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Among the advancements in drug structural modifications, the increased focus on drug
metabolic and pharmacokinetic properties in the anesthetic drug design process has led to
significant developments. Drug metabolism also plays a key role in optimizing the
pharmacokinetics, pharmacodynamics, and safety of drug molecules. Thus, in the field
of anesthesiology, the applications of pharmacokinetic strategies are discussed in the
context of sedatives, analgesics, and muscle relaxants. In this review, we summarize two
approaches for structural optimization to develop anesthetic drugs, by designing prodrugs
and soft drugs. Drugs that both failed and succeeded during the developmental stage are
highlighted to illustrate how drug metabolism and pharmacokinetic optimization strategies
may help improve their physical and chemical properties.
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INTRODUCTION

Drug discovery and development is an expensive process with a high failure rate commonly spanning
an average of 12 years (DiMasi et al., 2010; Van Norman, 2016). Prior to the approval of compounds
for human use, drug candidates are subjected to a series of in vitro and in vivo experiments examining
possible efficacy and safety profiles. However, the overall failure rate in drug approval for decades has
been reported to be 80–90% (Yamaguchi et al., 2021), with poor efficacy and/or unacceptable toxicity
being the major causes of drug attrition at any developmental stage (Bass et al., 2009). Moreover,
unforeseen toxicity accounts for 20–30% of clinical failure and remains one of the leading causes of
drug recall and restriction (Berg, 2019).

During the early stages of drug discovery, screening of drug candidates is commonly undertaken
to identify promising lead compounds (Roberts, 2018). After this, structural modification is carried
out to improve the potency and specificity while often overlooking the pharmacokinetic (PK)
parameters and toxicity at this stage (Drews, 2000). Although potency is a crucial indicator of a
potential drug candidate, the PK properties are invariably affect the effectiveness of the drug. To
mitigate this occurrence, understanding the interplay between PK and pharmacodynamics (PD) in
therapeutic use is critical (Gabrielsson et al., 2009).

Over the past few years, the application of metabolism and PK optimization strategies in the drug
design process has been gradually recognized tominimize potential safety liabilities (Buchwald, 2020;
Cerny et al., 2020). The PK profile of a compound involves absorption, distribution, metabolism, and
excretion (ADME), among which drug metabolism plays perhaps the most crucial role in drug
development. Drug metabolism influences the pharmacological and toxicological effects and plays a
key role in optimizing the PD, PK, and safety of drug molecules (Zhang and Tang, 2018). The basic
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principle of drug metabolism is a biotransformation process that
enables efficient excretion of compounds from the body. In
general, metabolic processes occur in the liver because of its
high levels of metabolic enzymes (Patel et al., 2016). Although
organisms have developed mechanisms for degrading and
excreting foreign substances, metabolic pathways may result in
reactive or toxic metabolic intermediate formation, especially
through oxidative metabolism (Gillette, 1979; Attia, 2010).

Studies on drug metabolism therefore play a key role in
optimizing PK/PD properties and in reducing toxicity
potential associated with bioactivation. It is desirable to design
a “safer” drug focused on improving the activity/toxicity ratio,
such as the therapeutic index, instead of improving activity alone
(Bhardwaj et al., 2014). One approach is to design metabolically
stable drugs, such as pharmacologically active compounds (e.g.,
hard drugs) with no or very limited metabolism. Such drugs are
excreted by the body after they have exerted their therapeutic
effects, thereby evading the problems associated with active
intermediates or metabolites. Examples of successfully
designed hard drugs are bisphosphonates and certain

angiotensin-converting enzyme inhibitors (Kelly and O’Malley,
1990; Lin, 1996). Another approach is to integrate the
structure–activity and structure–metabolism relationship of a
drug to achieve controllable metabolism while improving its
biological activity and therapeutic index (Bhardwaj et al.,
2014). This can be achieved by the designing of prodrugs or
soft drugs (Figure 1). In this review, we provide an overview of
prodrug and soft drug design for improving PK/PD and safety
profiles of anesthetic drugs.

PRODRUGS

Adrien Albert first introduced the term “prodrug” in 1958
(Albert, 1958). Prodrugs are pharmacologically inactive,
bioreversible derivatives of active drug molecules. Prodrug
designs commonly require the presence of functional groups,
such as esters, amides, phosphates, carbonates, or carbamates,
which are cleaved either enzymatically or chemically in the body
(Rautio et al., 2008; Rautio et al., 2018).

FIGURE 1 | Drug metabolic and pharmacokinetic optimization strategies via prodrug and soft drug approach. (A) A simplified illustration of prodrug design for
enhanced permeability. (B) Prodrug design for improving drug solubility. (C) A general sheme of soft drug design loop.
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The conversion of prodrugs to active drugs is distinct from the
conversion of drugs to active metabolites. In the case of the
former, the conversion of the pharmacologically inactive

prodrugs to active drugs is designed with intended purposes.
However, the conversion of drugs to active metabolites is an
enzymatic process, and the sites of metabolism are unpredictable.

FIGURE 2 | Structural optimization in anesthetic drugs with prodrug design. (A) Hydrocodone and its ester prodrug; (B) Valdecoxib and its amide prodrug; (C)
Propofol prodrugs.
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While drugs and active metabolites are both pharmacologically
active thus making it is an option to develop the active
metabolites as new drugs, active metabolites can influence PK/
PD relationships and pose considerable uncertainty in clinical
trial (Anderson et al., 2009; Gabrielsson and Green, 2009).

According to the type of carrier attached, prodrugs are
conventionally classified into two major types: carrier-linked
prodrugs and bio-precursors. Carrier-linked prodrugs have a
non-toxic carrier or pro-moiety that is covalently linked and
removed enzymatically to release the active drug moiety. In
contrast, the bio-precursors do not incorporate a carrier group
and only yield the active compounds upon biotransformation
(Jornada et al., 2015). The prodrug strategy is often implemented
to modify or eliminate undesirable physicochemical properties, such
as poor solubility, limited bioavailability, chemical instability, low
permeability, and lack of site-specificity, of pharmacologically active
drug molecules. In other words, it enables optimization of
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties of pharmacologically active moieties and
overcomes formulation, delivery, and toxicity hurdles and achieve
optimal drug therapy and outcomes (Rautio et al., 2018; Najjar et al.,
2020). From 2008 to 2017, the United States Food and Drug
Administration (FDA) approved at least 30 prodrugs, accounting
for nearly 10% of all novel small-molecule compounds approved
(Najjar and Karaman, 2019). Some successful strategies for prodrug
design are described below as examples of prodrugs used in
anesthesia (Figure 2).

ESTER PRODRUGS

Ester prodrugs are most commonly used and it is estimated that
around half of the marketed prodrugs are activated by enzyme-
mediated hydrolysis (Ettmayer et al., 2004). The prodrug
approach can mask polar or charged moieties as esters to
improve lipophilicity, promote membrane permeation and
enhance oral absorption (Beaumont et al., 2003). Moreover,
The physicochemical properties are particularly suitable for
CNS analgesia drugs (Kang et al., 2021).

Benzhydrocodone, a synthetic opioid, is a prodrug of
hydrocodone (Mustafa et al., 2018). The physicochemical
effect after adding benzoic acid functional groups to
hydrocodone results in improved oral absorption and a
reduction in parenteral bioavailability of the active metabolite
(Cassidy et al., 2017; Guenther et al., 2018). Benzhydrocodone is
inactive and exerts its pharmacologic effects mainly through the
generation of hydrocodone, which has a high affinity for µ-opioid
receptors (MORs). Upon binding, hydrocodone produces
profound analgesia with no ceiling (Vallejo et al., 2011). It
almost completely converted into hydrocodone within 5 min
of oral administration, by esterase metabolism in the
gastrointestinal tract (Silver et al., 2016). In vitro data have
indicated that the conversion of benzhydrocodone to
hydrocodone in whole blood is a slow process that takes
approximately 240 min, which may deter parenteral abuse
(Silver et al., 2016). A single-center, randomized, double-blind,
crossover study among 51 healthy adults reported that intranasal

administration of benzhydrocodone resulted in a significantly
lower hydrocodone exposure and associated decrease in Drug
Liking score compared with that of hydrocodone bitartrate
(Mickle et al., 2018). In the case of prodrugs where
transformation is required, a lower peak plasma concentration
(Cmax) and a delayed time to peak the Cmax compared with those
for the parent drug may be observed (Mickle et al., 2018). In other
words, a prodrug could potentially allow for better management
of opioids toxicity. Benzhydrocodone in combination with
acetaminophen (APAP) under the trade name Apadaz™
received FDA approval in February 2018 for the short-term
management of severe acute pain (Mustafa et al., 2018).
However, given that benzhydrocodone/APAP is still
susceptible to oral abuse, it has not been confirmed as an
abuse-deterrent opioid formulation.

AMIDE PRODRUGS

Amide prodrug derivatives are very common among nonsteroidal
anti-inflammatory drugs (NSAIDs). Studies have shown that
replacing the carboxylic group of NSAIDs with an amide
functional group increases cyclooxygenase-2 (COX-2)
selectivity and further helps to reduce the gastrointestinal
toxicity of the parent drug (Kalgutkar et al., 2000).

Few NSAIDs were previously available for the parenteral
treatment of acute and chronic pain, and their use was often
accompanied by serious adverse effects, such as peptic ulcers,
gastrointestinal bleeding, liver and kidney dysfunction, and
platelet suppression (Pirani et al., 1987; Dorais et al., 1992; Strom
et al., 1996). Therefore, an amide prodrug with high water solubility
and anti-inflammatory activity to develop COX-2 inhibitors was
designed for parenteral delivery. Parecoxib is the first parenteral and
highly selective COX-2 inhibitor (Jain, 2000; Talley et al., 2000). As
an amide prodrug of a sulfonamide-based COX-2 inhibitor
valdecoxib, parecoxib are inactive. An N-acylation of the prodrug
moiety of valdecoxib increases the water solubility of parecoxib,
whichmakes the sulfonamideNH groupmore readily ionizable. The
parecoxib amide hydrolysis of the sulfonyl propionamide substituent
is mainly mediated by hepatic microsomal carboxylesterases (Talley
et al., 2000), with a half-life of approximately 22 min. The onset of
analgesic effects occurs within 10–23min and attains a maximum
relief within 2 h (Barton et al., 2002). Early clinical studies have
shown that it brings pain relief in post-surgical patients via its rapid
conversion to valdecoxib in vivo (Desjardins et al., 2001). A pooled
analysis of 28 randomized, placebo-controlled clinical trials with
9287 patients has shown that skin rash and cardiac complications
occur infrequently with parecoxib administration, which highlight
its safety in patients (Schug et al., 2017). Currently, it is approved in
over 80 countries for perioperative pain control andmay help reduce
opioid use (Diaz-Borjon et al., 2017).

PHOSPHATE PRODRUGS

Prodrugs with ionizable functional groups (e.g., phosphate,
phosphonate, and phosphinate) are designed to improve drug
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solubility, among which phosphate ester-based prodrugs are
relatively stable and are a good substrate for alkaline
phosphatases in vivo (Wiemer and Wiemer, 2015).

Propofol (2,6-diisopropylphenol) is an intravenous general
anesthetic drug commonly used in clinical practice and is
pharmacologically characterized by its rapid induction of
anesthesia and recovery from it after discontinuation
(Sahinovic et al., 2018). It is often formulated as an oil-in-
water emulsion with high lipophilicity (150 μg/ml) (Rautio
et al., 2008). The adverse effects associated with propofol
emulsions, such as injection pain, bacterial contamination, and
propofol infusion syndrome (Bennett et al., 1995; Kam and
Cardone, 2007; Desousa, 2016), have led to the design of the
drugs with improved water solubility, a hot spot in drug
development. Therefore, phosphate prodrugs of propofol have
been designed with a phosphate group attached to the hydroxyl
group of propofol, such as fospropofol disodium, through an
OCH2 spacer (Garnock-Jones and Scott, 2010). The substitution
of the hydroxyl group by the charged phosphate group increases
electronegativity, which greatly improves the water solubility of
fospropofol (500 mg/ml) (Rautio et al., 2008). Once the
phosphate group is hydrolyzed by alkaline phosphatase in the
liver, liberating the active metabolite propofol, the resulting
formaldehyde and phosphate degrade naturally (Schywalsky
et al., 2003). Based on the molecular weight, 1 mg of
fospropofol (332.24 g/mol) releases 0.54 mg of propofol
(178.27 g/mol). Moreover, given that the “biophase”
characteristics of fospropofol are different from that of
propofol (Yavas et al., 2008), it results in a slower onset of the
drug effect in the former group. Fospropofol has a sedation effect
onset of 4–13 min and a prolonged effect duration. For prodrugs,
due to the existence of enzymatic and/or chemical transformation
processes, the therapeutic effects of the parent drug are usually
delayed. Since the enzymatic conversion to propofol is time-
dependent, fospropofol may theoretically provide a better safety
profile, especially in cardiac and respiratory functions
(Abdelmalak et al., 2012). For example, recent studies have
shown a decreased incidence of hypotension and respiratory
depression with fospropofol because of its slower onset of
action (Luo et al., 2022). Moreover, contrary to what was
observed in the administration of propofol, the oral and
intraduodenal administration of fospropofol produced a
propofol bioavailability of 30% or more in human volunteers
(Wozniak et al., 2015). Therefore, the indications for propofol
may be extended by nonintravenous administration of
fospropofol.

Although fospropofol eliminates drawbacks associated with
propofol emulsion in water-soluble formulations, common
adverse events observed in patients are paresthesia (incidence
49–74%) and pruritus (incidence 16–28%), often in the perianal
region (Cohen et al., 2010; Gan et al., 2010). The metabolic
accumulation of phosphate components causes these adverse
effects, which are transient and self-limited (Bengalorkar et al.,
2011). Researchers have therefore also introduced amino acid
groups into the design of propofol prodrugs. It was found that
two modified amino acid prodrugs (HX0969-Ala-HCl and
HX0969-Gly-F3) released propofol more rapidly than the

phosphate prodrugs previously designed (fospropofol disodium
and HX0969W), which was confirmed through in vitro plasma
experiments in rats (Lang et al., 2014). In vivo experiments
showed that the intravenous administration of amino acid
prodrugs had a faster onset of action and required a lower
dose than the phosphate prodrug, and prevented the
generation of formaldehyde and phosphate, thereby
eliminating the adverse effects associated with formaldehyde
and phosphate buildup (Lang et al., 2014). This new design
approach may improve the conversion efficiency of a prodrug.

Next, researchers found that the insertion of glycolic acid as a
linker between propofol and cyclic amino acids could further
accelerate the release of propofol into the plasma. Prodrugs (3e,
3g, 3j) have been shown to be better than fospropofol in terms of
onset time, anesthesia duration time, and safety in mice (Liu et al.,
2020). The molar mass, onset, and duration of action of these
prodrugs were found to be comparable to those of propofol, while
preserving the clinical benefits of propofol. In addition, propofol
+ glycolic acid + cyclic amino acids may yield a key structural
feature that could contribute to the development of a safe, water-
soluble, rapid-release propofol prodrug with high molecular
utilization of propofol (Liu et al., 2020). However, because
propofol is still to date the active ingredient in these prodrug
designs, the adverse effects such as hypotension and respiratory
depression remain unresolved.

SOFT DRUGS

The term soft drug was introduced by Bodor during the late 1970s
(Bodor et al., 1980; Bodor and Kaminski, 1980). Soft drugs are
pharmacologically active and undergo predictable and
controllable metabolic inactivation after exhibiting their
therapeutic effect (Bodor and Buchwald, 2000). In general, soft
drugs are designed to control metabolism and prevent the
generation of potentially reactive or toxic intermediates. If
possible, the inactivation process should occur in a single, low-
energy, high-volume metabolic step in which the inactive
substances produced are immediately eliminated (Buchwald
and Bodor, 2014).

Therefore, it is desirable that soft drugs are metabolized by a
broad class of hydrolytic enzymes rather than undergoing
oxidative metabolism. Mammalian carboxylesterases (EC
3.1.1.1) play an important role as enzymes for drug
biotransformation and constitute a polygenic family with low
substrate specificity (Laizure et al., 2013). Together with other
carboxylate hydrolases, such as butyrylcholinesterase (BChE, EC
3.1.1.8) and arylesterase (ArE, EC 3.1.1.1.2), they effectively
catalyze the hydrolysis of various chemicals containing
functional groups, such as carboxylic acid esters, amides, and
thioesters, to their respective free acids (Laizure et al., 2013; Di,
2019). As esterases are ubiquitous in mammals and widely
expressed in various tissues, they provide a more reliable
source of inactivation relative to metabolic enzymes that are
expressed primarily in organs such as the liver and kidney,
especially in critically ill patients with severely impaired liver
and kidney function (Laizure et al., 2013). Therefore, many soft
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drug strategies are focused on hydrolysis by esterases. However,
this does not imply that molecular structures containing ester
bonds have the PK characteristics of rapid metabolism because
steric hindrance around ester bonds can have a great impact on
enzymatic reactions where the larger the steric hindrance, the
longer the half-life (Buchwald and Bodor, 1999). Moreover,
excessively rapid metabolism should be avoided to ensure the
prolonged activity of the parent compound at the desired site
(Bodor and Buchwald, 2000). Pharmaceutical development in
anesthesiology has gravitated toward soft drugs because they cater
to the high degree of control required over the rapidly changing
clinical process allowing for a state of anesthesia that can be

turned on immediately when desired and can be turned off in a
controlled manner (Egan, 2009). It is desirable that not only
should anesthetic drugs provide the advantage of predictable
control, but also that the rapid metabolism of soft drugs should be
independent of liver and kidney function and thus should not
be altered by continuous infusion and multiple intermittent
repeated doses. The drug development in anesthesia has
therefore gradually focused on designing soft drugs for
sedation, analgesia, and muscle relaxation in recent years
(Figure 3, Figure 4) (Egan, 2009; Birgenheier et al., 2020).
Since esmolol was first marketed as an ultra short-acting ß-
blocker in the early 1980s (Erhardt et al., 1982), this

FIGURE 3 | Structural modifications in sedatives and analgesics with soft drug design. (A) Soft analogs of etomidate and their metabolites. (B) Soft analog of
midazolam and its metabolite. (C) soft analog of fentanyl and its metabolite. #Values are from measurements of in vitrometabolic half-lives in rat blood. *Values are from
measurements of in vivo metabolic half-lives in human body. t1/2, half-life; MOC-ET, methoxycarbonyl etomidate; CPMM, cyclopropyl-methoxycarbonyl metomidate.
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aforementioned successful drug design approach has been rapidly
applied to opioid analgesics, benzodiazepine scaffolds, and other
ester derivatives (Feldman et al., 1991; James et al., 1991; Stafford
et al., 2002). In most cases, such drugs are rapidly metabolized,
and the pharmacological activity of the corresponding
metabolites is one or more orders of magnitude lower than
that of the parent drug (Shaffer et al., 1988; Westmoreland
et al., 1993; Kilpatrick et al., 2007). Some well-designed soft
drugs have been approved for clinical use; however, many
novel soft drug development programs have discontinued such
as those of novel etomidate and propanidid soft drug analogs
(Egan et al., 2012; Husain et al., 2012). Therefore, ongoing
attempts to develop soft drugs in the field of anesthesia will
need to see some type of success in order to provide options for
subsequent drug development.

SEDATIVES

Etomidate and Analogues
Etomidate is an ester-containing, short-acting imidazole-type
derivative discovered in 1964 (Godefroi et al., 1965). As a

nonbarbiturate intravenous general anesthetic, it has
outstanding pharmacological characteristics and causes rapid
induction of the state of anesthesia. Etomidate is
hemodynamically stable during anesthesia and has little effect
on respiratory effects (Morgan et al., 1975). Etomidate is
inactivated by hepatic esterases, which leads to the formation
of corresponding carboxylic acid (ET-acid) (Van Hamme et al.,
1978). Although etomidate also contains a carboxylic ester
structure that can be hydrolyzed to carboxylic acids by hepatic
esterases, it is a poor substrate for these esterases (Van Hamme
et al., 1978). Owing to the structural proximity of the ester bond
and the imidazole ring, the steric hindrance of hydrolysis
increases, prolonging the duration of action with a terminal
metabolic half-life of approximately 2–5 h (Van Hamme et al.,
1978; Forman, 2011). In critically ill patients, induction with
etomidate could increase mortality by inhibiting adrenocortical
steroid synthesis (Ledingham and Watt, 1983; Wagner and
White, 1984). Studies have shown that etomidate could cause
adrenocortical function of up to 6-8 h from a single
administration, and more than 24 h from continuous infusion
(Allolio et al., 1984; Wanscher et al., 1985), severely limiting its
clinical application. A valid explanation for this could be its high

FIGURE 4 | Structural modifications in muscle relaxants drugs with soft drug design. (A) Chemical structure of succinylcholine and its hydrolysis process. (B)
Chemical structure of gantacurium and its breakdown products. *Values are from measurements of in vivo metabolic half-lives in human body. #Values are from
measurements of in vitro reaction half-times in phosphate buffer at pH 7.4 and 37°C. t1/2, half-life.
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affinity for 11β-hydroxylase and the cholesterol side-chain
cleavage enzyme, which are the key enzymes involved in
steroidogenesis (de Jong et al., 1984; Pejo et al., 2016).
Therefore, it has been hypothesized that “soft” etomidate
derivatives would ameliorate this side effect since the drugs
would be rapidly metabolized (McGrath and Raines, 2018).

Methoxycarbonyl etomidate (MOC-etomidate) is the first
soft analog of etomidate, which can be rapidly hydrolyzed by
nonspecific esterase activity because of its metabolically labile
ester (Cotten et al., 2009). The main metabolite is
methoxycarbonyl etomidate carboxylic acid (MOC-ECA).
Owing to the two-carbon spacer, which increases the length
between the labile ester moiety and the imidazole ring in
MOC-etomidate, the steric hindrance of ester hydrolysis
decreases significantly (Cotten et al., 2009). Therefore,
compared with etomidate, MOC-etomidate can be
deactivated by rapid hydrolysis in vivo, with a half-life of
only a few minutes (Husain et al., 2012). As a result, it
maintains the hypnotic effect with a shorter duration of
action and is devoid of the suppression of adrenocortical
function after a single bolus (Cotten et al., 2009). It is also
demonstrated that PK modifications can reduce the inhibitory
effect of etomidate analogs on adrenocortical function (Cotten
et al., 2009). However, studies have shown that MOC-ECA
accumulates gradually over time during continuous infusion,
leading to the suppression of electroencephalographic activity
(Ge et al., 2012). The related hypothesis could be that ultrafast
metabolism results in marked context sensitivity with a slow
clearance of metabolites in the brain in which case even
minimal active metabolites may accumulate to concentrations
sufficient to produce significant pharmacological effects
despite the metabolite potency of MOC-ECA being 350-fold
lower than that of MOC-etomidate (Ge et al., 2012; Pejo et al.,
2012).

Cyclopropyl-methoxycarbonyl-metomidate (CPMM,
currently known as ABP-700) is a second-generation soft
analog of etomidate, a member of the MOC-etomidate
analogs family, with an optimal onset and offset profile
(Husain et al., 2012). The researchers concluded that
incorporating different aliphatic groups on the two-carbon
intervals of MOC-etomidate and the introduction of steric
hindrance could help reduce the rate of ester bond hydrolysis
and prolong the duration of anesthesia. This strategy was based
on previous studies which found that the insertion of large
chemical groups near metabolically unstable ester bonds slowed
down the rate of ester bond hydrolysis (Buchwald, 2001;
Buchwald and Bodor, 2002). Therefore, although ABP-700
contains an ester bond which can be metabolized to a
carboxylic acid metabolite by nonspecific esterases, it is
metabolized as a soft drug more slowly than MOC-etomidate
(Pejo et al., 2016). Compared to MOC-etomidate, ABP-700 has
an additional aliphatic group, namely, cyclopropyl, between the
etomidate backbone and the labile ester, which slows down the
metabolic rate (Husain et al., 2012). At the same time, such a
structure leads to unexpected potency, which is approximately
an order of magnitude higher than that of MOC-etomidate
(Husain et al., 2012). These chemical modifications combine

optimized PK and PD properties while improving the overall
therapeutic index.

Preclinical studies in rodent models have shown that the ABP-
700 group recovered faster than the etomidate group and that the
recovery time was independent of the infusion time.
Furthermore, the electroencephalographic burst suppression
ratio (BSR) was reversed within minutes after discontinuation
of the closed-loop infusion that lasted 2 h (Pejo et al., 2012).
Cortisol concentrations in beagles did not differ from those of
beagles in the propofol group after 2 h of continuous infusion of
ABP-700 in response to extraneous corticotropic hormone
stimulation (Campagna et al., 2014). Clinical studies on the
safety and efficacy of ABP-700 have shown that ABP-700
retains the desirable properties of etomidate with
hemodynamic stability and no respiratory depression (Struys
et al., 2017; Valk et al., 2018). However, patients in the ABP-
700 group often experienced excitatory phenomena and
abnormal involuntary muscle movement excitation at clinical
doses (Valk et al., 2018), which led to discontinued development
by The Medicines Company in 2017. Recent studies have shown
no correlation between involuntary muscle movement and
epilepsy (Valk et al., 2019), although, disinhibitory effects of
the Bispectral Index (BIS) are associated with involuntary muscle
movements (Valk et al., 2021). The mechanisms underlying
clinical excitation are still unclear, and ABP-700 was restarted
in 2020 with funding by Mass General Brigham (Boston, MA,
United States), which still needs further investigation (Valk and
Struys, 2021).

Benzodiazepines
Benzodiazepines constitute a class of psychotropic drugs with
hypnotic, sedative, anti-anxiety, and anterograde amnesia
properties that have been widely used in clinical practice.
Midazolam remains one of the most commonly used
sedatives. However, its elimination half-life is approximately
1.5–3 h and it has a prolonged sedation time due to its
production of active metabolites and dependence on liver
metabolism (Allonen et al., 1981; Smith et al., 1981).
Moreover, the cytochrome P450 enzyme has individual
differences, making the sedative duration of midazolam
unpredictable (Kanto, 1985; Wandel et al., 1994).
Remimazolam, formerly known as CNS 7056, is an ester-
modified benzodiazepine derivative with a rapid offset of
drug effect. It has a typical pharmacological profile of
benzodiazepines while exhibiting the soft PK properties of
remifentanil (Goudra and Singh, 2014).
Pharmacodynamically, remimazolam is similar to
midazolam and acts on gamma-aminobutyric acid (GABAA)
receptors which can be antagonized by the benzodiazepine
antagonist flumazenil (Kilpatrick et al., 2007). Similar to
remifentanil, its metabolism is organ-independent, and it
can be administered to patients with renal or hepatic
impairment (Stöhr et al., 2021). The carboxylic acid ester
bond in the molecular structure of remimazolam is readily
inactivated in vivo by nonspecific esterases in the blood and
tissues. Its carboxylic acid metabolite, CNS 7054, has 1/320 to
1/410 times the affinity for the benzodiazepine receptor than
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that of remimazolam (Kilpatrick et al., 2007). These
characteristics lend remimazolam a shorter action time
(<10 min) than midazolam, with an elimination half-life of
only 0.75 h (Antonik et al., 2012). Clinical trials have shown
that remimazolam has a rapid onset of action and rapid
recovery after sedation. In phase II and III clinical trials,
remimazolam was safely used in outpatient
gastrocolonoscopy, and patients recovered more quickly
than those treated with midazolam (Borkett et al., 2015;
Pambianco et al., 2016; Rex et al., 2018). Remimazolam
demonstrates deeper sedation and quicker recovery than
midazolam during continuous infusion in healthy Chinese
participants (Sheng et al., 2020). It demonstrated a
controllable pharmacological effect profile even after long-
lasting continuous infusion, and a high clearance (Lohmer
et al., 2020; Schüttler et al., 2020). The sedative effect of this
drug is comparable to that of propofol, with rapid peak
sedation within 1–2 min and only moderate hemodynamic
side effects (Goudra and Singh, 2014; Birgenheier et al.,
2020). Currently, remimazolam is seen as the future of
sedatives, which has already received regulatory approval in
Japan for general anesthesia in adults. It has been approved by
the United States Food and Drug Administration (US FDA) for
the induction and maintenance of procedural sedation (Keam,
2020). A more complete picture of the clinical potential of
remimazolam will be available in the coming years as the drug
moves from late-stage development to more widespread
postmarketing use.

ANALGESICS

As an ultra short-acting MOR agonist, remifentanil
synthesized by Feldman et al., has a strong analgesic effect
(Feldman et al., 1991; Bürkle et al., 1996). The introduction of a
methyl ester group on the N-acyl side chain of the piperidine
ring improves sensitivity to esterase hydrolytic metabolism
(Feldman et al., 1991). Studies have shown that the metabolic
clearance rate of remifentanil is faster than that of liver blood
flow, indicating that the metabolism of remifentanil is
independent of the liver (Glass et al., 1999). It can be easily
metabolized by nonspecific plasma and tissue esterases into the
carboxylic acid metabolite GI-90291 (Glass et al., 1999). GI-
90291 has a potency of 1/300 to 1/1000 times that of
remifentanil and is inactive at clinical doses. The renal
excretion rate of this metabolite has been estimated to be
over 80% (Glass et al., 1993). Remifentanil has a short onset
of action of 1–2 min and a terminal half-life of 10–20 min
(Westmoreland et al., 1993). After continuous infusion for 3 h,
the time-dose-related half-life of remifentanil was only
approximately 3 min, preventing undesirable accumulation
(Kapila et al., 1995). This also explains why hydrolases are
popular for soft drug inactivation. In the design of etomidate
analogs, the idea of inserting two CH2 groups between the
labile ester group and the imidazole ring was also derived from
the structure of remifentanil (Cotten et al., 2009). Remifentanil
had the same potency as fentanyl in a rat model of tail removal

response, and the duration of action was four times shorter
(Feldman et al., 1991). The potency of remifentanil was
20–30 times higher than that of alfentanil in both healthy
adult volunteers and those who underwent surgery (Egan et al.,
1996; Scott and Perry, 2005). Remifentanil, as an effective
opioid analgesic, has been widely used for perioperative pain
management (Wilhelm and Kreuer, 2008).

MUSCLE RELAXANTS

Succinylcholine, an accidental soft drug introduced in the 1950s,
is the only currently available depolarizing muscle relaxant
(DMR) with favorable PK properties (Thesleff et al., 1952). It
contains two acetylcholine molecules linked together by methyl
acetate (Jonas and Hunter, 2004). Succinylcholine is normally
rapidly degraded in plasma by pseudocholinesterase (PChE) to
succinylmonocholine, succinic acid, and choline (Viby-
Mogensen, 1980; Curran et al., 1987). However, given that
PChE is synthesized in the liver and is present in the plasma,
liver-related diseases may decrease enzyme activity and prolong
the duration of associated neuromuscular block. In addition,
patients with PChE deficiency are incapable of metabolizing
suxamethonium, resulting in prolonged apnea (Al-Emam,
2021). In general, the onset time of succinylcholine is within
60 s and lasts for 4–6 min when administered to patients with
normal plasma PChE activity (Alvarellos et al., 2015). Thus,
because of its short half-life, it is often used in clinical
procedures requiring short periods of muscle relaxation, such
as endotracheal intubation, fiberoptic bronchoscopy, and
electroconvulsive therapy (Sluga et al., 2005; Li et al., 2016).
However, it suffers some serious side effects, such arrhythmia,
hyperkalemia, increased intraocular or gastric pressure, and
sometimes even malignant hyperthermia, precluding it from
being the “ideal” ultra short-acting DMR (Galindo and Davis,
1962; Walton and Farman, 1973; Meyers et al., 1978).

In the past few decades, there have been some nondepolarizing
muscle relaxants (NDMRs) that may be used instead of
succinylcholine, such as short-acting gantacurium.
Gantacurium chloride, formerly recognized as GW280430A, is
a rapid onset NDMR (Belmont et al., 2004; de Boer and Carlos,
2018). As a bis-tetrahydroisoquinolinium chlorofumarate, it is a
single isomer such as cisatracurium, whereas atracurium and
mivacurium consist of a mixture of isomers (Boros et al., 1999). In
preclinical and clinical trials, gantacurium was regarded as a
promising candidate because it seemed to have a nearly identical
kinetic profile to succinylcholine. In human volunteers, its effect
onset time was less than 3 min, which was capable of being
shortened to approximately 1.5 min by increasing the dose to four
times the effective dose of 95% (ED95) with a duration of action of
15 min (Belmont et al., 2004). There are two routes of inactivation
that are unrelated to PChE activity. One is a slow process, in
which it is metabolized by alkaline ester hydrolysis in plasma, and
the other is a fast process that involves adduction of the amino
acid cysteine (L-cysteine) to saturate the fumarate double bond
(Savarese et al., 2004). The latter method of chemical degradation
most likely accounts for its ultrashort duration of effect.
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Moreover, the unique means of elimination involve neither the
kidney nor the liver, and the metabolites of gantacurium are
pharmacologically inactive (Belmont et al., 2004). Numerous
studies have indicated that L-cysteine adduction can reverse
neuromuscular blockade of gantacurium and its analogs (CW
002 and CW 011), which is the same as sugammadex reversal of
rocuronium (Savarese et al., 2010; Sunaga et al., 2010).

CONCLUSION

From pharmacological and toxicological perspectives, metabolic
considerations in the drug design process help improve PK/PD
and safety profiles. For both prodrugs and soft drugs, the applied
strategies are driven by unmet medical needs and are used to
overcome undesirable drug properties to achieve optimal clinical
use. In fact, from a broad perspective, prodrugs and soft drugs
seem to be two extremes of a continuum of possibilities (Stańczak
and Ferra, 2006). Prodrugs design is a very useful approach for
improving the drug-like properties of a molecule to circumvent
formulation and delivery difficulties. In the case of the soft drug
approach, the retrometabolic drug design strategy allows a
predictable metabolic route via a single inactivation. Prodrug
design strategies have a wide range of applications, and soft drug
design represents an approach that meets the unique needs of
modern anesthesia practice.

In recent years, new drug development programs for the
analogs of anesthetics have resulted in only a handful of
compounds with market approval (Liu et al., 2016; Keam,
2020). For soft sedative-hypnotics, abnormal excitatory
activity has been the main reason for discontinuing the
development programs. This is the case for the etomidate
and propanidid soft drug analogs. To compete with existing
drugs, novel anesthetic drugs should possess a high therapeutic
index and minimal side effects to optimize the benefit/risk
ratios in patients.

Researchers have gradually applied artificial intelligence-
assisted drug design strategies to drug metabolism studies in
recent years (Wang et al., 2019; Smith, 2022). As enzymes
(usually cytochrome P450) are essential for drug metabolism,
the three-dimensional crystal structures of various enzymes and
carrier proteins have been analyzed, the results of which have
provided the basis for structural information (Pochapsky and
Pochapsky, 2019). This would render the prediction of
interactions achievable at the beginning of drug design (Smith,
2022). Although there are several challenges and failures in drug
development, these experiences have driven the development of
new compounds. In this review, the important roles of drug
metabolism and pharmacokinetics strategies in drug design are
emphasized and expounded through examples of various prodrugs
and soft drugs in anesthesia. The rational use of these strategies will
help develop more effective and safer drugs in the future.
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