppressive path-
ways like TGF-β might present a chance to favor NK cell- 
mediated elimination of PI3K mutated tumors as mutations 
in this pathway appear to enhance cancer cell susceptibility to 
NK cells.
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Beyond tumor mutations, recent findings suggest germline 
mutations in the PIK3CD gene can impair NK and CD8+ T cell 
cytotoxicity, leading to compromised immunity against her-
pesviruses and impaired tumor surveillance.218

3.5. STAT protein family: STAT3 and STAT5

STAT3, a member of the JAK-STAT signaling pathway, is 
constitutively activated in multiple cancers: colon, head and 
neck, pancreatic, breast, and hematological neoplasias.219–222 It 
coordinates key cellular mechanisms like cell differentiation, 
proliferation, immune function, and apoptosis. However, it is 
also well known for its role in mediating tumor immune 
evasion.223,224 For example, in multiple myeloma or CRC, 
STAT3 has been described to directly repress the transcription 
of NKG2D ligands (e.g. MICA) and therefore to inhibit the NK 
cell-mediated tumor surveillance. In those studies, the inhibi-
tion or knockdown of STAT3 led to a stronger NKG2D-depen-
dent tumor cell death by NK cells.225,226 An increase in other 
NK ligands (e.g. MICB or ULBP2) following STAT3 inhibition 
has also been reported.227,228 Additionally, when STAT3 is 
constitutively active, it can trigger the release of immunosup-
pressive cytokines such as IL-10 or TGF-β that will recruit 
immune cells (e.g. Tregs), which have an immunosuppressive 
effect on NK cells’ cytotoxicity.229

Besides STAT3, another member of the STAT family is 
commonly activated in solid cancers, the STAT5 protein. 
Over the years, the constitutive activation of STAT5 has been 
associated with hematological malignancies (e.g. leukemia) and 
solid tumors (e.g. breast, lung, and colorectal cancer).230–233 

Nonetheless, the way in which it promotes tumor proliferation 
has been less described.234

3.6. Tumor suppressor genes

To finish this section, we will focus on tumor suppressor genes that 
have been shown to directly affect NK cell antitumoral activity, 
specifically the retinoblastoma (Rb) and p53 genes, which control 
different biological processes like cell death, cell cycle, and terminal 
differentiation, similarly to oncogenes (see Figure 3).

Rb is frequently inactivated in many human cancers, 
such as retinoblastoma, breast cancer, prostate cancer, and 
small cell lung cancer.235,236 The canonical pathway 
whereby Rb exerts its tumor suppressive is through regulat-
ing the G1/S transition during cell cycle progression. For 
doing so, it modulates the activity of E2F transcription 
factors. In most cancers, alterations in this gene lead to a 
more aggressive tumor cell phenotype; it promotes tumor 
metastatic activity and drug resistance. Since uncontrolled 
cell proliferation and metastasis are hallmarks of cancer 
cells,13 it has been postulated that genes acting as Rb func-
tion inhibitors (e.g., CCND1 and CDK4) are identified as 
oncogenes. Conversely, those promoting Rb functions (e.g., 
cyclin-dependent kinase inhibitors like CDKN1A, 
CDKN1B, and CDKN2A) are tumor suppressor genes.

Again, most evidence on the role of Rb on NK cell activity is 
indirect from studies showing that suppression of Rb signaling 
affects immunomodulators involved in NK cell activity, including 
IL-6, CCL2, or prostaglandin-endoperoxide synthase 2 

(PTGS2),237,238 all of them negative regulators of NK cell activity 
by different means including direct action on NK cells or indirect 
regulation by promoting Treg, TAM and/or MDSCs infiltration 
(CCL2).239,240 In 2015, the tumor suppressor gene Rb was estab-
lished to negatively regulate NK cell cytotoxicity in mouse glioma. 
Deleting Rb was sufficient to enhance resistance to NK cell- 
mediated cytotoxicity, albeit the correlation with changes in acti-
vating and inhibitory ligands could not be well established as, 
apparently, deletion of Rb decreased activating ligands while 
increasing MHC-I.241 Thus, further experiments will be required 
to analyze the mechanisms by which Rb mutations promote 
tumor resistance to NK cells.

p53 is a crucial tumor suppressor gene that is best known for 
maintaining genomic stability and inhibiting cell proliferation.242,243 

As a transcription factor, it regulates genes involved in cell cycle, 
apoptosis, DNA repair, and many others.244 Loss of p53 function is 
frequently involved in cancer development.245 Unlike other tumor 
suppressor genes (e.g. BRCA1 or Rb), which are usually inactivated 
by deletions or truncating mutations, most p53 mutations in cancers 
are missense mutations. p53 mutations origin full-length mutant 
p53 proteins (mutp53) with only one amino acid substitution.246,247 

These mutations present two principal effects. On the one hand, 
there is the loss of the wild-type p53 (wtp53) function, and on the 
other hand, mutp53 tends to promote tumorigenesis through the 
gain-of-function (GOF) mechanism. Plenty of GOF activities have 
been reported so far: cell proliferation promotion, metastasis, geno-
mic instability, metabolic reprogramming, cell stemness, tumor 
microenvironment reshaping, immune suppression and resistance 
to therapy in cancer.247–249

The status of p53 within cancer cells profoundly influences the 
immune response, including regulation of PD-L1 and MHC-I 
expression, polarization of TAMs or inhibition of T and NK cell 
infiltration.250–252 The loss of the wtp53 also has important effects 
on NK cell-mediated killing. In 2011 Textor, S. et al., showed that 
NKG2D ligands expression (e.g. ULBP1 and ULBP2) are up- 
regulated at the transcriptional level by wtp53 but not mutp53. 
This transcription factor binds p53-responsive elements in the 
ULBP1/2 genes, leading to a higher expression of these NK cell 
ligands, thereby enhancing NK cell NKG2D-based cytotoxicity.253 

The same findings were confirmed in 2022 by Uddin, MB et al., in 
a murine model, showing that the p53 missense mutant G242A, 
which corresponds to the human G245A mutation, plays a sig-
nificant role in suppressing the activation of host NK cells. This 
suppression enables breast cancer cells to evade immune assault 
and avoid rejection by the immune system.254

Mutp53 is also recognized for its role in inhibiting apoptosis 
and autophagy, thus promoting the development of apoptosis 
resistance features.245,255 Hence, the wtp53 protein is also relevant 
for regulating GZMB-mediated apoptotic pathways by cytotoxic T 
and NK cells.256 In p53-mutated breast cancer cells, Chollat- 
Namy, M. et al., showed that the reactivation of p53 transcriptional 
activity by a p53-stabilizing agent (CP-31398) increased their lysis 
by NK cells. They could not observe a modified expression of 
known p53 targets related to NK cell activity, but they clearly 
showed an autophagy promotion and triggered the sequestration 
of anti-apoptotic proteins (e.g. Bcl-XL and XIAP) in autophago-
somes which potentiated GZMB-induced mitochondrial outer 
membrane permeabilization and caspase-3 cleavage; thus promot-
ing GZMB-induced cell death.257 
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This tumor suppressor gene is also well-known to reg-
ulate cell metabolism; however, how it affects metabolism- 
induced ligands’ expression is not completely understood. 
Belkahla, S. et al., showed that dichloroacetate (DCA) 
induced either OXPHOS in tumor cells and also the 
expression of NK ligands such as MICA/B, ULBP1, and 
ICAM-I in a wtp53-dependent mechanism (the opposite 
effect was observed in mutant or null p53). This all means 
that DCA can sensitize tumor cells but only those that are 
wtp53-expressing cells.258

Overall, these findings highlight the complex interplay 
between oncogenes and mutated tumor suppressor genes in 
the immune microenvironment and their effects on NK cell 
activating or inhibitory ligands, emphasizing the potential for 
targeted therapies in cancer treatment (See Table 1).

4. Strategies to overcome oncogene-mediated NK 
cell immunosuppression

The overexpression of anti-apoptotic proteins, or conversely, 
the suppression of proapoptotic proteins, is a common out-
come of oncogene activation.131 Current therapeutic strategies 
exploring the combinations of specific inhibitors targeting the 
dysregulated proteins, typically Bcl-2 or Bcl-XL, along with 

selectively activated NK cells, are being investigated,137,138 pro-
posing to establish a BH3 profile of the cancer cells to design 
specific trials to enhance the efficacy of adoptive NK cell 
therapy.137,138 However, previous studies have proposed that 
a higher dose of expanded NK cells can overcome tumor 
resistance in hematological tumors, although this might pre-
sent some limitations for patient treatment, especially in the 
case of solid tumors or with high tumoral burdens.137

However, reaching these higher doses might be plausible by 
designing specific trials to use NK cells as adjuvant therapy 
after stem cell transplant, chemotherapy, radiotherapy, or sur-
gery to enhance tumor elimination and prevent recurrence.

KRAS and Myc alterations have also been strongly linked 
to the dysregulation of CDK4 activity. Besides, NK cell acti-
vation ligands were restored during the CDK4/6 inhibitor’s 
treatment, observing an increase of ICAM1, MICA/B, and 
ULBPS.260 The combination of protein inhibitors such as 
MEK and CDK4/6 inhibitors also induces senescence, possi-
bly explaining the subsequent NK cell clearance, as NK cells 
play a crucial role in clearing cancer and senescent cells.260,261 

Therefore, the strategic use of CDK4/6 inhibitors such as 
palbociclib, ribociclib, and abemaciclib, in combination with 
NK cell adoptive therapy or with antibodies inducing NK cell- 
mediated ADCC, as well as with bispecific antibodies target-
ing NK cells, emerges as a promising strategy to enhance the 

Figure 3. Effects of oncogenes and mutated tumor suppressor genes in NK cell immunosurveillance. (A) Tumor cells can directly inhibit NK cell function by secreting 
interleukins (e.g. IL-6 or IL-23) or by modulating the expression of NK cell receptor ligands (e.g. HLA-I, MICA/B or PD-L1). (B) Tumor cells can secrete exosome vesicles 
that contain specific microRNAs that will induce changes in other immune cells (e.g. TAMs or CAFs), inducing their transformation into a protumorigenic phenotype. (C) 
Tumor cells secret multiple molecules (e.g. CCL9, CCL2, IL- 8, IL-10 or TGF-β) that will recruit additional immune cells that have an immunosuppressive effect on the 
cytotoxicity of NK cells. The regular arrows show evidence already demonstrated while dotted arrows are hypothetical evidence that has not been proved yet. Figure 
created with BioRender.com.

ONCOIMMUNOLOGY 11

http://BioRender.com


eradication of tumor cells by NK cells. This innovative ther-
apeutic approach offers an exciting prospect in the field of 
cancer immunotherapy, strengthening the potential for more 
effective tumor clearance and improved patient outcomes.

MICA/B and ULBPs are potent activator ligands for the NK 
cell receptor NKG2D. As indicated above their down-regula-
tion has consistently been observed in numerous studies across 
various cancer contexts related to oncogenes or tumor sup-
pressors genes.157,259 Therefore, diverse approaches attempt to 
target the NKG2D axis for cancer immunotherapies. 
Additionally, in NKG2D ligand down- regulation, their clea-
vage and release as soluble forms also significantly influence 
NK cell activity. This impact is two-fold: not only does it 
directly result in the down-regulation of activation signals, 
but it also reshapes NK cells toward a pro-inflammatory phe-
notype. While membrane-bound NKG2D ligands boost NK 
cell cytotoxicity, soluble NKG2D ligands promote the expres-
sion of cytokines such as GM-CSF, IL-10, or CCL4, as well as 
the activation of pro-inflammatory signaling pathways like 
PKC-θ and ADAP.262 In 2011, another study uncovered a 
possible new immunotherapy approach. Since ULBP1 and 
ULBP2 are direct p53 target genes, treating tumor cells with 
RITA (Reactivation of p53 and Induction of Tumor cell 
Apoptosis) would reactivate wild-type p53 and therefore 
would up- regulate the NKG2D ligands’ expression. This 
novel design would enhance NK cell cytotoxicity.253

Considering that p53 inactivating mutations are fre-
quently found in human tumors and the dependency of 
the GZMB-dependent apoptotic pathway of T and NK 
cells in the wtp53 protein, reactivating the function of p53 
will be an interesting approach. Chollat-Namy, M. et al., 
showed in their study that the pharmacological reactivation 
of a wt-like p53 function in p53-mutated breast cancer cells 
using a small molecule (CP-31398) increases their sensitiv-
ity to NK-mediated lysis.257 This tumor suppressor gene is 
also well-known to regulate cell metabolism. However, due 
to the already described association between wtp53 and NK 
cell ligands, treatment with DCA, or similar drugs could 
decrease tumors with high proliferation as well as increase 

the effectiveness of CAR NK cell or allogeneic NK cell 
therapies.258

The up-regulation of the immune checkpoint PD-L1 often 
occurs due to genetic alterations within cancer cells, including 
Ras and p53 mutations. Furthermore, the expression of PD-1 on 
NK cells has been documented, raising concerns about the capa-
city of PD-L1 engagement to attenuate NK cell function.110,111,113 

The development of immunotherapy has paved the way for a 
robust research focus on blocking the PD-1/PD-L1 inhibitory 
pathway, yielding remarkable results in various cancer types. 
Interestingly, the effectiveness of this therapy is not solely rooted 
in releasing the brake to the immune system; it also involves 
directing immune cells, primarily NK cells, by tagging the tumor 
with antibodies capable of inducing ADCC.115

As previously discussed, in some cancers tumor cells reduce 
the MHC-I expression to avoid T-cell recognition and their 
subsequent killing.52 However, NK cells can recognize these 
“low immunogenic cells” and kill them. In a mouse model of 
carcinogen-induced Non-Small Cell Lung Cancer it was shown 
that knocking out STAT3 led to down-regulation of MHC I 
making those cells more susceptible to NK cell-mediated 
death.263 Moreover, as already mentioned, tumors that harbor 
a constitutive activation of STAT3 release classical immuno-
suppressive cytokines (e.g. IL-10 and TGF-β), thus impairing 
tumor immune surveillance.229 This is why STAT3 inhibitors 
are gaining increasing therapeutic interest.264

Beyond activation or inhibition ligands, NK cell activity is 
also modulated by chemokines. Modulating the secretion of 
chemokines, such as CXCL9 and CXCL10, can significantly 
impact NK cell tumor infiltration. Hence, the observed down- 
regulation of CXCL9 due to oncogenic activity is not only 
associated with reduced NK cell infiltration across various 
types of cancer265 but also directly links the low number of 
infiltrated NK cells in CXCL9-deficient tumors to the worst 
prognosis in cholangiocarcinoma,161 opening the door to 
immunotherapy by targeting the CXCL9/CXCR3 axis to pro-
mote lymphocyte infiltration.

Altered gene expression in tumor cells typically triggers 
adopting a migratory and invasive phenotype, collectively 

Table 1. Regulation of NK cell ligands’ expression in tumor cells. CML (chronic myeloid leukemia); CRC (colorectal cancer); MM (multiple Myeloma); NSCLC (non-small cell 
lung Cancer); p53-RE (p53-responsive elements).

Oncogene NK cell ligands Tumor/Cell Type Pathway References

Myc MICA/B↓ CML miR17 154

MICA/B↑ Lung cancer Together with KRasG12D 18

HLA-I melanoma cell lines 
neuroblastoma cell line

mRNA↓ 158,159

Ras NKG2D↑ Ovarian and breast cancer MAPK, PI3K, and DNA 
damage

168,259

PD-L1↑ Lung cancer MAPK and PI3K 170

HLA-I↓ Mesothelioma cell line MAP kinase pathway 190,191

PI3K HLA-I↓ Head and neck carcinoma and colon cancer PI3K-AKT 206,207

MICA/B↑ Breast cancer Her2-PI3K-AKT 210

MICA/B↑ CML cAbl-PI3K-mTOR 213

MICA/B↑ Cervical cancer and T-cell lymphoma Vorinostat-PI3K-AKT Pterostilbene-PI3K-AKT 211,212

STAT3 MICA↓ CRC cell line HT29 and MM STAT3 binding to the MICA promoter 225,226

CML cell line K562 JAK/STAT3 227

ULBP2↓ CML cell line K562
MICB↓ Gastric adenocarcinoma 228

P53 ULBP1/2↑ NSCLC H1299 cell line wtp53 binds to p53-RE 253

PD-L1↑ Lung adenocarcinoma and breast cancer mutp53 ) PD-L1 mRNA↑ 252,254

HLA-I ↑ colon cancer cell line HCT116 wtp53 )ERAP1 mRNA↑)HLA-I 250

12 C. PESINI ET AL.



known as epithelial-mesenchymal transition (EMT). During 
EMT, significant phenotypic changes occur in cancer cells, 
leading to highly invasive properties. Among these changes, 
the regulation of cell-cell adhesion markers, such as epithelial 
cadherin and cell adhesion molecule 1, is altered,266 which can 
enhance NK cell cytotoxicity,267 contributing to a better under-
standing of the pivotal role NK cells play in controlling 
metastasis.

The generation of reactive oxygen species (ROS) within 
tumors is a common characteristic resulting from the activa-
tion of oncogenes or the inactivation of tumor suppressors, 
such as the Rb gene. ROS directly suppresses NK cell activity. 
Various NK cell priming protocols have been explored to 
counteract NK cell ROS inactivation, yielding NK cells 
enriched in the ROS scavenger thioredoxin (Trx1). These 
Trx1-enriched NK cells exhibit protection against ROS, mir-
roring the observation of Trx1+ NK cells in lung cancer 
patients with ROS. According to this observation, when divid-
ing these patients, smokers display higher ROS levels and 
worse prognoses compared to nonsmokers.268,269

5. Concluding remarks and future perspectives

In general, how mutations responsible for carcinogenesis shape 
the TME and modulate the antitumoral activity of NK cells 
remains largely unknown. The only clear fact is that NK cells 
have a genuinely complex regulation. Although they do not 
require prior antigen exposure, their antitumoral function 
relies entirely on different activating and inhibitory signals. 
Several NK cell ligands have been described; some potentiate 
NK cell activity, while others have an immunosuppressive 
effect. As already discussed here, the TME is crucial as it 
strongly affects NK cell cytotoxicity. Especially in an anti- 
inflammatory context, several cell populations (e.g. TAMs, 
MDSCs, Tregs or CAFs) and molecules (e.g. IL-6, IL-10, 
TGF-β, PGE2 or IDO) are known for their negative impact 
on NK cell activity, thus promoting tumor progression. It is 
well known that several of those molecules have been secreted 
by cancer cells with the aim of modifying the microenviron-
ment on their beneath.

It should be noted that NK cell functionality can also be 
altered by tumoral cell genetic components: oncogenes and 
tumor suppressor genes. During cancer progression, these 
genes are frequently mutated, ranging from loss of wild-type 
functions to overactivation of genes or acquisition of new 
functions. However, not everything is well understood. Some 
contradictions remain ambiguous and necessitate further 
investigation. For example, the activation of Myc in cancer 
cells has been proven to trigger the up-regulation of NKG2D 
ligands and down-regulation of MHC genes, both potent acti-
vating signals for NK-like cells. Why this is not enhancing NK 
cell activity is still not clear. We hypothesize that during the 
first stages of tumor development, NK cells are ready to elim-
inate cancer cells that have suffered oncogenic Myc transfor-
mation, while, in more advanced stages, cancer cells have 
acquired additional ability by using another oncogene to 
avoid NK cell action.

There is no doubt that oncogenes are capable of modulating 
NK cell death machinery. They can inhibit apoptosis (e.g. 

increasing anti-apoptotic proteins, Bcl-2 or Mcl-1, or down- 
modulating pro- apoptotic proteins, caspase-9, Bad or BH3- 
only proteins); down-regulate NK cell activating ligands (e.g. 
MICA/B or ULBPs); up-regulate NK cell inhibitory ligands (e. 
g. PD-L1); generate resistance to the PRF/GZM pathway and 
promote immunosuppressive cytokines secretion (e.g. IL-10 or 
TGF-β); aiding angiogenesis and recruitment of negative reg-
ulators of NK cells. Nonetheless it is still not clear if this is 
enough per se to enhance resistance to NK cytotoxicity. In any 
case, whether the acquisition of cell death mutations due to 
oncogenic activation would enhance NK cell tumor escape in 
the context of other immunosuppressive factors such as TGF-β 
or hypoxia remains to be analyzed.

In addition to the aforementioned, it should be highlighted 
that many of the studies conducted in this area are based on 
mouse models. Although these models have allowed important 
advances in the field of immunity and cancer, they are not 
perfect. Compared to humans, these models exhibit different 
ligand expression and regulation, which clearly limits their 
translation to human NK cell biology. There are also discre-
pancies in innate and adaptive immunity between the two 
species, which must be considered when using mice as pre-
clinical models of human diseases.

It is also crucial to recognize that drugs designed to target 
oncogenes in cancer cells may inadvertently impact immune 
cell functions, including NK cells, due to shared characteristics 
with tumor cells, such as high proliferative rates and metabolic 
remodeling. This suggests that these drugs could influence the 
antitumor activity of immune cells, potentially inducing the 
opposite effect to what is desired, highlighting the intricate 
interplay between tumor cell genetics and immune cell 
responses, which underscores the need for comprehensive 
consideration of immune modulation in cancer therapy. 
Understanding the potential effects of these drugs on both 
cancer sensitivity to NK cells and the sensitivity of NK cells 
to the drugs themselves is crucial for optimizing treatment 
strategies and improving patient outcomes.

Despite the critical role of NK cells in antitumoral immu-
nity, the direct impact of oncogenes on NK cell function has 
been largely overlooked in cancer research. While numerous 
studies have dissected the influence of oncogenes within the 
tumor microenvironment and on tumor cell death pathways, 
the focus has primarily been on T cells, leaving a significant gap 
in our understanding of NK cell biology. This disparity is 
evident in the limited number of papers exploring the direct 
effects of oncogenes on NK cell-mediated antitumoral 
responses, particularly within the context of the TME or 
tumor cell death mechanisms.

However, addressing this knowledge gap holds immense 
potential for enhancing cancer elimination strategies. By elu-
cidating how oncogenes modulate NK cell activity, we can 
leverage this understanding to develop more comprehensive 
immunotherapeutic approaches that simultaneously target 
both T and NK cells. This integrated approach becomes 
increasingly crucial in light of the frequent tumor recurrences 
observed following CAR T cell-based immunotherapies. 
Moreover, emerging evidence suggests that while oncogenes 
may suppress T cell activity, they inadvertently render tumor 
cells more susceptible to NK cell recognition and elimination. 
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This paradoxical effect underscores the importance of exploit-
ing the vulnerabilities of tumor cells to NK cell-mediated 
cytotoxicity. By capitalizing on strategies tumor cells employ 
to evade T cell surveillance, we can potentially enhance their 
visibility to NK cells, thus augmenting the overall antitumoral 
response.

In essence, unlocking the mechanisms by which oncogenes 
modulate NK cell function represents a promising avenue for 
refining cancer immunotherapy strategies. Through a con-
certed effort to investigate the direct impact of oncogenes on 
NK cells within the complex TME, we can pave the way for 
developing innovative therapeutic interventions that harness 
the synergistic capabilities of both innate and adaptive immune 
responses. By bridging the gap between T cell-centric research 
and the understudied realm of NK cell biology, we can aspire to 
achieve more durable and effective outcomes in the fight 
against cancer.
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